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Abstract
We propose a black-box variational inference
method to approximate intractable distributions
with an increasingly rich approximating class.
Our method, variational boosting, iteratively re-
fines an existing variational approximation by
solving a sequence of optimization problems, al-
lowing a trade-off between computation time and
accuracy. We expand the variational approximat-
ing class by incorporating additional covariance
structure and by introducing new components to
form a mixture. We apply variational boosting
to synthetic and real statistical models, and show
that the resulting posterior inferences compare
favorably to existing variational algorithms.

1. Introduction
Variational inference (VI) is a family of methods to approx-
imate an intractable target distribution (typically known
only up to a constant) with a tractable surrogate distri-
bution (Blei et al., 2016; Jordan et al., 1999; Wainwright
& Jordan, 2008). VI procedures typically minimize the
Kullback-Leibler (KL) divergence between the approxima-
tion and target distributions by maximizing a tractable lower
bound on the marginal likelihood. The approximating fam-
ily is often fixed, and typically excludes the neighborhood
surrounding the target distribution, which prevents the ap-
proximation from becoming arbitrarily close to the true
posterior. In the context of Bayesian inference, this mis-
match between the variational family and the true posterior
often manifests as underestimating the posterior variances of
the model parameters and the inability to capture posterior
correlations (Wainwright & Jordan, 2008).

An alternative approach to posterior inference uses Markov
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chain Monte Carlo (MCMC) methods that approximate a
target distribution with samples drawn from a Markov chain
constructed to admit the target distribution as the stationary
distribution. MCMC enables a trade-off between computa-
tion and accuracy: drawing more samples makes the approx-
imation closer to the target distribution. However, MCMC
algorithms typically must be run iteratively and it can be dif-
ficult to assess convergence to the true target. Furthermore,
correctly specifying MCMC moves can be more algorithmi-
cally restrictive than optimization-based approaches.

To alleviate the mismatch between tractable variational ap-
proximations and complicated posterior distributions, we
propose a variational inference method that iteratively al-
lows the approximating family of distributions to become
more complex. Under certain conditions, the proposed ap-
proximations are eventually expressive enough to represent
the true target arbitrarily well (though we do not prove our al-
gorithm attains such a universal approximation here). Thus,
the practitioner can trade time fitting a posterior approxi-
mation for increased accuracy of posterior estimates. Our
algorithm grows the complexity of the approximating class
in two ways: 1) incorporating rich covariance structure, and
2) sequentially adding new components to the approximat-
ing distribution. Our method builds on black-box variational
inference methods using the re-parameterization trick by
adapting it to be used with mixture distributions. This allows
our method to be applied to a variety of target distributions
including those arising from non-conjugate model specifi-
cations (Kingma & Welling, 2014; Ranganath et al., 2014;
Salimans & Knowles, 2013). We demonstrate empirically
that our algorithm improves posterior estimates over other
variational methods for several practical Bayesian models.

2. Variational Inference
Given a target distribution with density1 π(x) for a con-
tinuous random variable x ∈ X ⊆ RD, variational in-
ference approximates π(x) with a tractable distribution,
q(x;λ), from which we can efficiently draw samples and
form sample-based estimates of functions of x. Variational
methods minimize the KL-divergence, KL(q||π), between
q(·;λ) and the true π as a function of variational param-
eter λ (Bishop, 2006). Although direct minimization of

1We assume π(x) is known up to a constant, π̃(x) = Cπ(x).
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KL(q||π) is often intractable, we can derive a tractable ob-
jective based on properties of the KL-divergence. This
objective is known as the evidence lower bound (ELBO):

L(λ) = Eqλ [lnπ(x)− ln q(x;λ)] + ln C

= ln C −KL(qλ||π) ≤ ln C = ln

∫
π̃(x)dx

which, due to the positivity of KL(q||π), is a lower bound
on C = log π(x), i.e., the marginal likelihood.

Variational methods typically fix a family of distributions
Q = {q(·;λ) : λ ∈ Λ} parameterized by λ, and maximize
the ELBO with respect to λ ∈ Λ. Often there exists some
(possibly non-unique) λ∗ ∈ Λ for which KL(q||π) is min-
imized. However, when the family Q does not include π
then KL(qλ∗ ||π) > 0 which will result in biased estimates
of functions f(x), Ex∼qλ∗ [f(x)] 6= Ex∼π[f(x)].

The primary alternative to variational methods for approx-
imate inference is Markov chain Monte Carlo (MCMC),
which constructs a Markov chain such that the target dis-
tribution remains invariant. Expectations with respect to
the target distribution can be calculated as an average with
respect to these correlated samples. MCMC typically en-
joys nice asymptotic properties; as the number of samples
grows, MCMC samplers represent the true target distribu-
tion with increasing fidelity. However, rules for constructing
correct Markov steps are restrictive. With a few exceptions,
most MCMC algorithms require evaluating a log-likelihood
that touches all data at each step in the chain (Maclaurin &
Adams, 2014; Welling & Teh, 2011). This becomes prob-
lematic during statistical analyses of large amounts of data —
MCMC is often considered unusable because of this compu-
tational bottleneck. Notably, variational methods can avoid
this bottleneck by sub-sampling the data (Ranganath et al.,
2016a), as unbiased estimates of the log-likelihood can often
be straight-forwardly used with optimization methods.

In the next section, we propose an algorithm that iteratively
grows the approximating class Q and reframes the VI pro-
cedure as a series of optimization problems, resulting in a
practical inference method that can both represent arbitrarily
complex distributions and scale to large data sets.

3. Variational Boosting
We define our class of approximating distributions to be
mixtures of C simpler component distributions:

q(C)(x;λ, ρ) =

C∑
c=1

ρcqc(x;λc) , s.t. ρc ≥ 0,
∑
c

ρc = 1,

where we denote the full mixture as q(C), mixing
proportions ρ = (ρ1, . . . , ρC), and component distribu-
tions qc(·;λc) parameterized by λ = (λ1, . . . , λC). The

qc(·;λc)s can be any distribution over X ⊆ RD from which
we can efficiently draw samples using a continuous mapping
parameterized by λc (e.g., multivariate normal (Jaakkola &
Jordan, 1998), or a composition of invertible maps (Rezende
& Mohamed, 2015)).

When posterior expectations and variances are of interest,
mixture distributions provide tractable summaries. Expecta-
tions are easily expressed in terms of component expecta-
tions:

Eq(C) [f(x)] =

∫
q(C)(x)f(x)dx =

∑
c

ρcEqc [f(x)].

In the case of multivariate normal components, the mean
and covariance of a mixture are easy to compute, as are
marginal distributions along any set of dimensions.

Variational boosting (VBoost) begins with a single mix-
ture component, q(1)(x;λ) = q1(x;λ1) with C = 1. We
fix ρ1 = 1 and use existing black-box variational infer-
ence methods to fit the first component parameter, λ1. At
the next iteration C = 2, we fix λ1 and introduce a new
component into the mixture, q2(x;λ2). We define a new
ELBO objective as a function of new component parame-
ters, λ2, and a new mixture weight, ρ2. We then optimize
this objective with respect to λ2 and ρ2 until convergence.
At each subsequent round, c, we introduce new component
parameters and a mixing weight, (λc, ρc), which are then
optimized according to a new ELBO objective. The name
variational boosting is inspired by methods that iteratively
construct strong learners from ensembles of weak learners.
We apply VBoost to target distributions via black-box vari-
ational inference with the re-parameterization trick to fit
each component and mixture weights (Kingma & Welling,
2014; Ranganath et al., 2014; Salimans & Knowles, 2013).
However, using mixtures as the variational approximation
complicates the use of the re-parameterization trick.

3.1. The re-parameterization trick and mixtures

The re-parameterization trick is used to compute an unbiased
estimate of the gradient of an objective that is expressed
as an intractable expectation with respect to a continuous-
valued random variable. This situation arises in variational
inference when the ELBO cannot be evaluated analytically.
We form an unbiased estimate as:

L(λ) = Eq [lnπ(x)− ln q(x;λ)] (1)

≈ 1

L

L∑
`=1

[
lnπ(x(`))− ln q(x(`);λ)

]
(2)

where x(`) ∼ q(x;λ). To obtain a Monte Carlo estimate
of the gradient of L(λ) using the re-parameterization
trick, we first separate the randomness needed to gen-
erate x(`) from the parameters λ, by defining a deter-
ministic map x(`) , fq(ε;λ) such that ε ∼ p(ε) implies



Variational Boosting: Iteratively Refining Posterior Approximations

x(`) ∼ q(x;λ). Note that p(ε) does not depend on λ. We
then differentiate Eq. (2) with respect to λ through the map
fq to obtain an estimate of∇λL(λ).

When q(·;λ) is a mixture, applying the re-parameterization
trick is not straightforward. The typical sampling procedure
for a mixture model includes a discrete random variable that
indicates a mixture component, which complicates differ-
entiation. We circumvent this by re-writing the variational
objective as a weighted combination of expectations with
respect to individual mixture components:

L(λ, ρ) =

∫ ( C∑
c=1

ρcqc(x;λc)

)
[lnπ(x)− ln q(x;λ)] dx

=

C∑
c=1

ρc

∫
qc(x;λc) [lnπ(x)− ln q(x;λ)] dx

=

C∑
c=1

ρcEqc [lnπ(x)− ln q(x;λ)]

which is a weighted sum of component-specific ELBOs. If
the qc are continuous and there exists some function fc(ε;λ)
such that x = fc(ε;λ) and x ∼ qc(·;λ) when ε ∼ p(ε), then
we can apply the re-parameterization trick to each compo-
nent to obtain gradients of the ELBO :

∇λcL(λ, ρ) = ∇λc
C∑
c=1

ρcEx∼q(x;λ) [lnπ(x)− ln q(x;λ)]

=

C∑
c=1

ρcEε∼p(ε)
[
∇λc lnπ(fc(ε;λc))

−∇λc ln q(fc(ε;λc);λ)
]
.

VBoost leverages the above formulation of ∇λcL(λ, ρ)
to use the re-parameterization trick in a component-by-
component manner, allowing us to improve the variational
approximation as we incorporate new components.

3.2. Incorporating New Components

Next, we describe how to incrementally add components
during the VBoost procedure.

The first component VBoost starts by fitting a approxi-
mation to π(x) consisting of a single component, q1. We do
this by maximizing the first ELBO objective

L(1)(λ1) = Eq1 [lnπ(x)− ln q1(x;λ1)] (3)

λ∗1 = arg max
λ1

L(1)(λ1) . (4)

Depending on the forms of π and q1, optimizing L(1) can
be accomplished by various methods — an obvious choice
being black-box VI with the re-parameterization trick. After
convergence we fix λ1 to be λ∗1.

existing approx 
target

existing approx 
initial new comp 
target

existing approx 
optimized new comp 
target

Figure 1. One-dimensional illustration of the VBoost procedure.
Top: Initial single-component approximation (solid blue). Middle:
A new component (dotted red) is initialized. Bottom: New compo-
nent parameters and mixing weights are optimized using Monte
Carlo gradients of the ELBO. Note that the mass of the existing
components can rise and fall, but not shift in space.

Component C + 1 After iteration C, our current approxi-
mation to π(x) is a mixture distribution with C components:

q(C)(x;λ, ρ) =

C∑
c=1

ρcqc(x;λc). (5)

Adding a component to Eq. (5) introduces a new compo-
nent parameter, λC+1, and a new mixing weight, ρC+1. In
this section, the mixing parameter ρC+1 ∈ [0, 1] mixes be-
tween the new component, qC+1(·;λC+1) and the existing
approximation, q(C). The new approximate distribution is

q(C+1)(x;λ, ρ)

= (1− ρC+1)q(C)(x) + ρC+1qC+1(x;λC+1) .

The new ELBO, as a function of ρC+1 and λC+1, is:

L(C+1)(ρC+1, λC+1)

= Ex∼q(C+1)

[
lnπ(x)− ln q(C+1)(x;λC+1, ρC+1)

]
= (1− ρC+1)Eq(C)

[
lnπ(x)− ln q(C+1)(x;λC+1, ρC+1)

]
+ ρC+1EqC+1

[
lnπ(x)− ln q(C+1)(x;λC+1, ρC+1)

]
.

Crucially, we have separated out two expectations: one
with respect to the existing approximation, q(C) (which is
fixed), and the other with respect to the new component
distribution, qC+1. Because we have fixed q(C), we only
need to optimize the new component parameters, λC+1

and ρC+1, allowing us to use the re-parameterization trick
to obtain gradients of L(C+1). Note that evaluating the
gradient requires sampling from the existing components
which may result in larger variance than typical black-box
variational methods. To mitigate the extra variance we use
many samples to estimate the gradient and leave variance
reduction to future work.
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Figure 1 illustrates the algorithm on a simple one-
dimensional example — the initialization of a new com-
ponent and the resulting mixture after optimizing the sec-
ond objective, L(2)(ρ2, λ2). Figure 2 depicts the result
of VBoost on a two-dimensional, multi-modal target dis-
tribution. In both cases, the component distributions are
Gaussians with diagonal covariance.

3.3. Structured Multivariate Normal Components

Though our method can use any component distribution
that can be sampled using a continuous mapping, a sensible
choice of component distribution is a multivariate normal

q(x;λ) = N (x;µλ,Σλ)

= |2πΣλ|−1/2 exp
(
− 1

2 (x− µλ)ᵀΣ−1λ (x− µλ)
)

where the variational parameter λ is transformed into a mean
vector µλ and covariance matrix Σλ.

Specifying the structure of the covariance matrix is a choice
that largely depends on the dimensionality of X ⊆ RD
and the correlation structure of the target distribution.
A common choice of covariance is a diagonal matrix,
Σλ = diag(σ2

1 , . . . , σ
2
D), which implies that x is indepen-

dent across dimensions. When the approximation only con-
sists of one component, this structure is commonly referred
to as the mean field family. While computationally efficient,
mean field approximations cannot model posterior corre-
lations, which often leads to underestimation of marginal
variances. Additionally, when diagonal covariances are used
as the component distributions in Eq. (5) the resulting mix-
ture may require a large number of components to represent
the strong correlations (see Fig. 2). Furthermore, indepen-
dence constraints can actually introduce local optima in the
variational objective (Wainwright & Jordan, 2008).

On the other end of the spectrum, we can parameterize
the entire covariance matrix using the Cholesky decompo-
sition, L, such that LLᵀ = Σ. This allows Σ to be any
positive semi-definite matrix, enabling q to have the full
flexibility of a D-dimensional multivariate normal distri-
bution. However, this introduces D(D + 1)/2 parameters,
which can be computationally cumbersome when D is even
moderately large. Furthermore, only a few pairs of variables
may exhibit posterior correlations, particularly in multi-level
models or neural networks where different parameter types
may be nearly independent in the posterior.

As such, we would like to incorporate some capacity to
capture correlations between dimensions of x without over-
parameterizing the approximation. The next subsection dis-
cusses a covariance specification that provides this tradeoff,
while remaining computationally tractable.

Low-rank plus diagonal covariance Black-box varia-
tional inference methods with the re-parameterization trick

Figure 2. Sequence of increasingly complex approximate poste-
riors, with C = 1, 2, 3, 4 isotropic Gaussian components. The
background (grey/black) contours depict the target distribution,
and the foreground (red) contours depict the approximations.

require sampling from the variational distribution and ef-
ficiently computing (or approximating) the entropy of the
variational distribution. For multivariate normal distribu-
tions, the entropy is a function of the determinant of the
covariance matrix, Σ, while computing the log likelihood
requires computing Σ−1. When the dimensionality of the
target, D, is large, computing determinants and inverses
will have O(D3) time complexity and therefore may be
prohibitively expensive to compute at every iteration.

However, it may be unnecessary to represent allD(D−1)/2
possible correlations in the target distribution, particularly
if certain dimensions are close to independent. One way to
increase the capacity of q(x;λ) is to model the covariance
as a low-rank plus diagonal (LR+D) matrix

Σ = FF ᵀ + diag(exp(v)) (6)

where F ∈ RD×r is a matrix of off diagonal factors,
and v ∈ RD is the log-diagonal component. This is effec-
tively approximating the target via a factor analysis model.

The choice of the rank r presents a tradeoff: with a larger
rank, the variational approximation can be more flexible;
with a lower rank, the computations necessary for fitting the
variational approximation are more efficient. As a concrete
example, in Section 4 we present a D = 37 dimensional
posterior resulting from a non-conjugate hierarchical model,
and we show that a “rank r = 2 plus diagonal” covariance
does an excellent job capturing all D(D − 1)/2 = 780 pair-
wise correlations and D marginal variances. Incorporating
more components using the VBoost framework further im-
proves the approximation of the distribution.

To use the re-parameterization trick with this low rank co-
variance, we can simulate from q in two steps

z(lo) ∼ N (0, Ir) z(hi) ∼ N (0, ID)

x = Fz(lo) + µ+ I(v/2)z(hi)
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where z(lo) generates the randomness due to the low-rank
structure, and z(hi) generates the randomness due to the di-
agonal structure. We use the operator I(a) = diag(exp(a))
for notational brevity. This generative process can be dif-
ferentiated, yielding Monte Carlo estimates of the gradient
with respect to F and v suitable for stochastic optimization.

In order to use LR+D covariance structure within VBoost,
we will need to efficiently compute the determinant and
inverse of Σ. The matrix determinant lemma expresses the
determinant of Σ as the product of two determinants

|FF ᵀ + I(v))| = |I(v))||Ir + F ᵀI(−v)F |

= exp

(∑
d

vd

)
|Ir + F ᵀI(−v)F |

where the left term is simply the product of the diagonal
component, and the right term is the determinant of an r × r
matrix, computable in O(r3) time (Harville, 1997).

To compute Σ−1, the Woodbury matrix identity states that

(FF ᵀ + I(v))−1

= I(−v)− I(−v)F (Ir + F ᵀI(−v)F )−1F ᵀI(−v)

which involves the inversion of a smaller, r × r matrix
and can be done in O(r3) time (Golub & Van Loan, 2013).
Importantly, for r � D the above operations are efficiently
differentiable and amenable for use in the BBVI framework.

Fitting the rank To specify the ELBO objective, we need
to choose a rank r for the component covariance. There are
many ways to decide on the rank of the variational approx-
imation, some more appropriate for certain settings given
dimensionality and computational constraints. For instance,
we can greedily incorporate new rank components. Alter-
natively, we can fit a sequence of ranks r = 1, 2, . . . , rmax,
and choose the best result (in terms of KL). In the Bayesian
neural network model, we report results for a fixed schedule
of ranks. In the hierarchical Poisson model, we monitor the
change in marginal variances to decide the appropriate rank.
See Section B of the supplement for further discussion.

Initializing new component parameters When we add
a new component, we must first initialize the component
parameters. We find that the VBoost optimization proce-
dure can be sensitive to initialization, so we devise a cheap
importance sampling-based algorithm to generate a good
starting point. This initialization procedure is detailed in
Section A and Algorithm 1 of the supplement.

3.4. Related Work

Mixtures of mean field approximations were introduced
in Jaakkola & Jordan (1998) where mean field-like updates
were developed using a bound on the entropy term and

model-specific parameter updates. Nonparametric varia-
tional inference, introduced in Gershman et al. (2012), is a
black-box variational inference algorithm that approximates
a target distribution with a mixture of equally-weighted
isotropic normals. The authors use a lower-bound on the en-
tropy term in the ELBO to make the optimization procedure
tractable. Similarly, Salimans & Knowles (2013) present a
method for fitting mixture distributions as an approximation.
However, their method is restricted to mixture component
distributions within the exponential family, and a joint op-
timization procedure. Mixture distributions are a type of
hierarchical variational model (Ranganath et al., 2016b),
where the component identity can be thought of as latent
variables in the variational distribution. While in Ranganath
et al. (2016b), the authors optimize a lower bound on the
ELBO to fit general hierarchical variational models, our ap-
proach integrates out the discrete latent variables, allowing
us to directly optimize the ELBO.

Sequential maximum-likelihood estimation of mixture mod-
els has been studied previously where the error between the
sequentially learned model and the optimal model where all
components and weights are jointly learned is bounded by
O(1/C) where C is the number of mixture components (Li
& Barron, 1999; Li, 1999; Rakhlin et al., 2006). A similar
bound was proven in Zhang (2003) using arguments from
convex analysis. More recently, sequentially constructing
a mixture of deep generative models has been shown to
achieve the same O(1/C) error bound when trained using
an adversarial approach (Tolstikhin et al., 2016). Though
these ideas show promise for deriving error bounds for vari-
ational boosting, there are difficulties in applying them.

In concurrent work, Guo et al. (2016) developed a boosting
procedure to construct flexible approximations to posterior
distributions. In particular, they use gradient-boosting to
determine candidate component distributions and then opti-
mize the mixture weight for the new component (Friedman,
2000). However, Guo et al. (2016) assume that the gradient-
boosting procedure is able to find the optimal new compo-
nent so that the arguments in Zhang (2003) apply, which is
not true in general. We note that if we make the similar as-
sumption that at each step of VBoost the component param-
eters λ∗C are found exactly, then the optimization of ρC is
convex and can be optimized exactly. We can then appeal to
the same arguments in Zhang (2003) and obtain an O(1/C)
error bound. The work in Guo et al. (2016) provides impor-
tant first steps in the theoretical development of boosting
methods applied to variational inference, however, we note
that developing a comprehensive theory that deals with the
difficulties of multimodality and the non-joint-convexity of
KL divergence in λ and ρ is still needed. Recently, Moore
(2016) began to address issues of multimodality from model
symmetry in variational inference. However, the question
remains whether the entire distribution is being explored.
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(a) baseball marginals (b) baseball covariances

Figure 3. Left: Comparison of bivariate (top) and univariate (bottom) marginals for the baseball model. Histograms/scatterplots depict
20,000 NUTS samples. The top left depicts (lnκ, θ0) marginal samples and a mean field approximation (MFVI). The Top Right shows
the same bivariate marginal, and the VBoost approximation with isotropic components. The bottom panels compare NUTS, MFVI, and
VBoost on univariate marginals (φ and lnκ). Right: Comparison of posterior covariances for the D = 20-dimensional baseball model.
Each plot compares covariance estimates of VBoost (x-axis) with increasing numbers of components and MCMC samples (y-axis). As
more components are added, the VBoost estimates more closely match the MCMC covariance estimates.

Seeger (2010) explored the use of low-rank covariance Gaus-
sians as variational approximations using a PCA-like algo-
rithm. Additionally, concurrent work has proposed the use
a LR+D matrices as the covariances of Gaussian posterior
approximations (Ong et al., 2017). We have also found that
though the LR+D covariance approximation is useful for
capturing posterior correlations, combining the idea with
boosting new components to capture non-Gaussian posteri-
ors yields superior posterior inferences.

4. Experiments and Analysis
To supplement the previous synthetic examples, we use
VBoost to approximate various challenging posterior distri-
butions arising from real statistical models of interest.2

Binomial Regression We first apply VBoost to a non-
conjugate hierarchical binomial regression model.3 The
model describes the binomial rates of success (batting aver-
ages) of baseball players using a hierarchical model (Efron
& Morris, 1975), parameterizing the “skill” of each player:

θj ∼ Beta(φ · κ, (1− φ) · κ) player j prior
yj ∼ Binomial(Kj , θj) player j hits ,

where yj is the number of successes (hits) player j has
attempted in Kj attempts (at bats). Each player has a la-
tent success rate θj , which is governed by two global vari-
ables κ and φ. We specify the priors φ ∼ Unif(0, 1) and
κ ∼ Pareto(1, 1.5). There are 18 players in this example,
creating a posterior distribution with D = 20 parameters.
For each round of VBoost, we estimate∇λ,ρL(C+1) using

2Code available at https://github.com/andymiller/vboost.
3Model and data from the mc-stan case studies

400 samples each for qC+1 and qC . We use 1,000 itera-
tions of adam with default parameters to update ρC+1 and
λC+1 (Kingma & Ba, 2014).

In all experiments, we use autograd to obtain gradients
with respect to new component parameters (Maclaurin et al.,
2015b;a). To highlight the fidelity of our method, we com-
pare VBoost with rank-1 components to mean field VI
(MFVI) and the No-U-Turn Sampler (NUTS) (Hoffman
& Gelman, 2014). The empirical distribution resulting from
20k NUTS samples is considered the “ground truth” pos-
terior in this example. Figure 3a compares a selection of
univariate and bivariate posterior marginals. We see that
VBoost is able to closely match the NUTS posteriors, im-
proving upon the MFVI approximation. Figure 3b compares
the VBoost covariance estimates to the “ground truth” es-
timates of MCMC at various stages of the algorithm. We
see that VBoost is able to capture pairwise covariances with
increasing accuracy as the number of components increases.

Multi-level Poisson GLM We use VBoost to approxi-
mate the posterior of a hierarchical Poisson GLM, a com-
mon non-conjugate Bayesian model. Here, we focus on a
specific model that was formulated to measure the relative
rates of stop-and-frisk events for different ethnicities and in
different precincts (Gelman et al., 2007), and has been used
as an illustrative example of multi-level modeling (Gelman
& Hill, 2006). The model uses a precinct and ethnicity effect
to describe the relative rate of stop-and-frisk events

αe ∼ N (0, σ2
α) ethnicity effect

βp ∼ N (0, σ2
β) precinct effect

lnλep = µ+ αe + βp + lnNep log rate
Yep ∼ P(λep) stop-and-frisk events

https://github.com/andymiller/vboost
http://mc-stan.org/documentation/case-studies/pool-binary-trials.html
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(a) Rank 0 (MFVI)

(b) Rank 1

(c) Rank 2

(d) Rank 3, 2-component

(e) Rank 3, 4-component

(f) Rank 3, 8-component
Figure 4. Left: A sampling of bivariate marginals for a single Gaussian component approximation for the D = 37-dimensional frisk
model. Each row incorporates more covariance structure. Though there are a total of 666 covariances to be approximated, only a few
directions in the D-dimensional parameter space exhibit non-trivial correlations. Right: The same marginals with a mixture approximation
using rank-3 Gaussians at various stages of the VBoost algorithm. Introducing new mixture components allows the posterior to take a
non-Gaussian shape, most exhibited in the third column.

dataset pbp rank 5 vboost 2 vboost 6 vboost 10

wine -0.990 (± 0.08) -0.972 (± 0.05) -0.971 (± 0.05) -0.978 (± 0.06) -0.994 (± 0.06)
boston -2.902 (± 0.64) -2.670 (± 0.16) -2.651 (± 0.16) -2.599 (± 0.16) -2.628 (± 0.16)
concrete -3.162 (± 0.15) -3.247 (± 0.06) -3.228 (± 0.06) -3.169 (± 0.07) -3.134 (± 0.08)
power-plant -2.798 (± 0.04) -2.814 (± 0.03) -2.811 (± 0.03) -2.800 (± 0.03) -2.793 (± 0.03)
yacht -0.990 (± 0.08) -0.972 (± 0.05) -0.971 (± 0.05) -0.978 (± 0.06) -0.994 (± 0.06)
energy-eff. -1.971 (± 0.11) -2.452 (± 0.12) -2.422 (± 0.11) -2.345 (± 0.11) -2.299 (± 0.12)

Table 1. Test log probability for PBP and
VBoost with varying number of compo-
nents (fixed rank of 5). Each entry shows
the average predictive performance of
the model and the standard deviation
across the 20 trials — bold indicates the
best average (though not necessarily “sta-
tistical significance”).

where Yep are the number of stop-and-frisk events within
ethnicity group e and precinct p over some fixed pe-
riod of time; Nep is the total number of arrests of eth-
nicity group e in precinct p over the same period of
time; αe and βp are the ethnicity and precinct effects. The
prior over the mean offset and group variances is given
by µ, lnσ2

α, lnσ
2
β ∼ N (0, 102).

As before, we simulate 20k NUTS samples, and compare
various variational approximations. Because of the high
posterior correlations present in this example, VBoost with
diagonal covariance components is inefficient in its rep-
resentation of this structure. As such, this example relies
on the low-rank approximation to shape the posterior. Fig-
ure 4 shows how posterior accuracy is affected by incorpo-
rating covariance structure (left) and adding more compo-
nents (right). Figures 6 and 7 in the supplement compare
VBoost covariances to MCMC samples, showing that in-
creased posterior rank capacity and number of components
yield more accurate marginal variance and covariance es-
timates. These results indicate that while incorporating
covariance structure increases the accuracy of estimating
marginal variances, the non-Gaussianity afforded by the use

of mixture components allows for a better posterior approx-
imation translating into more accurate moment estimates.

Bayesian Neural Network We apply our method to a
Bayesian neural network (BNN) regression model, which
admits a high-dimensional, non-Gaussian posterior. We
compare predictive performance of VBoost to Probabilis-
tic Backpropagation (PBP) (Hernández-Lobato & Adams,
2015). Mimicking the experimental setup of Hernández-
Lobato & Adams (2015), we use a single 50-unit hidden
layer, with ReLU activation functions. We place a normal
prior over each weight in the neural network, governed by
the same variance and an inverse Gamma prior over the
observation variance yielding the model:

wi ∼ N (0, 1/α) weights
y|x,w, τ ∼ N (φ(x,w), 1/τ) output distribution

where w = {wi} is the set of weights, and φ(x,w) is
a multi-layer perceptron that maps input x to output y
as a function of parameters w. Both α and τ are given
Gamma(1, .1) priors. We denote the set of parameters as
θ , (w,α, τ). We approximate the posterior p(w,α, τ |D),
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where D is the training set of {xn, yn}Nn=1 input-output
pairs. We then use the posterior predictive distribution to
compute the distribution for a new input x∗

p(y|x∗,D) =

∫
p(y|x∗, θ)p(θ|D)dθ (7)

≈ 1

L

L∑
`=1

p(y|x∗, θ(`)) , θ(`) ∼ p(θ|D) (8)

and report average predictive log probabilities for held out
data, p(Y = y∗|x∗,D). For a dataset with input dimension
P , the posterior has dimensionD = (P+2)·50+3 (between
D = 303 and D = 753 for the data sets considered).

We report held-out predictive performance for different ap-
proximate posteriors for six datasets. For each dataset, we
perform the following training procedure 20 times. First,
we create a random partition into a 90% training set and
10% testing set. We then apply VBoost, adding rank 5 com-
ponents. We allow each additional component only 200
iterations. To save time on initialization, we draw 100 sam-
ples from the existing approximation, and initialize the new
component with the sample with maximum weight. For
comparison, Probabilistic back-propagation is given 1000
passes over the training data — empirically, sufficient for
the algorithm to converge.

Table 3 in the supplement presents out-of-sample log proba-
bility for single-component multivariate Gaussian approxi-
mations with varying rank structure. Table 1 presents out-
of-sample log probability for additional rank 5 components
added using VBoost. We note that though we do not see
much improvement as rank structure is added, we do see
predictive improvement as components are added. Our re-
sults suggest that incorporating and adapting new mixture
components is a recipe for a more expressive posterior ap-
proximation, translating into better predictive results. In fact,
for all datasets we see that incorporating a new component
improves test log probability, and we see further improve-
ment with additional components for most of the datasets.
Furthermore, in five of the datasets we see predictive per-
formance surpass probabilistic back-propagation as new
components are added. This highlights VBoost’s ability to
trade computation for improved accuracy. These empirical
results suggest that augmenting a Gaussian approximation
to include additional capacity can improve predictive perfor-
mance in a BNN while retaining computational tractability.

4.1. Comparison to NPVI

We also compare VBoost to nonparametric variational in-
ference (NPVI) (Gershman et al., 2012), a similar mix-
ture based black-box variational method. NPVI derives a
tractable lower bound to the ELBO which is then approxi-
mately maximized. NPVI requires computing the Hessian

num comps 1 2 5 10 20

VBoost -702.97 -700.92 -699.69 -699.07 -698.88
NPVI -718.47 -717.86 -717.09 -716.36 -715.86

Table 2. ELBO values for VBoost and NPVI (higher is better).
Note that VBoost with 1 component is MFVI. All ELBO values are
computed using a Monte Carlo estimate with L = 100k samples
from the variational distribution. In NPVI, each component is a
spherical gaussian with a single σ2 shared across all dimensions
— this limits the capacity of the approximation, requiring more
components. Note, VBoost greedily incorporates components,
while NPVI is re-run using a different number of components.

of the model for the ELBO approximation, so we limit our
comparison to the lower dimensional hierarchical models.

We also note that the NPVI ELBO approximation does not
fully integrate the lnπ(x) term against the variational ap-
proximation, q(x;λ) when optimizing the mean parameters
of the approximation components. When we applied NPVI
to the baseball model, we discovered an instability in
the optimization of these mean parameters (which we veri-
fied by finding that map optimization diverges). Black box
VI, VBoost, and MCMC were not susceptible to this pathol-
ogy. Consequently, we only compare NPVI to VBoost on
the frisk model. Because NPVI uses diagonal compo-
nents, we restrict VBoost to use purely diagonal components
(r = 0). In Table 2 we show marginal likelihood lower
bounds, comparing NPVI to VBoost with a varying number
of components. Even with a single component, the NPVI
objective tends to underperform. The NPVI component vari-
ance is spherical, limiting its capacity to represent posterior
correlations. Further, NPVI is approximately optimizing a
looser lower bound to the marginal likelihood. These two
factors explain why NPVI fails to match MFVI and VBoost.

5. Discussion and Conclusion
We proposed VBoost, a practical variational inference
method that constructs an increasingly expressive posterior
approximation and is applicable to a variety of Bayesian
models. We demonstrated the ability of VBoost to learn
rich representations of complex, high-dimensional posteri-
ors on a variety of real world statistical models. One avenue
for future work is incorporating flexible component distri-
butions such as compositions of invertible maps (Rezende
& Mohamed, 2015) or auxiliary variable variational mod-
els (Maaløe et al., 2016). We also plan to study approxi-
mation guarantees of the VBoost method and variance re-
duction techniques for our reparameterization gradient ap-
proach. Also, when optimizing parameters of a variational
family, recent work has shown that the natural gradient can
be more robust and lead to better optima (Hoffman et al.,
2013; Johnson et al., 2016). Deriving and applying natural
gradient updates for mixture approximations could make
VBoost more efficient.
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