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Illustrations

1.1 Marginals-based learning in dynamic Bayesian networks. (a) Graphical model
representation of the switching vector autoregressive (switching VAR) model,
including a layer of discrete latent variables (square nodes) with Markovian
transition dynamics matrix Z, and autoregressive observations (round nodes)
with mode-specific parameters θ j. (b) Unrolled representation (with respect to
time and inference steps) of the switching VAR model, with an added logistic
regression layer (elliptic nodes). Note that due to parameter tying across
time the number of model parameters is independent of time series length.
Inference in the switching VAR model involves a forward-backward algorithm
yielding a sequence of filtered (S f

t ) and smoothed (Ss
t ) marginals. 4

1.2 Two examples of simulated bivariate time series with switching dynamics. The
time series were divided into 4 categories, each having different proportions
of four modes. These dynamical modes recur within each time series and are
shared across the different time series. Here, we introduced an offset of 2 in
one of the channels of each time series for improved visualization. 7

1.3 Classification performance over ten folds using expectation maximization
(EM) versus marginals-based learning via backpropagation (BP). Panel (a)
shows accuracy of classification (chance level is at 25%), and panel (b) is
the multinomial probability of the outcomes. Each panel represents a fixed
number of EM-based pre-training (5, 8, 10, 15, and 20 iterations) followed by
supervised learning with early stopping. The figure demonstrates the effects
of generative pre-training, and the tendency of EM to overfit to artifacts with
increased number of iterations. 8

1.4 Examples of heart rate and mean blood pressure from a tilt-table experiment.
Tilting or standing up results in an increased activity of the sympathetic
nervous system, which operates at lower frequencies than the parasympathetic
nervous system. This manifests itself as lower frequency oscillations in heart
rate time series within the non-supine segments. 9

1.5 An example of a filtered time series of heart rate (HR) and mean blood
pressure (MAP) from the tilt-table experiment (panel a). The inferred marginal
probabilities of each of the four modes using the EM and the outcome-
discriminative approaches are shown in panels (b) and (c), respectively. 10
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1.6 Comparison of EM and outcome-discriminative learning (BP) on the tilt-table
dataset. Panel (a) shows 10-fold cross-validated performance of the EM versus
BP (using 30 iteration of the BFGS algorithm with early stopping). Panel (b)
shows a comparison of the two techniques in terms of classification accuracy. 11

1.7 Physiological interpretation of learned dynamics. LF/HF ration for the
EM and outcome-discriminative learning are shown in panels (a) and (b),
respectively.The ? symbol indicates a significant change from baseline
(p<0.05; Kruskal-Wallis nonparametric ANOVA test). 12

1.8 Effects of EM-based pre-training on the performance of supervised learning
on the LFP decoding experiment. Each panel shows classification performance
over ten folds (testing set performance) based on 0, 1, 5, 10, and 20 iterations
of expectation maximization (EM) followed by 30 iterations of the supervised
learning via backpropagation (BP). The cost function that is being optimized
(Bernoulli probability of outcomes) is shown in the top row, and the area under
receiver operating curve (AUC) is presented in the bottom row. 13
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1 Identifying
outcome-discriminative
dynamics in multivariate
physiological cohort time series
Shamim Nemati and Ryan P. Adams

1.1 Background

Physiological control systems typically involve multiple interacting variables operating
in feedback loops that enhance an organism’s ability to self-regulate and respond to
internal and external disturbances. The resulting multivariate time series often exhibit
rich dynamical patterns that are altered under pathological conditions, and are there-
fore informative of health and disease (Ivanov, Rosenblum, Peng, Mietus, Havlin, Stan-
ley & Goldberger 1996, Costa, Goldberger & Peng 2002, Stein, Domitrovich, Huikuri,
Kleiger & 2005, Nemati, Edwards, Sands, Berger, Wellman, Verghese, Malhotra &
Butler 2011). Previous studies using nonlinear (Ivanov et al. 1996, Costa et al. 2002)
indices of HR variability (i.e., beat-to-beat fluctuations in HR) have shown that sub-
tle changes to the dynamics of HR may act as an early sign of adverse cardiovascular
outcomes (e.g., mortality after myocardial infarction (Stein et al. 2005)) in large pa-
tient cohort. However, these studies fall short of assessing the multivariate dynamics of
the vital signs (such as heart rate, blood pressure, respiration, etc.), and do not yield
any mechanistic hypotheses for the observed deteriorations of normal variability. This
shortcoming is in part due to the inherent difficulty of parameter estimation in physi-
ological time series, where one is confronted by nonlinearities (including rapid regime
changes), measurement artifacts, and/or missing data, which are particularly prominent
in ambulatory recordings (due to patient movements) and bedside monitoring (due to
equipment malfunction).

In the previous chapter we developed a framework for unsupervised discovery of
shared dynamics in multivariate physiological time series from large patient cohorts.
A central premise of our approach was that even within heterogeneous cohorts (with
respect to demographics, genetic factors, etc.) there are common phenotypic dynamics
that a patient’s vital signs may exhibit, reflecting underlying pathologies (e.g., detrac-
tion of the baroreflex system) or temporary physiological state changes (e.g., postural
changes or sleep/wake related changes in physiology). We used a switching state-space
model (in particular, a switching vector autoregressive) to automatically segment the
time series into regions with similar dynamics, i.e., time-dependent rules describing the
evolution of the system state. The state-space modeling approach allows for incorpora-
tion of physiologically-constrained linear models (e.g., via linearization of the nonlinear
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dynamics around equilibrium points of interest) to derive mechanistic explanations of
the observed dynamical patterns, for instance, in terms of directional influences among
the interacting variables (e.g., baroreflex gain or chemoreflex sensitivity).

Although we may assume a priori knowledge of the underlying physiology to con-
strain the state-space models, the model parameters and latent variables have to be
learned from the data. While in many problems model fitting and prediction of the fu-
ture values of a time series are the primary quantities of interest, unsupervised learning
is often used to learn features for a downstream supervised (classification) task (Marlin,
Kale, Khemani & Wetzel 2012, Lasko, Denny & Levy 2013). For instance, Lasko et
al. applied a deep learning-based approach to unsupervised learning of phenotypical
features in longitudinal sequences of serum uric acid measurements. The resulting un-
supervised phenotypic features were passed to a classifier to distinguish the uric acid
signatures of gout vs. acute leukemia, with a performance level competitive with the
gold-standard features engineered by domain experts. In practice, this two-stage pro-
cedure – unsupervised feature extraction followed by supervised learning for outcome
discrimination — may be suboptimal, since the latent dynamics that are important to
the supervised target may only be weakly related to those that are best for explaining
the raw statistics of the time series. Additionally, generative approaches to unsupervised
feature learning (Lehman, Adams, Mayaud, Moody, Malhotra, Mark & Nemati 2014)
may be hamstrung by the shortcomings of approximate inference, or the underlying
models may be underspecified with respect to the nuanced features associated with the
outcomes of interest. For instance, in a neurophysiological experiment involving EEG
recordings, it may be the case that only a single low amplitude oscillation is the distin-
guishing feature of successful trials, and therefore a reduced-model specifically trained
to capture that oscillation may provide a more parsimoneous solution to the problem of
predicting outcomes of each trial. It is therefore desirable to learn models of time series
dynamics in which the latent variables are directly tuned towards the supervised task of
interest.

In this chapter, we present a learning algorithm specifically designed to learn dynam-
ical features of time series that are directly predictive of the associated labels. Rather
than depending on label-free unsupervised learning to discover relevant features of the
time series, we build a system that expressly learns the dynamics that are most rele-
vant for classifying time series labels. Our goal is to obtain compact representations of
nonstationary and multivariate time series (representation learning)(Bengio, Courville
& Vincent 2013). To accomplish this we use a connection between dynamic bayesian
networks (e.g., the switching VAR model) and artificial neural networks (ANNs) to
perform inference and learning in state-space models in a manner analogous to back-
propagation in neural networks (Rumelhart, Hinton & Williams 1988). This connection
stems from the observation that the directed acyclic graph structure of a state-space
model can be unrolled both as a function of time and inference steps to yield a deter-
ministic neural network with efficient parameter tying across time (see Fig. 1.2). Thus,
the parameters governing the dynamics and observation model of a state-space model
can be learned in a manner analogous to that of a neural network. Indeed, the resulting
system can be viewed as a compactly-parameterized recurrent neural network (RNN)
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(Sutskever 2013). Although the standard use of RNNs has been for time series pre-
diction (network output is the predicted input time series in the future) or sequential
labeling (when output is a label sequence associated with the input data sequence), with
additional processing layers one may obtain a time series classifier from this class of
models (Graves, Fernández, Gomez & Schmidhuber 2006). Nevertheless, RNNs have
proven hard to train, since the optimization surface tend to include multiple local min-
ima. Moreover, standard RNN are ’black box’ algorithms(as apposed to ’model-based’)
and therefore do allow for incorporation of physiological models of the underlying sys-
tems. The framework proposed here addresses both these shortcomings. First, knowl-
edge of the underlying physiology can be directly incorporated into the state-space mod-
els that constitute the basic building blocks of a dynamic Bayesian network. Secondly,
equipped with a generative model, we can rely on unsupervised pre-training (via expec-
tation maximization) to systematically initialize the parameters of the equivalent RNN;
in a manner analogous to pre-training of very large neural networks (deep learning)
(Erhan, Bengio, Courville, Manzagol, Vincent & Bengio 2010).

Discriminative approaches to learning in graphical models can be broadly classi-
fied into discrete versus continuous latent variable models. Some of the recent works
within the first category include: structured output classification (Memisevic 2006)
where the hidden discrete states of an HMM are designed to correspond to target la-
bels which are observed in the training data and thus can be learned using outcome-
discriminative learning, and approximate marginal inference in conditional random
fields (Eaton & Ghahramani 2009), (Stoyanov, Ropson & Eisner 2011),(Domke 2013).
Supervised learning techniques for learning of HMMs and related conditional random
fields have been shown to outperform generative maximum likelihood learning in many
tasks (McCallum, Freitag & Pereira 2000, Lafferty, McCallum & Pereira 2001, Wood-
land & Povey 2000). More recently, It has empirically been shown that marginalization-
based learning via empirical risk minimization gives better results than likelihood based
approximations in the presence of model mis-specification (Domke 2013). In the con-
tinuous domain, (Kim & Pavlovic 2009) used a gradient based approach to learning
parameters of a conditional state-space model. They assumed ground truth for contin-
uous latent state is known during the learning phase, and provided analytical gradients
for the conditional likelihood of the latent state variables with respect to the state-space
model parameters. In contrast, here we propose a framework for gradient-based learn-
ing in hybrid discrete and continuous state-space models, and given differentiable but
otherwise arbitrary cost functions.

1.2 Time Series Classification and Switching Vector
Autoregressive modeling

Assume we are given a collection of N multivariate time series and the associated out-
come Variables: {(y(1),O(1)),(y(2),O(2)), · · · ,(y(N),O(N))}, where the n-th time series
y(n) is of length Tn, and may include M channels. The corresponding label O(n) can be
a scalar such as a discrete patient outcome, or it may itself be be a length-Tn time series
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vector that assigns a label to each instant1. Our objective is to find shared dynamical
features across the different time series that are predictive of the labels.
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Figure 1.1 Marginals-based learning in dynamic Bayesian networks. (a) Graphical model
representation of the switching vector autoregressive (switching VAR) model, including a layer
of discrete latent variables (square nodes) with Markovian transition dynamics matrix Z, and
autoregressive observations (round nodes) with mode-specific parameters θ j. (b) Unrolled
representation (with respect to time and inference steps) of the switching VAR model, with an
added logistic regression layer (elliptic nodes). Note that due to parameter tying across time the
number of model parameters is independent of time series length. Inference in the switching
VAR model involves a forward-backward algorithm yielding a sequence of filtered (S f

t ) and
smoothed (Ss

t ) marginals.

In the previous chapter we used a switching vector autoregression (VAR) to model
a time series cohort. The switching VAR models time series using a single layer of
hidden discrete random variables (see Fig. 1.2), describing the evolution of a set of J
latent states according to a Markovian dynamic. Each of these states correspond to a
unique VAR model that generates the observed time series. The generative model is as
follows: a latent process for each time series s(n)t ∈ {1, · · · ,J} evolves according to a
Markovian dynamic with initial distribution π(n) and J× J transition matrix Z. The n-th
time series y(n)t evolves according to VAR model with parameters determined by the
current latent state s(n)t . The jth VAR model has dynamics and noise parameters A( j)

and Q( j), respectively:

y(n)t =
P

∑
p=1

a(s
(n)
t )

p y(n)t−p + e(n)t , e(n)t ∼N (0,Q(s(n)t )) , (1.1)

with the multivariate autoregressive model coefficient matrices a( j)
p of size M×M,

1 A closely related problem considered in natural language processing under three categories of temporal
classification, segment classification, and sequence classification(Graves 2012)
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with maximal time lag p = 1 . . .P, and noise term wt with covariance Q( j). The set
of parameters ∆( j) = {a( j)

1 , · · · ,a( j)
P ,Q( j)} define a dynamical mode. Fig. 1.2 (a) de-

picts the graphical model representation of a switching VAR model, which is equivalent
to an HMM with continuous-valued autoregressive observations. Henceforth we use
Θ = {{∆( j)}J

j=1,Z,π
(n)} to denote the set of all parameters defining a SVAR model.

A comprehensive treatment of the expectation maximization (EM) algorithm for
learning the parameters of SVAR can be found elsewhere (Murphy 1998). Briefly, in
practice we neither know the set of switching variables nor the parameters that define
the modes. EM is a two-pass iterative algorithm: (1) in the expectation (E) step we ob-
tain the expected values of the latent variables {{s(n)t }Tn

t=1}N
n=1 using a forward-backward

algorithm (Murphy 1998, Heskes & Zoeter 2002), and (2) in the maximization (M) step
we find the model parameters Θ that maximize the expected complete data log like-
lihood. In our implementation of the EM algorithm, we achieve shared dynamics by
pooling together all subjects’ inferred latent variables in the M step. It is also possible
to impose physiological constraints on the model parameters using a constrained least
square approach within the M step. Iteration through several steps of the EM algorithm
results in learning a set of J shared modes and a global transition matrix Z for all the
patients.

1.2.1 Marginals-based Learning via Error Backpropagation

As discussed earlier, essentially any standard supervised learning algorithm can incor-
porate the latent variable marginals as features for time series classification or sequential
labeling. Here we examine two significant cases of interest: where there is a global la-
bel for the time series, and where the supervised target is itself an aligned time series.
We describe the classification setting, but these approaches would generalize directly to
continuous labels and more structured settings.

Global Label from Hidden State Proportions
We assume that each label O(n) can take on one of K possible outcomes, and can be
modeled using a softmax classifier with parameters β . The inputs to the logistic regres-
sor are the marginal estimates of expected proportion of the time that is spent in each of
the latent discrete states2:

µ
(n)
k (PΘ(s

(n)
1 ), · · · ,PΘ(s

(n)
Tn
)) =

exp{βk,0 +βT
k η(n)}

∑
K
k′=1 exp{βk′,0 +βT

k′η
(n)}

, η
(n)
j =

1
Tn

Tn

∑
t=1

PΘ(s
(n)
t = j)

where the βk are length J weight vectors, βk,0 are biases, and the η(n) are length J vectors
of hidden state proportions, which are weighed in a softmax function with row vector
parameters βk. We take the classification cost function to be the negative log likelihood
(negentropy) of the outcome labels, given the time series:

2 In the remainder of the paper, we will write the data-conditional marginals as PΘ(s
(n)
t ) for compactness.
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− logPr(O|µ(Θ,β )) =−
N

∑
n=1

K

∑
k=1

O(n)
k log µ

(n)
k (Θ,β ). (1.2)

Training can then be performed using the gradient of the logistic regression log likeli-
hood, learning the βk as well as backpropagating through the η(n) to fit the dynamics
parameters Θ proxied by the marginals .

Sequential Labels from Local Marginals
Some tasks require a time-aligned sequence of labels, in a similar fashion to a condi-
tional random field, i.e., O(n) is a sequence of size Tn, with each label taking one of K
discrete values. Here, the marginal-based predictor produces a label at each time step,
which is the result of a softmax applied to the marginal estimates:

µ
(n)
t,k (PΘ(s

(n)
1 ), · · · ,PΘ(s

(n)
Tn
)) =

exp{βk,0 +βT
k η

(n)
t }

∑
K
k′=1 exp{βk′,0 +βT

k′η
(n)
t }

, η
(n)
t, j = PΘ(s

(n)
t = j) .

Here the η
(n)
t are length-J marginal estimates at each time t, being weighed in a softmax

classifier with parameters βk. We take the classification objective to be the negative log
likelihood (negentropy) of the outcome labels, given the time series:

− logPr(O|µ(Θ,β )) =−
N

∑
n=1

Tn

∑
t=1

K

∑
k=1

O(n)
t,k log µ

(n)
t,k (Θ,β ). (1.3)

Again, the standard logistic regression likelihood can be used for training, with gradi-
ents of β directly available and gradients of Θ available via backpropagation.

As noted earlier, within the EM framework unsupervised learning of the dynamics
is treated separately from the discriminative learning of a mapping between switching
states and outcome labels. The objective of outcome-discriminative learning is to de-
sign purely-supervised learning algorithm that discovers dynamical features in series
that are predictive of the outcome variables. The key insight of the proposed learning
algorithm is that the gradient of the objectives calculated in Eqs. (1.2) and (1.3) can be
backpropagated through the network architecture depicted in Fig. 1.2(b) to efficiently
calculate the gradient with respect to all latent variables and model parameters.

The analytic gradients of the above cost function in terms of β and Θ can be cal-
culated using a two-pass algorithm. The forward pass involves running inference to
approximate the marginal distributions over the latent variables, and subsequently eval-
uating the predictor µ(·). The backward pass utilizes the chain rule (reverse mode dif-
ferentiation) from calculus to obtain the gradients of the overall loss. Since SVAR in-
ference algorithms involve a sequence of differentiable operations, the derivative of the
loss function with respect to the discrete marginals, and finally model parameters Θ can
be calculated efficiently. To accomplish this, it helps to visualize an unrolled version
of the SVAR forward-backward inference procedure, in which snapshots of a random
variable at times t and t +1 are distinct deterministic (fixed at the values determined by
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the inference step) nodes in a feedforward neural network (see Fig. 1.2(b)). Note that
since the overall gradient over a time series cohort is the sum of the individual gradients,
gradient calculations can be done in parallel for each time series. Analytic expressions
for the gradients with respect to parameters of the switching VAR model are presented
in the Appendix.

The above gradient can be directly plugged into a optimizer such as the limited-
memory BroydenFletcherGoldfarbShanno (BFGS) algorithm3 to optimize Θ and β .
However, it is necessary to carefully manage the optimization procedure in order to
avoid overfitting and local minima. In practice we observed that good initial parameters
can easily be found using a few iteration of the expectation maximization algorithm
(Murphy 1998) for unsupervised learning from the time series, in the absence of la-
bel information. This observation supports the intuition that although likelihood based
learning and the resulting features may not be necessarily good for discriminating be-
tween classes, they nevertheless capture the structure of the input data and therefore pro-
vide a good starting point for discriminative fine-tuning to make rapid progress (Erhan
et al. 2010). We also found it useful to implement an early stopping criteria based on
classification performance on a held-out validation set.
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Figure 1.2 Two examples of simulated bivariate time series with switching dynamics. The time
series were divided into 4 categories, each having different proportions of four modes. These
dynamical modes recur within each time series and are shared across the different time series.
Here, we introduced an offset of 2 in one of the channels of each time series for improved
visualization.

3 We used the Matlab implementation of the BFGS algorithm provided in the minFunc optimization
package: http://www.di.ens.fr/˜mschmidt/Software/minFunc.html.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
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1.3 Experiments

Simulated time series with Switching Dynamics
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Figure 1.3 Classification performance over ten folds using expectation maximization (EM)
versus marginals-based learning via backpropagation (BP). Panel (a) shows accuracy of
classification (chance level is at 25%), and panel (b) is the multinomial probability of the
outcomes. Each panel represents a fixed number of EM-based pre-training (5, 8, 10, 15, and 20
iterations) followed by supervised learning with early stopping. The figure demonstrates the
effects of generative pre-training, and the tendency of EM to overfit to artifacts with increased
number of iterations.

We will next demonstrate the idea of outcome-discriminative learning in a sequential
labeling task learning, consisting of 200 simulated time series with dynamic switching
among four stable dynamical modes (VAR models of order two). To increase the hetero-
geneity of the dataset, the time series were simulated using four different Markov transi-
tion matrices (the stationary distribution of the four categories were [0.67, 0.10, 0.10, 0.13],
[0.14, 0.57, 0.19, 0.10], [0.08, 0.16, 0.54, 0.22], and [0.09, 0.09 , 0.23, 0.59]). Addi-
tionally, we introduced approximately 10% variation in the AR coefficients across each
realization by adding white Gaussian noise with standard deviation 0.05 to each of the
AR coefficients. Finally, all time series included two randomly-placed large-amplitude
artifacts (uniform random noise in the interval of [0,15]) of 10 samples duration. Two
examples of the simulated time series are shown in Fig. 1.2.1).

Here we assume that the number of modes and the model order is known a pri-
ori4, and test the performance of both the EM and the outcome-discriminative learn-
ing on the classification problem of labeling each time series sample as belonging

4 if the number of modes is not known beforehand, model selection criteria such as the Bayesian
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to one of four modes. Fig. 1.3 provides a summary of the performance of EM and
outcome-discriminative learning. Notably, the figure demonstrates the dependence of
the proposed joint supervised learning on the EM initialization. In particular, outcome-
discriminative learning benefits from pre-training with as low as 5 iterations of EM.
Further unsupervised pre-training eventually lowers the performance of the outcome-
discriminative learning; presumably due to local minima and overfitting of artifacts.

Tilt-Table Experiment
Our next example is based on a tilt-table experiment, and aims at revealing the intri-
cate dependencies among cardiovascular variables. We use this example to illustrate
the utility of proposed framework for a model-based approach to pattern recognition
in nonstationary physiological time series. In particular, we show how the discovered
dynamical patterns in heart rate (HR) and mean arterial blood pressure (MAP) can be
interpreted in the light of the underlying cardiovascular control system.
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Figure 1.4 Examples of heart rate and mean blood pressure from a tilt-table experiment. Tilting
or standing up results in an increased activity of the sympathetic nervous system, which operates
at lower frequencies than the parasympathetic nervous system. This manifests itself as lower
frequency oscillations in heart rate time series within the non-supine segments.

Time series of HR and mean arterial blood pressure (MAP) were acquired from 10
healthy subjects undergoing a tilt-table experiment. The details of the protocol are de-
scribed in Heldt et al. (Heldt, Oefinger, Hoshiyama & Mark 2003). Briefly, subjects were
placed in the supine position and secured to a table. Tilting was performed at various
speeds from the horizontal position to the vertical position and back to supine, generat-
ing four postural categories of (1) supine, (2) slow-tilt, (3) fast tilt, and (4) standing (see
Fig. 1.3).

Given that we are interested in the interaction between HR and MAP in the frequency
range pertinent to sympathetic and parasympathetic regulation (Nemati, Lehman, Adams
& Malhotra 2012), we first removed the very low frequency oscillations (slower than

information criteria (BIC) or the nonparametric approaches discussed in the previous chapter can be
employed in the pre-training phase.
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100 beats) in the associated time series. This filtering was done using a 7th order Butter-
worth digital filter with cutoff frequency of 0.01 cycles/beat. One example of the result-
ing time series is shown in Fig. 1.3. Next, a sequential labeling/classification task was
constructed, involving the four maneuvers depicted in Fig. 1.3. We used four modes,
each corresponding to a VAR model of order three, to model the bivariate time series of
heart rate and blood pressure. The supervised learning algorithm was initialized using
10 iterations of the EM algorithm, followed by supervised learning with early stopping.
The results shown in Fig. 1.3 indicate that the joint supervised learning significantly
improves the multinomial probability over all sequence labels (panel (a)), as well as the
accuracy of classification (panel (b)).
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Figure 1.5 An example of a filtered time series of heart rate (HR) and mean blood pressure
(MAP) from the tilt-table experiment (panel a). The inferred marginal probabilities of each of
the four modes using the EM and the outcome-discriminative approaches are shown in panels
(b) and (c), respectively.

As noted earlier, an outcome-discriminative dynamic Bayesian network can be can
be viewed as a compactly-parameterized RNN. Therefore, to compare the performance
of the algorithm discussed here against the RNN, we experimented with several imple-
mentations of RNNs within MATLAB R© ANN package, including the layer recurrent
neural networks (layrecnet), time delay neural network (timedelaynet), and distributed
delay network (distdelaynet), with various number of hidden units and activation func-
tions. The best performance was achieved using a layrecnet architecture with 2 input
units, 10 hidden units and 4 output layers (using one-hot coding), which is similar to
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feedforward networks, except that each layer has a recurrent connection with a tap de-
lay associated with it. This allows the network to have an infinite dynamic response to
time series input data. The best performing layrecnet network achieved a classification
AUC of 60.0 [54.0 67.3] on the tilt-table dataset, which is significantly lower than the
performance of the outcome-discriminative learning.
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Figure 1.6 Comparison of EM and outcome-discriminative learning (BP) on the tilt-table
dataset. Panel (a) shows 10-fold cross-validated performance of the EM versus BP (using 30
iteration of the BFGS algorithm with early stopping). Panel (b) shows a comparison of the two
techniques in terms of classification accuracy.

Since we modeled the dynamics using a VAR model, we were able to derive the
parametric power spectra corresponding to the individual channels of each time series
(Nemati et al. 2011). Notably, we observed a progressive increase in the ratio of the
low frequency (LF: periods of 6-20 beats) to the high frequency (HF: periods of 2-5
beats) power of the HR time series (also know as the LF/HF ratio; an index of sympa-
thovagal activation) from supine to slow tilting, fast tilting, and standing. This indicates
increased sympathetic modulations. These results were obtained by (1) calculating the
parametric power spectrum of the HR for each mode, using its VAR coefficients, and (2)
calculating a weighted average of the HR spectrum within the segments corresponding
to each postural regime, where the weights were given by the probabilities of belonging
to a given mode. The estimated increase in LF/HF ratio from supine to standing was
significant with both learning techniques (EM: 4.6 [4.3, 5.4] to 8.4 [8.3, 8.6] † , su-
pervised: 4.4 [3.7 4.8] to 5.53 [5.2 6.5] †, median [interquartiles]; † indicates p < 0.05
using Kruskal-Wallis nonparametric ANOVA test).

1.3.1 Decoding Local Field Potentials

Our final example is a binary time series classification task (decoding brain activity),
involving bivariate time series of local field potentials (LFP) recorded from the visual
area V4 and inferior temporal (IT) cortex of a rhesus macaque while performing an
attention task. Each of the 420 trials lasted for 2.6 seconds, starting with the animal
gazing at an illuminated location at the center of a computer screen in a dark room.
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Figure 1.7 Physiological interpretation of learned dynamics. LF/HF ration for the EM and
outcome-discriminative learning are shown in panels (a) and (b), respectively.The ? symbol
indicates a significant change from baseline (p<0.05; Kruskal-Wallis nonparametric ANOVA
test).

An arrow then appeared (cue onset) to indicate the location of a target to appear on the
screen (one of two possible locations: bottom versus top). Within roughly 500 millisec-
onds a target object appeared (stimuli onset). After a variable amount of time the target
changed color (target change), indicating that the subject should make a saccade within
a few tens of milliseconds. LFP time series were recorded at 1000Hz and were down-
sampled to 200Hz, yielding roughly 520 samples per time series. Selective attention
requires communication among multiple brain regions in a timely manner, and conse-
quently the resulting LFP time series are nonstationary. We modeled the data using a
switching VAR model with five hidden states, each corresponding to an AR model of or-
der three. Fig. 1.3.1 shows the decoding performance based on EM versus the proposed
supervised approach. Consistent with the simulation study presented earlier, again we
see that unsupervised pre-training via EM provides a good starting point for fine-tuning
by the supervised algorithm.

1.4 Discussion and Conclusion

This chapter introduced a state-space modeling framework for multivariate time series
classification and sequential labeling. Our approach was based on the idea of using the
inferred marginals of hidden variables as inputs to a gradient-based supervised learner
such as a logistic regression classifier. We showed that if the loss function defined on
the marginals is differentiable, it will be possible to compute the gradient in terms of
these marginals, and then backpropagate the loss gradient through the message passing
inference procedure (e.g., the forward-backward algorithm). The resulting algorithm al-
lowed for combining unsupervised pre-training with supervised fine-tuning to design
and initialize a new class of RNNs for time series classification and sequential labeling.
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Figure 1.8 Effects of EM-based pre-training on the performance of supervised learning on the
LFP decoding experiment. Each panel shows classification performance over ten folds (testing
set performance) based on 0, 1, 5, 10, and 20 iterations of expectation maximization (EM)
followed by 30 iterations of the supervised learning via backpropagation (BP). The cost function
that is being optimized (Bernoulli probability of outcomes) is shown in the top row, and the area
under receiver operating curve (AUC) is presented in the bottom row.

In contrast to generative and maximum likelihood-based approaches to feature learn-
ing in time series, the outcome-discriminative learning framework provides the learning
algorithm with the outcomes (labels) corresponding to each time series sample (e.g.,
supine, slow-tilt, etc), and learns time series features that are maximally discriminative.
In doing so we addressed two shortcomings of the competing neural networks, namely
the black box nature of the RNNs and lack of a systematic approach to initialization of
network weights in the classical RNNs. The technique developed in this chapter is sig-
nificant from a theoretical point of view, since one may apply the the backpropagation-
based learning described in this chapter to any probabilistic model, define on a directed
acyclic graph structure.

Using simulated time series, we showed that outcome-discriminative learning pro-
vides a significant improvement over EM-based feature extraction and classification,
and moreover benefit from a EM-based initialization. Furthermore, we demonstrated
a significant improvement in classification accuracy when decoding postural changes
involved in the tilt-table experiment, using the multivariate switching dynamics of HR
and BP time series. Since the EM learning objective is the log likelihood of the un-
labeled time series, it may learn artifacts and other features that are not relevant to
classification. As expected, increasing the number of EM steps in the simulation study
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(where high amplitude artifacts were randomly inserted into all time series) did not im-
prove the discriminative performance, even though we observed a significant increase
in training log likelihood. Notably, the EM-based initialization step is qualitatively sim-
ilar to the unsupervised learning step used for training Deep Belief Networks (DBN)
(Hinton, Osindero & Teh 2006), where unsupervised pre-training is known to signif-
icantly improve the predictive performance of discriminative neural networks (Erhan
et al. 2010). The intuition is that pre-training puts us at a region within the parameter
space that allows the discriminative learning to rapidly progress. Moreover, since the
input is high-dimension, it is harder to overfit the input data versus the low dimensional
labels (Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath
et al. 2012).

As demonstrated through the tilt-table example, the proposed approach has the added
advantage of having physiological interpretability. Since the features used for prediction
are based on the dynamics of the underlying time series, one can link the most predictive
features back to the underlying physiology. For instance, tilting is known to disrupt the
sympathovagal balance in the direction of increased sympathetic activation (Guzzetti,
Piccaluga, Casati, Cerutti, Lombardi, Pagani & Malliani 1988). Notably, modes that
were most probable during the tilting events had higher LF/HF ratios, indicating in-
creased sympathetic modulation.

The method discussed in this chapter is directly applicable to outcome prediction
in large physiological cohort time series, as described in the previous chapter. Other
potential applications may include neural decoding and brain-machine interface (Wu,
Black, Mumford, Gao, Bienenstock & Donoghue 2004) and automated speech and
hand-writing recognition (Bahl, Brown, De Souza & Mercer 1986). Although here
we only discussed a dynamic Bayesian network consisting of discrete latent variables,
the marginals-based outcome discriminative approach is similarly applicable to models
with mixture of continuous and discrete latent variables, such as the switching Kalman
filter (Murphy 1998). Our ongoing and future works involve learning more expressive
representations of time series from the inferred marginals. For instance, a convolutional
neural network layer may replace the logistic classifier employed here, to extract ad-
ditional features pertaining to rate of transition among dynamical modes, as well as,
features that may represent long-range trends in evolution of the dynamical modes in
nonstationary time series.
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1.5 APPENDIX

Here we present the analytic gradients of the switching VAR model, starting from the
regression layer shown in Fig. 1.2, and recursively calculate the the error gradients of
the discrete latent switching variables, and ultimately the model parameters Θ.

Hereafter we will use parentheses to index individual states, and we will use brackets
to indicate the individual elements of a vector or a matrix. Thus, A(i)[m,n] refers to the
m-th row, n-th column element of the matrix of state dynamics for the i-th mode. We
will use the symbol� to denote the Frobenius inner product of two matrices (or vectors)
defined as A�B = ∑i ∑ j Ai jBi j. Moreover, for a matrix B, indexed by i, j, the colon no-
tation B(i, :) denotes entries ranging over all j values. All the exponentiations involving
matrices are element-wise. Finally, δm,n denotes a conformable matrix with the (m,n)-th
element equal to one and zero elsewhere. Similarly, δ

n,m
m,n denotes a conformable matrix

with ones at the (m,n)-th and (n,m)-th elements and zero elsewhere.

Gradient of the Regression Layer Parameters
Logistic regression is commonly used for predicting outcomes of categorical variable.
For instance, each of the N time-series within a cohort may be associated with an out-
come (or label) denoted by {Otrue

n }N
n=1). In this work, we use a multinomial regression

methods to map the hidden state marginals to the outcome labels of interest at each
time series sample. We first provide the analytic gradients of the corresponding error
functions with respect to the regression parameters.
The error gradients with respect to the parameters βk, j of the multinomial regression and
the predictor variables ηt (taken as equal to local smoothed marginals Ms

t ) are given by

∂E
∂βk, j

=−
K

∑
k′=1

Otrue
k′ (δk,k′ −µk)η j (1.4)

∂E
∂ηt, j

=−
K

∑
k=1

K

∑
k′=1

Otrue
t,k′ (δk,k′ −µt,k)βk, j , (1.5)

1.5.1 Gradient of inference operations and hidden state marginals

We start from the filtering step of the switching VAR algorithm and calculate the ana-
lytical partial derivatives of each node output(s) with respect to its input(s), as we move
forward in time. Next, smoothing of the switching variables is performed and the cor-
responding analytical gradients are calculated. The back-propagation algorithm starts
from the reverse direction (from the output of the smoothed switching variables) and
propagates the gradient information backward through the smoothed switching Vari-
ables (t = 1 to t = T ), and finally the filtered variables (t = T −1 to t = 1).

The smoothing step of the switching VAR algorithm for the switching Variables takes
the following form (Murphy 1998):
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(Ms
t (i)) = Backward(M f

t , Ms
t+1, Z)

as
t (i, j) = M f

t (i)Z(i, j) , (1.6)

bs
t (i, j) =

as
t (i, j)

∑i′ as
t (i′, j)

, (1.7)

Ms
t (i) = ∑

j′
bs

t (i, j′)Ms
t+1( j′) , (1.8)

for t = T −1, · · · ,1. Note, Ms
t (i) = Prob(St = i|y1:T ), with the initial condition Ms

T =

M f
T .

Derivatives of the error with respect to the mode proportions ηi are given Eq. (1.5)
(in the case of multinomial outcomes). Next, the error is backpropagated through the
smoothed switching Variables, as follows:

∂E
∂Ms

1(i)
=

1
T

∂E
∂ηt,i

,

∂E
∂Ms

t (i)
=

1
T

∂E
∂ηt,i

+∑
j′

∂E
∂Ms

t−1( j′)
bs

t−1( j′, i) , t = 2 · · ·T (1.9)

We also compute the following derivatives:

∂E
∂as

t (i, j)
= ∑

k′

∂E
∂Ms

t (k′)
Ms

t+1( j)[
δk′,i

∑i′ as
t (i′, j)

− as
t (k
′, j)

(∑i′ as
t (i′, j))2 ] , t = 1 · · ·T −1(1.10)
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Lt( j) = Liklihood(yt−1,yt ; A( j), Q( j))

et = yt −A( j)yt−1 , (1.11)

Lt( j) = N (et ; 0, Q( j)) . (1.12)

With the following derivatives:

∂Lt

∂et
=−LtQ−1et (1.13)

∂Lt

∂A[m,n]
=

∂Lt

∂et
� (−δm,nyt−1) (1.14)

∂Lt

∂Q
=−1

2
Lt(Q−1−Q−1(eteᵀt )Q−1) (1.15)

(1.16)

M f
t ( j) = Forward(M f

t−1,Lt ,Z)

a f
t ( j) = Lt( j)M f

t−1( j)Z(i, j) , (1.17)

M f
t ( j) =

a f
t ( j)

∑ j′ a
f
t ( j′)

. (1.18)

For t = 1, · · · ,T . Note, M f
t (i) = Prob(St = i|y1:t), with the initial condition M f

0 = π .
The partial derivatives are given by

∂M f
t (i)

∂M f
t−1( j)

= ∑
k′
[
Lt(i)Z( j, i)δk′, j

∑i′ a
f
t (i′)

− Lt(k′)Z( j,k′)a f
t (i)

(∑i′ a
f
t (i′))2

] , t = 1 · · ·T. (1.19)

∂M f
t (k)

∂Z(i, j)
= M f

t−1(i)Lt( j)[
δk, j

∑k′ a
f
t (k′)

− at(k)

(∑k′ a
f
t (k′))2

]. (1.20)

∂M f
t (k)

∂Lt( j)
= ∑

i′
M f

t−1(i
′)Z f

t (i
′, j)[

δk, j

∑k′ a
f
t (k)
− a f

t (k)

(∑k′ a
f
t (k′))2

]. (1.21)

(1.22)

∂E

∂M f
T (i)

=
∂E

∂Ms
T (i)

,

∂E

∂M f
t (i)

= ∑
j′

∂E
∂as

t (i, j′)
Z(i, j′)+

∂E

∂M f
t+1

�
∂M f

t+1

∂M f
t (i)

, t = T −1 · · ·1 (1.23)

Gradient with respect to the model parameters
We finally arrive at the error gradients with respect to the model parameters. The deriva-
tives with respect to the Markov switching state transition matrix are given by:
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∂E
∂Z(i, j)

=
T

∑
t=1

∂E

∂M f
t ( j)

� ∂M f
t ( j)

∂Z(i, j)
+

T−1

∑
t=1

∂E
∂as

t (i, j)
M f

t (i) (1.24)

For the other model parameters the error gradients are as follows:

∂E
∂A( j)[m,n]

=
T

∑
t=1

J

∑
j′=1

∂E

∂M f
t ( j′)

∂M f
t ( j′)

∂Lt( j)
∂Lt( j)

∂A( j)[m,n]
. (1.25)

∂E
∂Q( j)[m,n]

=
T

∑
t=1

J

∑
j′=1

∂E

∂M f
t ( j′)

∂M f
t ( j′)

∂Lt( j)
∂Lt( j)

∂Q( j)[m,n]
. (1.26)

Removing the Constraints via Parameter Transformations
We can convert the constrained optimization problem to an equivalent unconstrained
problem by defining the following transformations:
Let Z̄(i, j) be such that Z(i, j) = exp(Z̄(i, j))

∑ j′ exp(Z̄(i, j′)) , which results in the following gradient

for Z̄:
∂E

∂ Z̄(i, j)
=

∂E
∂ Z̄
� ∂Z

∂ Z̄(i, j)
, (1.27)

where ∂Z(k, l)
∂ Z̄(i, j)

= δi,kZ(i, j)(δ j,l−Z(k, l)). (1.28)

Furhermore, to ensure we optimize over the space of positive semi-definite matri-
ces, we use the Cholesky decomposition representation of the covariance matrices.
For instance, in the case of the state-noise covariance matrices, we represent Q( j) =
Γ( j)Γ( j)ᵀ, where (Γ( j) is a lower diagonal matrix). Then ∂E

∂Γ( j) =
∂E

∂Q( j)
∂Q( j)
∂Γ( j) , given by:

∂E
∂Γ( j)[m,n]

=
∂E

∂Q( j)
� (δm,nΓ( j)ᵀ+Γ( j)δᵀ

m,n), (1.29)

and the corresponding gradient vector includes only the lower diagonal elemnts of ∂E
∂Γ( j) .
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Notes

1Lewis Fry Richardson (1881–1953).
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