
Elliptical slice sampling

Iain Murray Ryan Prescott Adams David J.C. MacKay
University of Toronto University of Toronto University of Cambridge

Abstract

Many probabilistic models introduce strong
dependencies between variables using a latent
multivariate Gaussian distribution or a Gaus-
sian process. We present a new Markov chain
Monte Carlo algorithm for performing infer-
ence in models with multivariate Gaussian
priors. Its key properties are: 1) it has simple,
generic code applicable to many models, 2) it
has no free parameters, 3) it works well for
a variety of Gaussian process based models.
These properties make our method ideal for
use while model building, removing the need
to spend time deriving and tuning updates
for more complex algorithms.

1 Introduction

The multivariate Gaussian distribution is commonly
used to specify a priori beliefs about dependencies
between latent variables in probabilistic models. The
parameters of such a Gaussian may be specified directly,
as in graphical models and Markov random fields, or
implicitly as the marginals of a Gaussian process (GP).
Gaussian processes may be used to express concepts of
spatial or temporal coherence, or may more generally
be used to construct Bayesian kernel methods for non-
parametric regression and classification. Rasmussen
and Williams (2006) provide a recent review of GPs.

Inferences can only be calculated in closed form for
the simplest Gaussian latent variable models. Recent
work shows that posterior marginals can sometimes be
well approximated with deterministic methods (Kuss
and Rasmussen, 2005; Rue et al., 2009). Markov chain
Monte Carlo (MCMC) methods represent joint pos-
terior distributions with samples (e.g. Neal, 1993).
MCMC can be slower but applies more generally.

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

In some circumstances MCMC provides good results
with minimal model-specific implementation. Gibbs
sampling, in particular, is frequently used to sample
from probabilistic models in a straightforward way, up-
dating one variable at a time. In models with strong
dependencies among variables, including many with
Gaussian priors, Gibbs sampling is known to perform
poorly. Several authors have previously addressed the
issue of sampling from models containing strongly cor-
related Gaussians, notably the recent work of Titsias
et al. (2009). In this paper we provide a technique
called elliptical slice sampling that is simpler and of-
ten faster than other methods, while also removing the
need for preliminary tuning runs. Our method provides
a drop-in replacement for MCMC samplers of Gaussian
models that are currently using Gibbs or Metropolis–
Hastings and we demonstrate empirical success against
competing methods with several different GP-based
likelihood models.

2 Elliptical slice sampling

Our objective is to sample from a posterior distri-
bution over latent variables that is proportional to
the product of a multivariate Gaussian prior and a
likelihood function that ties the latent variables to the
observed data. We will use f to indicate the vector
of latent variables that we wish to sample and denote
a zero-mean Gaussian distribution with covariance Σ by

N (f ; 0,Σ) ≡ |2πΣ|−1/2 exp
(
− 1

2 f>Σ−1f
)
. (1)

We also use f ∼ N (0,Σ) to state that f is drawn from
a distribution with the density in (1). Gaussians
with non-zero means can simply be shifted to have
zero-mean with a change of variables; an example
will be given in Section 3.3. We use L(f) = p(data | f)
to denote the likelihood function so that our target
distribution for the MCMC sampler is

p?(f) =
1
Z
N (f ; 0,Σ)L(f), (2)

where Z is the normalization constant, or the marginal
likelihood, of the model.

Our starting point is a Metropolis–Hastings method
introduced by Neal (1999). Given an initial state f , a

Elliptical slice sampling

new state

f ′ =
√

1− ε2 f + εν, ν ∼ N (0,Σ) (3)

is proposed, where ε ∈ [−1, 1] is a step-size parameter.
The proposal is a sample from the prior for ε=1 and
more conservative for values closer to zero. The move
is accepted with probability

p(accept) = min(1, L(f ′)/L(f)), (4)

otherwise the next state in the chain is a copy of f .

Neal reported that for some Gaussian process classifiers
the Metropolis–Hastings method was many times faster
than Gibbs sampling. The method is also simpler to
implement and can immediately be applied to a much
wider variety of models with Gaussian priors.

A drawback, identified by Neal (1999), is that the
step-size ε needs to be chosen appropriately for the
Markov chain to mix efficiently. This may require
preliminary runs. Usually parameters of the covariance
Σ and likelihood function L are also inferred from data.
Different step-size parameters may be needed as the
model parameters are updated. It would be desirable
to automatically search over the step-size parameter,
while maintaining a valid algorithm.

For a fixed auxiliary random draw, ν, the locus of
possible proposals by varying ε ∈ [−1, 1] in (3) is half
of an ellipse. A more natural parameterization is

f ′ = ν sin θ + f cos θ, (5)

defining a full ellipse passing through the current state f
and the auxiliary draw ν. For a fixed θ there is an
equivalent ε that gives the same proposal distribution
in the original algorithm. However, if we can search
over the step-size, the full ellipse gives a richer choice
of updates for a given ν.

2.1 Sampling an alternative model

‘Slice sampling’ (Neal, 2003) provides a way to sample
along a line with an adaptive step-size. Proposals are
drawn from an interval or ‘bracket’ which, if too large,
is shrunk automatically until an acceptable point is
found. There are also ways to automatically enlarge
small initial brackets. Naively applying these adaptive
algorithms to select the value of ε in (3) or θ in (5)
does not result in a Markov chain transition operator
with the correct stationary distribution. The locus of
states is defined using the current position f , which
upsets the reversibility and correctness of the update.

We would like to construct a valid Markov chain tran-
sition operator on the ellipse of states that uses slice
sampling’s existing ability to adaptively pick step sizes.

Input: current state f , a routine that samples from
N (0,Σ), log-likelihood function logL.

Output: a new state f ′. When f is drawn from p?(f)∝
N (f ; 0,Σ)L(f), the marginal distribution of f ′ is also p?.

1. Sample from p(ν0,ν1, θ |(ν0 sin θ+ν1 cos θ= f)):

θ ∼ Uniform[0, 2π]

ν ∼ N (0,Σ)

ν0 ← f sin θ + ν cos θ

ν1 ← f cos θ − ν sin θ

2. Update θ ∈ [0, 2π] using slice sampling (Neal, 2003)
on:

p?(θ |ν0,ν1) ∝ L(ν0 sin θ + ν1 cos θ)

3. return f ′ = ν0 sin θ + ν1 cos θ

Figure 1: Intuition behind elliptical slice sampling. This
is a valid algorithm, but will be adapted (Figure 2).

We will first intuitively construct a valid method by
positing an augmented probabilistic model in which
the step-size is a variable. Standard slice sampling algo-
rithms then apply to that model. We will then adjust
the algorithm for our particular setting to provide a
second, slightly tidier algorithm.

Our augmented probabilistic model replaces the origi-
nal latent variable with prior f ∼ N (0,Σ) with

ν0 ∼ N (0,Σ)
ν1 ∼ N (0,Σ)
θ ∼ Uniform[0, 2π]
f = ν0 sin θ + ν1 cos θ.

(6)

The marginal distribution over the original latent vari-
able f is still N (0,Σ), so the distribution over data
is identical. However, we can now sample from the
posterior over the new latent variables:

p?(ν0,ν1, θ) ∝ N (ν0; 0,Σ)N (ν1; 0,Σ)L(f (ν0,ν1, θ)),

and use the values of f deterministically derived from
these samples. Our first approach applies two Monte
Carlo transition operators that leave the new latent
posterior invariant.

Operator 1: jointly resample the latents ν0,ν1, θ
given the constraint that f(ν0,ν1, θ) is unchanged. Be-
cause the effective variable of interest doesn’t change,
the likelihood does not affect this conditional distribu-
tion, so the update is generic and easy to implement.

Operator 2: use a standard slice sampling algorithm
to update the step-size θ given the other variables.

The resulting algorithm is given in Figure 1. The
auxiliary model construction makes the link to slice
sampling explicit, which makes it easy to understand
the validity of the approach. However, the algorithm

Murray, Adams, MacKay

can be neater and the [0, 2π] range for slice sampling
is unnatural on an ellipse. The algorithm that we will
present in detail results from eliminating ν0 and ν1

and a different way of setting slice sampling’s initial
proposal range. The precise connection will be given
in Section 2.4. A more direct, technical proof that
the equilibrium distribution of the Markov chain is the
target distribution is presented in Section 2.3.

Elliptical slice sampling, our proposed algorithm is
given in Figure 2, which includes the details of the slice
sampler. An example run is illustrated in Figure 3(a–d).
Even for high-dimensional problems, the states consid-
ered within one update lie in a two-dimensional plane.
In high dimensions f and ν are likely to have similar
lengths and be an angle of π/2 apart. Therefore the
ellipse will typically be fairly close to a circle, although
this is not required for the validity of the algorithm.

As intended, our slice sampling approach selects a
new location on the randomly generated ellipse in (5).
There are no rejections: the new state f ′ is never equal
to the current state f unless that is the only state on
the ellipse with non-zero likelihood. The algorithm
proposes the angle θ from a bracket [θmin, θmax] which
is shrunk exponentially quickly until an acceptable
state is found. Thus the step size is effectively adapted
on each iteration for the current ν and Σ.

2.2 Computational cost

Drawing ν costs O(N3), for N -dimensional f and gen-
eral Σ. The usual implementation of a Gaussian sam-
pler would involve caching a (Cholesky) decomposition
of Σ, such that draws on subsequent iterations cost
O(N2). For some problems with special structure draw-
ing samples from the Gaussian prior can be cheaper.

In many models the Gaussian prior distribution cap-
tures dependencies: the observations are independent
conditioned on f . In these cases, computing L(f) will
cost O(N) computation. As a result, drawing the ν
random variate will be the dominant cost of the update
in many high-dimensional problems. In these cases
the extra cost of elliptical slice sampling over Neal’s
Metropolis–Hastings algorithm will be small.

As a minor performance improvement, our implementa-
tion optionally accepts the log-likelihood of the initial
state, if known from a previous update, so that it
doesn’t need to be recomputed in step 2.

2.3 Validity

Elliptical slice sampling considers settings of an angle
variable, θ. Figure 2 presented the algorithm as it
would be used: there is no need to index or remember
the visited angles. For the purposes of analysis we

Input: current state f , a routine that samples from
N (0,Σ), log-likelihood function logL.

Output: a new state f ′. When f is drawn from p?(f)∝
N (f ; 0,Σ)L(f), the marginal distribution of f ′ is also p?.

1. Choose ellipse: ν ∼ N (0,Σ)
2. Log-likelihood threshold:

u ∼ Uniform[0, 1]

log y ← logL(f) + log u

3. Draw an initial proposal, also defining a bracket:

θ ∼ Uniform[0, 2π]

[θmin, θmax]← [θ−2π, θ]

4. f ′ ← f cos θ + ν sin θ
5. if logL(f ′) > log y then:
6. Accept: return f ′

7. else:
Shrink the bracket and try a new point:

8. if θ < 0 then: θmin←θ else: θmax←θ
9. θ ∼ Uniform[θmin, θmax]

10. GoTo 4.

Figure 2: The elliptical slice sampling algorithm.

(a) (b)

(c) (d)

(e)

Figure 3: (a) The algorithm receives f= as input. Step 1
draws auxiliary variate ν= , defining an ellipse centred at
the origin (). Step 2: a likelihood threshold defines the
‘slice’ (). Step 3: an initial proposal is drawn, in this
case not on the slice. (b) The first proposal defined both
edges of the [θmin, θmax] bracket; the second proposal ()
is also drawn from the whole range. (c) One edge of the
bracket () is moved to the last rejected point such that

is still included. Proposals are made with this shrinking
rule until one lands on the slice. (d) The proposal here ()
is on the slice and is returned as f ′. (e) Shows the reverse
configuration discussed in Section 2.3: is the input f ′,
which with auxiliary ν′= defines the same ellipse. The
brackets and first three proposals () are the same. The
final proposal () is accepted, a move back to f .

Elliptical slice sampling

will denote the ordered sequence of angles considered
during the algorithm by {θk} with k=1..K.

We first identify the joint distribution over a state
drawn from the target distribution (2) and the other
random quantities generated by the algorithm:

p(f , y,ν, {θk}) = p?(f) p(y | f) p(ν) p({θk}| f ,ν, y)

=
1
Z
N (f ; 0,Σ)N (ν; 0,Σ) p({θk}| f ,ν, y), (7)

where the vertical level y was drawn uniformly
in [0, L(f)], that is, p(y | f) = 1/L(f). The final term,
p({θk}| f ,ν, y), is a distribution over a random-sized set
of angles, defined by the stopping rule of the algorithm.

Given the random variables in (7) the algorithm de-
terministically computes positions, {fk}, accepting the
first one that satisfies a likelihood constraint. More
generally each angle specifies a rotation of the two
a priori Gaussian variables:

νk = ν cos θk − f sin θk
fk = ν sin θk + f cos θk, k = 1..K.

(8)

For any choice of θk this deterministic transformation
has unit Jacobian. Any such rotation also leaves the
joint prior probability invariant,

N (νk; 0,Σ)N (fk; 0,Σ) = N (ν; 0,Σ)N (f ; 0,Σ) (9)

for all k, which can easily be verified by substituting
values into the Gaussian form (1).

It is often useful to consider how an MCMC algorithm
could make a reverse transition from the final state f ′

back to the initial state f . The final state f ′= fK was
the result of a rotation by θK in (8). Given an initial
state of f ′= fK , the algorithm could generate ν′=νK
in step 1. Then a rotation of −θK would return back
to the original (f ,ν) pair. Moreover, the same ellipse
of states is accessible and rotations of θk− θK will
reproduce any intermediate fk<K locations visited by
the initial run of the algorithm.

In fact, the algorithm is reversible:

p(f , y,ν, {θk}) = p(f ′, y,ν′, {θ′k}), (10)

the equilibrium probability of a forwards draw (7) is
the same as the probability of starting at f ′, drawing
the same y (possible because L(f ′)>y), ν′=νK and

angles, θ′k =

{
θk − θK k < K

−θK k = K,
(11)

resulting in the original state f being returned. The
reverse configuration corresponding to the result of a
forwards run in Figure 3(d) is illustrated in Figure 3(e).

Substituting (9) into (7) shows that ensuring that the
forward and reverse angles are equally probable,

p({θk}| f ,ν, y) = p({θ′k}| f ′,ν′, y), (12)

results in the reversible property (10).

The algorithm does satisfy (12): The probability of the
first angle is always 1/2π. If more angles were considered
before an acceptable state was found, these angles were
drawn with probabilities 1/(θmax − θmin). Whenever
the bracket was shrunk in step 8, the side to shrink must
have been chosen such that fK remained selectable as it
was selected later. The reverse transition uses the same
intermediate proposals, making the same rejections
with the same likelihood threshold, y. Because the
algorithm explicitly includes the initial state, which in
reverse is fK at θ′=0, the reverse transition involves
the same set of shrinking decisions as the forwards
transitions. As the same brackets are sampled, the
1/(θmax−θmin) probabilities for drawing angles are the
same for the forwards and reverse transitions.

The reversibility of the transition operator (10) implies
that the target posterior distribution (2) is a station-
ary distribution of the Markov chain. Drawing f from
the stationary distribution and running the algorithm
draws a sample from the joint auxiliary distribution (7).
The deterministic transformations in (8) and (11) have
unit Jacobian, so the probability density of obtaining
a joint draw corresponding to (f ′, y,ν′, {θ′k}) is equal
to the probability given by (7) for the original vari-
ables. The reversible property in (10) shows that this
is the same probability as generating the variables by
first generating f ′ from the target distribution and gen-
erating the remaining quantities using the algorithm.
Therefore, the marginal probability of f ′ is given by
the target posterior (2).

Given the first angle, the distribution over the first pro-
posed move is N (f cos θ, Σ sin2 θ). Therefore, there is a
non-zero probability of transitioning to any region that
has non-zero probability under the posterior. This is
enough to ensure that, formally, the chain is irreducible
and aperiodic (Tierney, 1994). Therefore, the Markov
chain has a unique stationary distribution and repeated
applications of elliptical slice sampling to an arbitrary
starting point will asymptotically lead to points drawn
from the target posterior distribution (2).

2.4 Slice sampling variants

There is some amount of choice in how the slice sampler
on the ellipse could be set up. Other methods for
proposing angles could have been used, as long as they
satisfied the reversible condition in (12). The particular
algorithm proposed in Figure 2 is appealing because it
is simple and has no free parameters.

Murray, Adams, MacKay

The algorithm must choose the initial edges of the
bracket [θmin, θmax] randomly. It would be aesthet-
ically pleasing to place the edges of the bracket at
the opposite side of the ellipse to the current position,
at ±π. However this deterministic bracket placement
would not be reversible and gives an invalid algorithm.

The edge of a randomly-chosen bracket could lie on
the ‘slice’, the acceptable region of states. Our recom-
mended elliptical slice sampling algorithm, Figure 2,
would accept this point. The initially-presented algo-
rithm, Figure 1, effectively randomly places the end-
points of the bracket but without checking this location
for acceptability. Apart from this small change, it can
be shown that the algorithms are equivalent.

In typical problems the slice will not cover the whole
ellipse. For example, if f is a representative sample
from a posterior, often −f will not be. Increasing the
probability of proposing points close to the current
state may increase efficiency. One way to do this would
be to shrink the bracket more aggressively (Skilling
and MacKay, 2003). Another would be to derive a
model from the auxiliary variable model (6), but with
a non-uniform distribution on θ. Another way would
be to randomly position an initial bracket of width less
than 2π— the code that we provide optionally allows
this. However, as explained in section 2.2, for high-
dimensional problems such tuning will often only give
small improvements. For smaller problems we have
seen it possible to improve the cpu-time efficiency of
the algorithm by around two times.

Another possible line of research is methods for biasing
proposals away from the current state. For example
the ‘over-relaxed’ methods discussed by Neal (2003)
have a bias towards the opposite side of the slice from
the current position. In our context it may be desirable
to encourage moves close to θ=π/2, as these moves are
independent of the previous position. These proposals
are only likely to be useful when the likelihood terms are
very weak, however. In the limit of sampling from the
prior due to a constant likelihood, the algorithm already
samples reasonably efficiently. To see this, consider
the distribution over the outcome after N iterations
initialized at f0:

fN = f0
N∏
n=1

cos θn +
N∑
m=1

νm sin θm
N∏

n=m+1

cos θn,

where νn and θn are values drawn at iteration n. Only
one angle is drawn per iteration when sampling from
the prior, because the first proposal is always accepted.
The only dependence on the initial state is the first
term, the coefficient of which shrinks towards zero
exponentially quickly.

2.5 Limitations

A common modeling situation is that an unknown
constant offset, c ∼ N (0, σ2

m), has been added to the
entire latent vector f . The resulting variable, g= f+c, is
still Gaussian distributed, with the constant σ2

m added
to every element of the covariance matrix. Neal (1999)
identified that this sort of covariance will not tend
to produce useful auxiliary draws ν. An iteration of
the Markov chain can only add a nearly-constant shift
to the current state. Indeed, covariances with large
constant terms are generally problematic as they tend
to be poorly conditioned. Instead, large offsets should
be modeled and sampled as separate variables.

No algorithm can sample effectively from arbitrary dis-
tributions. As any distribution can be factored as in
(2), there exist likelihoods L(f) for which elliptical slice
sampling is not effective. Many Gaussian process appli-
cations have strong prior smoothness constraints and
relatively weak likelihood constraints. This important
regime is where we focus our empirical comparison.

3 Related work

Elliptical slice sampling builds on a Metropolis–
Hastings (M–H) update proposed by Neal (1999). Neal
reported that the original update performed moderately
better than using a more obvious M–H proposal,

f ′ = f + εν, ν ∼ N (0,Σ), (13)

and much better than Gibbs sampling for Gaussian
process classification. Neal also proposed using Hy-
brid/Hamiltonian Monte Carlo (Duane et al., 1987;
Neal, 1993), which can be very effective, but requires
tuning and the implementation of gradients. We now
consider some other alternatives that have similar re-
quirements to elliptical slice sampling.

3.1 ‘Conventional’ slice sampling

Elliptical slice sampling builds on the family of methods
introduced by Neal (2003). Several of the existing
slice sampling methods would also be easy to apply:
they only require point-wise evaluation of the posterior
up to a constant. These methods do have step-size
parameters, but unlike simple Metropolis methods,
typically the performance of slice samplers does not
crucially rely on carefully setting free parameters.

The most popular generic slice samplers use simple
univariate updates, although applying these directly
to f would suffer the same slow convergence problems
as Gibbs sampling. While Agarwal and Gelfand (2005)
have applied slice sampling for sampling parameters
in Gaussian spatial process models, they assumed a

Elliptical slice sampling

linear-Gaussian observation model. For non-Gaussian
data it was suggested that “there seems to be little role
for slice sampling.”

Elliptical slice sampling changes all of the variables in
f at once, although there are potentially better ways of
achieving this. An extensive search space of possibilities
includes the suggestions for multivariate updates made
by Neal (2003).

One simple possible slice sampling update performs a
univariate update along a random line traced out by
varying ε in (13). As the M–H method based on the
line worked less well than that based on an ellipse, one
might also expect a line-based slice sampler to perform
less well. Intuitively, in high dimensions much of the
mass of a Gaussian distribution is in a thin ellipsoidal
shell. A straight line will more rapidly escape this shell
than an ellipse passing through two points within it.

3.2 Control variables

Titsias et al. (2009) introduced a sampling method
inspired by sparse Gaussian process approximations.
M control variables fc are introduced such that the
joint prior p(f , fc) is Gaussian, and that f still has
marginal prior N (0,Σ). For Gaussian process models a
parametric family of joint covariances was defined, and
the model is optimized so that the control variables
are informative about the original variables: p(f | fc)
is made to be highly peaked. The optimization is a
pre-processing step that occurs before sampling begins.

The idea is that the small number of control variables fc
will be less strongly coupled than the original variables,
and so can be moved individually more easily than the
components of f . A proposal involves resampling one
control variable from the conditional prior and then
resampling f from p(f | fc). This move is accepted or
rejected with the Metropolis–Hastings rule.

Although the method is inspired by an approximation
used for large datasets, the accept/reject step uses the
full model. After O(N3) pre-processing it costs O(N2)
to evaluate a proposed change to the N -dimensional
vector f . One ‘iteration’ in the paper consisted of an
update for each control variable and so costs O(MN2)

— roughly M elliptical slice sampling updates. The
control method uses fewer likelihood evaluations per
iteration, although has some different minor costs asso-
ciated with book-keeping of the control variables.

3.3 Local updates

In some applications it may make sense to update only
a subset of the latent variables at a time. This might
help for computational reasons given the O(N2) scaling
for drawing samples of subsets of size N . Titsias et al.

(2009) also identified suitable subsets for local updates
and then investigated sampling proposals from the
conditional Gaussian prior.

In fact, local updates can be combined with any tran-
sition operator for models with Gaussian priors. If
fA is a subset of variables to update and fB are the
remaining variables, we can write the prior as:[

fA
fB

]
∼ N

(
0,
[
ΣA,A ΣA,B
ΣB,A ΣB,B

])
(14)

and the conditional prior is:

p(fA | fB) = N (fA; m, S), where

m = ΣA,BΣ−1
B,BfB , and S = ΣA,A−ΣA,BΣ−1

B,BΣB,A.

A change of variables g= fA−m allows us to express the
conditional posterior as: p?(g) ∝ N(g; 0, S)L

(»
g+m
fB

–)
.

We can then apply elliptical slice sampling, or any al-
ternative, to update g (and thus fA). Updating groups
of variables according to their conditional distributions
is a standard way of sampling from a joint distribution.

4 Experiments

We performed an empirical comparison on three Gaus-
sian process based probabilistic modeling tasks. Only
a brief description of the models and methods can
be given here. Full code to reproduce the results is
provided as supplementary material.

4.1 Models

Each of the models associates a dimension of the latent
variable, fn, with an ‘input’ or ‘feature’ vector xn. The
models in our experiments construct the covariance
from the inputs using the most common method,

Σij = σ2
f exp

(
− 1

2

∑D
d=1(xd,i − xd,j)2/`2

)
, (15)

the squared-exponential or “Gaussian” covariance.
This covariance has “lengthscale” parameter ` and
an overall “signal variance” σ2

f . Other covariances may
be more appropriate in many modeling situations, but
our algorithm would apply unchanged.

Gaussian regression: given observations y of the
latent variables with Gaussian noise of variance σ2

n,

Lr(f) =
∏
n N (yn; fn, σ2

n), (16)

the posterior is Gaussian and so fully tractable. We
use this as a simple test that the method is working
correctly. Differences in performance on this task will
also give some indication of performance with a simple
log-concave likelihood function.

Murray, Adams, MacKay

We generated ten synthetic datasets with input fea-
ture dimensions from one to ten. Each dataset was
of size N=200, with inputs {xn}Nn=1 drawn uniformly
from a D-dimensional unit hypercube and function
values drawn from a Gaussian prior, f∼N (0,Σ), using
covariance (15) with lengthscale `=1 and unit signal
variance, σ2

f = 1. Noise with variance σ2
n = 0.32 was

added to generate the observations.

Gaussian process classification: a well-explored
application of Gaussian processes with a non-Gaussian
noise model is binary classification:

Lc(f) =
∏
n σ (ynfn) , (17)

where yn ∈ {−1,+1} are the label data and σ(a) is a
sigmoidal function: 1/(1+e−a) for the logistic classifier;
a cumulative Gaussian for the probit classifier.

We ran tests on the USPS classification problem
as set up by Kuss and Rasmussen (2005). We
used log σf =3.5, log `=2.5 and the logistic likelihood.

Log Gaussian Cox process: an inhomogeneous Pois-
son process with a non-parametric rate can be con-
structed by using a shifted draw from a Gaussian pro-
cess as the log-intensity function. Approximate infer-
ence can be performed by discretizing the space into
bins and assuming that the log-intensity is uniform in
each bin (Møller et al., 1998). Each bin contributes a
Poisson likelihood:

Lp(f) =
∏
n

λn
yn exp(−λn)

yn!
, λn=efn+m, (18)

where the model explains the yn counts in bin n as
drawn from a Poisson distribution with mean λn. The
offset to the log mean, m, is the mean log-intensity of
the Poisson process plus the log of the bin size.

We perform inference for a Cox process model of the
dates of mining disasters taken from a standard data
set for testing point processes (Jarrett, 1979). The
191 events were placed into 811 bins of 50 days each.
The Gaussian process parameters were fixed to σ2

f =1
and `=13516 days (a third of the range of the dataset).
The offset m in (18) was set to m=log(191/811), to
match the empirical mean rate.

4.2 Results

A trace of the samples’ log-likelihoods, Figure 4, shows
that elliptical slice sampling and control variables sam-
pling have different behavior. The methods make differ-
ent types of moves and only control variables sampling
contains rejections. Using long runs of either method
to estimate expectations under the target distribution
is valid. However, sticking in a state due to many
rejections can give a poor estimator as can always mak-

0 500 1000

−45

−40

−35

Control variable moves

lo
g

L

Control Variables

0 500 1000

−45

−40

−35

Iterations

Elliptical slice sampling

Figure 4: Traces of log-likelihoods for the 1-dimensional GP
regression experiment. Both lines are made with 333 points
plotted after each sweep through M =3 control variables
and after every 3 iterations of elliptical slice sampling.

0 5000 10000
−140

−120

−100

−80

−60

−40

Control variable moves

lo
g

L

Control Variables

0 5000 10000
−140

−120

−100

−80

−60

−40

Iterations

Elliptical slice sampling

Figure 5: As in Figure 4 but for 10-dimensional regression
and plotting every M = 78 iterations. (Control variables
didn’t move on this run.)

ing small moves. It can be difficult to judge overall
sampling quality from trace plots alone.

As a quantitative measure of quality we estimated the
“effective number of samples” from log-likelihood traces
using R-CODA (Cowles et al., 2006). Figure 6 shows
these results along with computer time taken. The step
size for Neal’s Metropolis method was chosen using a
grid search to maximize performance. Times are for the
provided implementations under Matlab v7.8 on a sin-
gle 64 bit, 3 GHz Intel Xeon CPU. Comparing runtimes
is always problematic, due to implementation-specific
details. Our numbers of effective samples are primarily
plotted for the same number of O(N2) updates with
the understanding that some correction based loosely
on runtime should be applied.

The control variables approach was particularly recom-
mended for Gaussian processes with low-dimensional
input spaces. On our particular low-dimensional
synthetic regression problems using control variables
clearly outperforms all the other methods. On the
model of mining disasters, control variable sampling
has comparable performance to elliptical slice sampling
with about 50% less run time. On higher-dimensional
problems more control variables are required; then
other methods cost less. Control variables failed to sam-
ple in high-dimensions (Figure 5). On the USPS classifi-
cation problem control variables ran exceedingly slowly
and we were unable to obtain any meaningful results.

Elliptical slice sampling obtained more effective samples
than Neal’s M–H method with the best possible step
size, although at the cost of increased run time. On the
problems involving real data, elliptical slice sampling

Elliptical slice sampling

Figure 6: Number of effective samples from 105 iterations after 104 burn in, with time and likelihood evaluations required.
The means and standard deviations for 100 runs are shown (divide the “error bars” by 10 to get standard errors on the
mean, which are small). Each iteration involves one O(N2) operation (e.g. one ν draw or updating one control variable).
Each group of bars in the top two rows has been rescaled for readability: the numbers beneath each group show the
number of effective samples or CPU time in seconds for elliptical slice sampling, which always has bars of height 1.

was better overall whereas M–H has more effective
samples per unit time (in our implementation) on the
synthetic problems. The performance differences aren’t
huge; either method would work well enough.

Elliptical slice sampling takes less time than slice sam-
pling along a straight line (line sampling involves addi-
tional prior evaluations) and usually performs better.

5 Discussion

The slice samplers use many more likelihood evaluations
than the other methods. This is partly by choice:
our code can take a step-size parameter to reduce the
number of likelihood evaluations (Section 2.4). On
these problems the time for likelihood computations
isn’t completely negligible: speedups of around ×2 may
be possible by tuning elliptical slice sampling. Our
default position is that ease-of-use and human time is
important and that the advantage of having no free
parameters should often be taken in exchange for a
factor of two in runtime.

We fixed the parameters of Σ and L in our experi-
ments to simplify the comparison. Fixing the model
potentially favors the methods that have adjustable
parameters. In problems were Σ and L change dra-
matically, a single step-size or optimized set of control
variables could work very poorly.

Elliptical slice sampling is a simple generic algorithm
with no tweak parameters. It performs similarly to the
best possible performance of a related M–H scheme,
and could be applied to a wide variety of applications
in both low and high dimensions.

Acknowledgements

Thanks to Michalis Titsias for code, Sinead Williamson
and Katherine Heller for a helpful discussion, and to

Radford Neal, Sam Roweis, Christophe Andrieu and
the reviewers for useful suggestions. RPA is funded by
the Canadian Institute for Advanced Research.

References

D. K. Agarwal and A. E. Gelfand. Slice sampling for
simulation based fitting of spatial data models. Statistics
and Computing, 15(1):61–69, 2005.

M. K. Cowles, N. Best, K. Vines, and M. Plummer. R-
CODA 0.10-5, 2006. http://www-fis.iarc.fr/coda/.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth.
Hybrid Monte Carlo. Physics Letters B, 195(2):216–222,
September 1987.

R. G. Jarrett. A note on the intervals between coal-mining
disasters. Biometrika, 66(1):191–193, 1979.

M. Kuss and C. E. Rasmussen. Assessing approximate infer-
ence for binary Gaussian process classification. Journal
of Machine Learning Research, 6:1679–1704, 2005.

J. Møller, A. R. Syversveen, and R. P. Waagepetersen.
Log Gaussian Cox processes. Scandinavian Journal of
Statistics, 25(3):451–482, 1998.

R. M. Neal. Probabilistic inference using Markov chain
Monte Carlo methods. Technical Report CRG-TR-93-1,
Dept. of Computer Science, University of Toronto, 1993.

R. M. Neal. Regression and classification using Gaussian
process priors. In J. M. Bernardo et al., editors, Bayesian
Statistics 6, pages 475–501. OU Press, 1999.

R. M. Neal. Slice sampling. Annals of Statistics, 31(3):
705–767, 2003.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for machine learning. MIT Press, 2006.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian
inference for latent Gaussian models by using integrated
nested Laplace approximations. Journal of the Royal
Statistical Society: Series B, 71(2):319–392, 2009.

J. Skilling and D. J. C. MacKay. Slice sampling — a binary
implementation. Annals of Statistics, 31(3), 2003.

L. Tierney. Markov chains for exploring posterior distribu-
tions. The Annals of Statistics, 22(4):1701–1728, 1994.

M. Titsias, N. D. Lawrence, and M. Rattray. Efficient
sampling for Gaussian process inference using control
variables. In Advances in Neural Information Processing
Systems 21, pages 1681–1688, 2009.

