
CLUSTERCLUSTER: PARALLEL MARKOV CHAIN MONTE CARLO
FOR DIRICHLET PROCESS MIXTURES

By Dan Lovell, Jonathan Malmaud, Ryan P. Adams and Vikash K. Mansinghka

Massachusetts Institute of Technology and Harvard University

The Dirichlet process (DP) is a fundamental mathematical tool
for Bayesian nonparametric modeling, and is widely used in tasks
such as density estimation, natural language processing, and time se-
ries modeling. Although MCMC inference methods for the DP often
provide a gold standard in terms asymptotic accuracy, they can be
computationally expensive and are not obviously parallelizable. We
propose a reparameterization of the Dirichlet process that induces
conditional independencies between the atoms that form the random
measure. This conditional independence enables many of the Markov
chain transition operators for DP inference to be simulated in paral-
lel across multiple cores. Applied to mixture modeling, our approach
enables the Dirichlet process to simultaneously learn clusters that
describe the data and superclusters that define the granularity of
parallelization. Unlike previous approaches, our technique does not
require alteration of the model and leaves the true posterior distribu-
tion invariant. It also naturally lends itself to a distributed software
implementation in terms of Map-Reduce, which we test in cluster
configurations of over 50 machines and 100 cores. We present experi-
ments exploring the parallel efficiency and convergence properties of
our approach on both synthetic and real-world data, including runs
on 1MM data vectors in 256 dimensions.

1. Introduction. Bayesian nonparametric models are a remarkable class of stochastic
objects that enable one to define infinite dimensional random variables that have tractable
finite dimensional projections. This projective property often makes it possible to construct
probabilistic models which can automatically balance simplicity and complexity in the pos-
terior distribution. The Gaussian process (see, e.g., Adler and Taylor (2007); Rasmussen and
Williams (2006)), Dirichlet process (Ferguson, 1973, 1974) and Indian buffet process (Grif-
fiths and Ghahramani, 2006; Ghahramani et al., 2007) are the most common building blocks
for Bayesian nonparametric models, and they have found uses in a wide variety of domains:
natural language models (Teh et al., 2006), computer vision (Sudderth et al., 2006), activity
modeling (Fox et al., 2009a), among many others.

Most commonly, Bayesian nonparametric models use the infinite dimensional construction
to place priors on the latent parameters of the model, such as in Dirichlet process mixtures
(Escobar and West, 1995; Rasmussen, 2000), Gaussian Cox processes (Møller et al., 1998;
Adams et al., 2009a), and latent feature models (Fox et al., 2009b). This approach to priors
for latent structure is appealing as the evidence for, e.g., a particular number of components in
a mixture, is often weak and we wish to be maximally flexible in our specification of the model.
Unfortunately, the use of Bayesian nonparametric priors for latent structure often yields mod-
els whose posterior distribution cannot be directly manipulated; indeed a density is often un-
available. In practice, it is therefore common to perform approximate inference using Markov
chain Monte Carlo (MCMC), in which posterior computations are performed via Monte Carlo
estimates from samples. These samples are obtained via a Markov chain that leaves the pos-
terior distribution invariant. Remarkably, MCMC moves can be simulated on practical finite

1

ar
X

iv
:1

30
4.

23
02

v1
 [

st
at

.M
L

]
 8

 A
pr

 2
01

3

2 LOVELL, MALMAUD, ADAMS, MANSINGHKA

−2 0 2
−3

−2

−1

0

1

2

3

G
1

(a) Supercluster 1

−2 0 2
−3

−2

−1

0

1

2

3

G
2

(b) Supercluster 2

−2 0 2
−3

−2

−1

0

1

2

3

G
3

(c) Supercluster 3

−2 0 2
−3

−2

−1

0

1

2

3

G=γ
1
 G

1
 + γ

2
 G

2
 + γ

3
 G

3

(d) Supercluster Mixture

Fig 1: Illustration of our auxiliary variable representation applied to Dirichlet pro-
cess mixtures. (a) to (c) show three superclusters, one per compute node, with independent
Dirichlet process mixtures. (d) shows their linear combination, another Dirichlet process mix-
ture. Note that the clusters within each supercluster need not be similar for our scheme to
deliver efficiency gains.

computers for many Bayesian nonparametric models, despite being infinite-dimensional, e.g.,
Rasmussen (2000); Neal (2000); Walker (2007); Papaspiliopoulos and Roberts (2008); Adams
et al. (2009b). This property arises when finite data sets recruit only a finite projection of
the underlying infinite object. Most practical Bayesian nonparametric models of interest are
designed with this requirement in mind.

Markov chain Monte Carlo, however, brings with it frustrations. Chief among these is the
perception that MCMC is computationally expensive and not scalable. This is conflated with
the observation that the Markovian nature of such inference techniques necessarily require
the computations to be sequential. In this paper, we challenge both of these conventional
wisdoms for one of the most important classes of Bayesian nonparametric model, the Dirichlet
process mixture (DPM). We take a novel approach to this problem that exploits invariance
properties of the Dirichlet process to reparameterize the random measure in such a way that
conditional independence is introduced between sets of atoms. These induced independencies,
which are themselves inferred as part of the MCMC procedure, enable transition operators on
different parts of the posterior to be simulated in parallel on different hardware, with minimal
communication. Unlike previous parallelizing schemes such as Asuncion et al. (2008), our
approach does not alter the prior or require an approximating target distribution. We find
that this parallelism results in real-world gains as measured by several different metrics against
wall-clock time.

2. The Dirichlet Process. The Dirichlet process defines a distribution over probability
measures in terms of a base probability measure H on a sample space Θ and a concentration
parameter α > 0. In its most general form, a Dirichlet process is characterized by the prop-
erty that any finite measurable partition of a Θ leads to a finite Dirichlet distribution over
the associated probability measure. That is, if Θ is partitioned into A1, A2, · · · , AM , then the
probability measure G(A1), G(A2), · · · , G(AM) has a finite Dirichlet distribution with param-
eters αH(A1), αH(A2), · · · , αH(AM). As an alternative to this somewhat abstract definition,

CLUSTERCLUSTER: PARALLEL MARKOV CHAIN MONTE CARLO 3

DP probability measures can also be constructed from a stick breaking process:

G =
∞∑
j=1

πj δθj νj |α ∼ Beta(1, α)

θj |H ∼ H π1 = ν1 πj = νj

j−1∏
j′=1

(1− νj′),

where it is clear from this construction that the G are discrete with probability one. To achieve
continuous density functions, the DP is often used as a part of an infinite mixture model:

F =
∞∑
j=1

πj Fθj ,(1)

where Fθ is a parametric family of component distributions and the base measure H is now
interpreted as a prior on this family. This Dirichlet process mixture model (DPM) is frequently
used for model-based clustering, in which data belonging to a single Fθ are considered to form
a group. The Dirichlet process allows for this model to possess an unbounded number of
such clusters. This view leads to a related object called the Chinese restaurant process in
which the πj are integrated out and one considers the infinitely exchangeable distribution
over groupings alone.

3. Nesting Partitions in the Dirichlet Process. Our objective in this work is to
construct an auxiliary-variable representation of the Dirichlet process in which 1) the clusters
are partitioned into “superclusters” that can be separately assigned to independent com-
pute nodes; 2) most Markov chain Monte Carlo transition operators for DPM inference can
be performed in parallel on these nodes; and 3) the original Dirichlet process prior is kept
intact, regardless of the distributed representation. We will assume that there are K super-
clusters, indexed by k. We will use j ∈ N to index the clusters uniquely across superclusters,
with sj ∈ {1, 2, · · · ,K} being the supercluster to which j is assigned.

The main theoretical insight that we use to construct our auxiliary representation is that
the marginal distribution over the mass allocation of the superclusters arises directly from
Ferguson’s definition of the Dirichlet process. That is, we can generate a random DP(α,H)
partitioning of Θ in stages. First, choose vector µ on the K-dimensional simplex, i.e., µk ≥
0 and

∑
k µk = 1. Next, draw another vector γ, also on the K-simplex, from a Dirichlet

distribution with base measure αµ:

γ1, γ2, · · · , γK ∼ Dirichlet(αµ1, αµ2, · · · , αµK).(2)

Then draw K random distributions from K independent Dirichlet processes with base mea-
sure H and concentration parameters αµk. These are then mixed together with the γk:

Gk ∼ DP(αµk, H) G =
K∑
k=1

γkGk.(3)

This procedure results in G ∼ DP(α,H). Note that the result of this formulation is a Dirichlet
process in which the components have been partitioned into K superclusters such that each
contains its own “local” Dirichlet process.

4 LOVELL, MALMAUD, ADAMS, MANSINGHKA

1 2 4 8 16 32 64 128 256 512 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Super−cluster Update Ratio

S
a
m

p
le

r
E

ff
ic

ie
n
c
y

α = 0.1

α = 1.0

α = 10

α = 100

(a)

0 50 100 150 200 250 300 350
ALPHA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
IT

HI
N

GR
AP

H
NO

RM
AL

IZ
ED

 P
RO

BA
BI

LI
TY ALPHA PDF FOR VARIOUS BALANCED CLUSTER CONFIGURATIONS

legend is num_clusters x num_rows_per_cluster

128 x 1024
128 x 2048
128 x 4096
512 x 1024
512 x 2048
512 x 4096
2048 x 1024
2048 x 2048
2048 x 4096

(b)

Fig 2: Numerical calculations regarding the impact of auxiliary variable scheme on
sampler efficiency. (a)Plot of sampling efficiency (effective number of samples per MCMC
iteration) from the prior as a function of the number of local-machine sweeps over the data
per cross-machine update. The lines correspond to different concentration parameters. The
Chinese restaurant representation was used, with ten superclusters, one thousand data and
100,000 iterations. Note that sampler efficiency is roughly independent of super-cluster update
ratio and increases with higher concentration parameter, indicating that more parallel gain can
be expected the higher the number of latent clusters in the training dataset. (b) The posterior
probability distribution on the Dirichlet concentration parameter for various configurations
balanced mixture models. The number of clusters is varied from 128 to 2048, and the number
of data points per cluster is varied from 1024 to 4096. As larger concentration parameters
imply more room for parallelization in our method, this view represents the opportunity for
parallel gains as a function of the latent structure and quantity of the data.

Marginalizing out the sticks of each local Dirichlet process results naturally in a Chinese
restaurant process with concentration parameter αµk. Interestingly, we can also integrate out
the γk to construct a two-stage Chinese restaurant variant. Each “customer” first chooses one
of the K “restaurants” according to its popularity:

Pr(datum n chooses supercluster k |α) =
αµk +

∑n−1
n′=1 I(szn′ = k)

α+ n− 1
.

This corresponds to the predictive distribution of the Dirichlet-multinomial over superclusters.
In the second stage, the customer chooses a table zn at their chosen restaurant k according
to its popularity among other customers at that restaurant:

Pr(zn = extant component j |α, sj = k) =

∑n−1
n′=1 I(szn′ = k, zn′ = j)

αµk +
∑n−1

n′=1 I(szn′ = k)

Pr(zn = new component j |α, sj = k) =
αµk

αµk +
∑n−1

n′=1 I(szn′ = k)
.

4. Markov Transition Operators for Parallelized Inference. The goal of this dis-
tributed representation is to provide MCMC transition operators that can efficiently use mul-
tiple cores for inference. We have observed N data {xn}Nn=1 and we wish to simulate a Markov

CLUSTERCLUSTER: PARALLEL MARKOV CHAIN MONTE CARLO 5

Map

Gibbs scan i Gibbs scan i+1

...

Gibbs scan i-1Initialization

...Subsample Uniform
split

ShuffleMap Reduce

Update

Update

Update

Update

Update

Update

Update

Update

Update

...

...

Fig 3: The map-reduce dataflow for our distributed sampler. During initialization,
the data are randomly assigned to compute nodes (superclusters). On each MCMC scan,
independent mappers perform clustering assuming fixed hyperparameters λ. These hyperpa-
rameters, along with the concentration parameter and assignments of clusters to superclusters
are updated in the reduce step. Finally, clusters are shuffled amongst superclusters and the
new latent state is communicated to each worker, leaving the cluster in a suitable state for
further iterations. The Dirichlet process is effectively learning both how to cluster the data
and at what granularity to parallelize inference.

chain on the associated posterior distribution. Following the standard approach for mixture
modelling, we introduce latent variables zn ∈ N that identify the cluster to which datum n
is assigned. In the Markov chain, we will also represent the cluster-specific parameters θj
(although some model choices allow these to be marginalized away) and the concentration
parameter α.

We introduce some notation for convenience when referring to counts:

num data in s.c. k: #k =
N∑
n=1

I(szn = k)

num data in cluster j: #j =
N∑
n=1

I(zn = j)

extant clusters in s.c. j: Jk =

∞∑
j=1

I(#k > 0, sj = k)

We use these to examine the prior over the zn and sj :

Pr({zn}, {sj} |α) =

Dirichlet-Multinomial︷ ︸︸ ︷[
Γ(α)

Γ(N + α)

K∏
k=1

Γ(#k + αµk)

Γ(αµk)

]
×

K independent CRPs︷ ︸︸ ︷[
K∏
k=1

(αµk)
Jk

Γ(αµk)

Γ(αµk + #k)

]
(4)

=
Γ(α)

Γ(N + α)
α
∑K

k=1 Jk

K∏
k=1

µJkk .(5)

Note that the terms cancel out so that the result is a marginal Chinese restaurant process
multiplied by a multinomial over how the components are distributed over the superclusters.

Updating α given the zn:. This operation must be centralized, but is lightweight. Each su-
percluster communicates its number of clusters Jk and these are used to sample from the

6 LOVELL, MALMAUD, ADAMS, MANSINGHKA

conditional (assuming prior p(α)):

p(α | {zn}Nn=1) ∝ p(α)
Γ(α)

Γ(N + α)
α
∑K

k=1 Jk .(6)

This can be done with slice sampling or adaptive rejection sampling.

Updating base measure hyperparameters:. It is often the case in Bayesian hierarchical models
that there are parameters governing the base measure H. These are typically hyperparameters
that determine the priors on cluster-specific parameters θ and constrain the behavior of Fθ.
Updates to these parameters are performed in the reduce step, based on sufficient statistics
transmitted from the map step.

Updating θj given zn:. These are model-specific updates that can be done in parallel, as
each θj is only asked to explain data that belong to supercluster sj .

Updating zn given sj, θj, and α:. This is typically the most expensive MCMC update for
Dirichlet process mixtures: the hypothesis over cluster assignments must be modified for
each datum. However, if only local components are considered, then this update can be par-
allelized. Moreover, as the reparameterization induces K conditonally independent Dirichlet
processes, standard DPM techniques, such as Neal (2000), Walker (2007), or Papaspiliopoulos
and Roberts (2008) can be used per supercluster without modification. Data cannot move to
components on different machines (in different superclusters), but can instantiate previously-
unseen clusters within its local superclusters in the standard way. Note that the µk scaling
causes these new components to be instantiated with the correct probability.

Updating sj given zn and α:. As data can only move between clusters that are local to their
machine, i.e., within the same supercluster, it is necessary to move data between machines.
One efficient strategy for this is to move entire clusters, along with their associated data to
new superclusters. This is a centralized update, but it only requires communicating a set of
data indices and one set of component parameters. The update itself is straightforward: Gibbs
sampling according to the Dirichlet-multinomial, given the other assignments. In particular,
we note that since θj moves with the cluster, the likelihood does not participate in the com-
putation of the transition operator. We define Jk\j to be the number of extant clusters in
supercluster k, ignoring cluster j. The conditional posterior update is then

Pr(sj = k | {Jk′\j}Kk′=1, α) = µk.
αµk + Jk\j

α+
∑K

k′=1 Jk′\j
.(7)

5. Distributed implementation. The conditional independencies inherent in the Markov
chain transition operators we have defined correspond naturally with an efficient, distributed
implementation in terms of Map-Reduce (Dean and Ghemawat, 2008). Figure 3 describes the
workflow. These operators, implemented as mappers and reducers, act on a distributed repre-
sentation of the latent state, that is also based on the independencies in our auxiliary variable
representation. Intuitively, each mapper performs MCMC updates on an independent cluster-
ing problem (within the supercluster it corresponds to), assuming fixed hyperparameters. The
reduce step collects the latent state together and updates hyperparameters, while the shuffle
step broadcasts the new hyperparameters and shuffles clusters amongst the superclusters.

Our system software implementation, described in Figure 4, is based on Python implemen-
tations, with modest optimization (in Cython) for the most compute-intensive inner loops.
We use the Hadoop open source framework for Map-Reduce, and perform experiments using

CLUSTERCLUSTER: PARALLEL MARKOV CHAIN MONTE CARLO 7

Amazon Elastic
Compute Cloud

node
core core
core core

node
core core
core core

node
core core
core core

node
core core
core core

XSEDE HPC
Compute Center

node
core core
core core

node
core core
core core

node
core core
core core

node
core core
core core

Local Institution
HPC Services
node

core core
core core

node
core core
core core

node
core core
core core

node
core core
core core

StarCluster Sun Grid Engine

Hadoop Map-Reduce Framework

10-500 cores 10-500 cores 10-200 cores

Python Mapper Python Reducer Python Shuffler
Supercluster-specific updates:
 - update data assignments
 - update cluster parameters

Global inference updates:
 - update DP hyperparams
 - update cluster hyperparams

Data reallocation:
 - move clusters and
 associated data to new
 superclusters

Fig 4: Software architecture for our im-
plementation. Scaling to a million datapoints
was achievable despite only modestly optimized
Python implementations of transition operators.
Typical runs involved 10 to 50 machines with 2
to 4 cores each. Although we focused on Elastic
Compute Cloud experiments, our architecture is
appropriate for other distributed computing plat-
forms.

138 137 136 135 134 133 132
AVG TEST SET LOG LIKELIHOOD (GROUND TRUTH MODEL)

138

137

136

135

134

133

132

AV
G

TE
ST

 S
ET

 L
OG

 L
IK

EL
IH

OO
D

(L
EA

RN
ED

 M
OD

EL
) ACCURACY OF 44 SYNTHETIC EXPERIMENTS

1MM rows x 128 clusters
100K rows x 512 clusters
200K rows x 2048 clusters
500K rows x 512 clusters
1MM rows x 512 clusters

500K rows x 128 clusters
200K rows x 128 clusters
500K rows x 2048 clusters
200K rows x 512 clusters

Fig 5: Our parallel sampler constructs ac-
curate density estimates for many synthetic
data sources. We generated synthetic datasets
from finite mixture models ranging from 200,000
up to one million datapoints and from 128 clus-
ters up to 2048 clusters. Marker designates the
number of clusters, colors indicate the number of
datapoints. Data is jittered for visual clarity.

on-demand compute clusters from Amazon’s Elastic Compute Cloud. Typical configurations
for our experiments involved 10-50 machines, each with 2-4 cores, stressing gains due to par-
allelism were possible despite significant inter-machine communication overhead.

We used a uniform prior over the superclusters, i.e., µk = 1/K. For initialization, we perform
a small calibration run (on 1-10% of the data) using a serial implementation of MCMC
inference, and use this to choose the initial concentration parameter α. We then assign data
to superclusters uniformly at random, and initialize the clustering via a draw from the prior
using the local Chinese restaurant process. This is sufficient to roughly estimate (within an
order of magnitude) the correct number of clusters, which supports efficient density estimation
from the distributed implementation.

There is considerable room for further optimization. First, if we were pushing for the largest
achievable scale, we would use a C++ implementation of the map, reduce and shuffle opera-
tions. Back-of-the-envelope suggestions suggest performance gains of 100x should be feasible
with only minimal memory hierarchy optimization. Second, we would focus on use of a small
number of many-core machines. Third, we would use a distributed framework such as HaLoop1

or MPI, which would permit simultaneous, asynchronous computation and communication.
Fourth, it is known that tuning various parameters that control Hadoop can result in sig-
nificant performance enhancements (Herodotou and Babu, 2011). For datasets larger than
100GB (roughly 50x larger than the datasets considered in this paper), we would want to
distribute not just the latent state, but also the data itself, perhaps using the Hadoop File
System (Shvachko, 2010). These advanced distributed implementation techniques are beyond
the scope of this paper.

1https://code.google.com/p/haloop/

https://code.google.com/p/haloop/

8 LOVELL, MALMAUD, ADAMS, MANSINGHKA

0 20000 40000 60000 80000 100000 120000 140000 160000 180000180
175
170
165
160
155
150
145
140
135

TE
ST

 S
ET

M
EA

N
LO

G
LI

KE
LI

HO
OD

#CLUSTERS=2048; #DATA=200000; #DIMENSIONS=256

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
TIME (SECONDS)

3.7
3.6
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8

M
OD

EL
 S

CO
RE

1e7

ground truth
#workers=32

#workers=8 #workers=2

0 20000 40000 60000 80000 100000 120000 140000 160000 1800002.0

2.5

3.0

3.5

4.0

4.5

LO
G1

0
AL

PH
A

#CLUSTERS=2048; #DATA=200000; #DIMENSIONS=256

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
TIME (SECONDS)

0
5000

10000
15000
20000
25000
30000
35000

NU
M

 C
LU

ST
ER

S

ground truth
#workers=32

#workers=8 #workers=2

Fig 6: Predictive density estimates converge quickly, while latent structure esti-
mates converge more slowly. (top) Results for our parallel sampler on a synthetic dataset
consisting of 2048 clusters and 200,000 datapoints. Each line represents a different number
of compute nodes used to parallelize the sampler: either 2, 8, or 32 nodes were used. The
purple line represents ground truth. The parallel samplers perform correctly as determined
by eventual convergence to the true likelihood of the test set. Parallel gains are seen up for up
to 8 compute nodes, at which point we reach saturation. (bottom) The parallel samplers also
eventually convert to the true number of clusters, but at a much slower rate than convergence
to the predictive log likelihood. Two runs with different inferential random seeds are shown
for each configuration. See the main text for further discussion.

Williamson et al. (2013), concurrently with and independently of our previous preliminary
work (Lovell et al., 2012), investigated a related parallel MCMC method based on the same
auxiliary variable scheme. They focus on multi-core but single-machine implementations and
on applications to admixtures based on the hierarchical Dirichlet process (HDP) (Teh et al.,
2006). The compatibility of our transition operators with a Map-Reduce implementation en-
ables us to analyze datasets with 100x more dimensions than those from Williamson, even
in the presence of significant inter-machine communication overhead. We also rely purely on
MCMC throughout, based on initialization from our prior, avoiding the need for heuristic
initialization based on k-means. Combined, our approaches suggest many models based on
the DP may admit principled parallel schemes and scale to significantly larger problems than
are typical in the literature.

Intuitively, this scheme resembles running ”restricted Gibbs” scans over subsets of the
clusters, then shuffling clusters amongst subsets, which one might expect to yield slower
convergence to equilibrium than full Gibbs scans. Our auxiliary variable representation shows
this can be interpreted in terms of exact transition operations for a DPM.

6. Experiments. We explored the accuracy of our prototype distributed implementation
on several synthetic and real-world datasets. Our synthetic data was drawn from a balanced
finite mixture model. Each mixture component θj was parameterized by a set of coin weights
drawn from a Beta(βd, βd) distribution, where {βd} is a set of cluster component hyperpa-
rameters, one per dimension d of the data. The binary data were Bernoulli draws based on
the weight parameters {θj} of their respective clusters. Our implementation collapsed out the

CLUSTERCLUSTER: PARALLEL MARKOV CHAIN MONTE CARLO 9

0 10000 20000 30000 40000 50000 60000180

175

170

165

160

155
TE

ST
 S

ET
M

EA
N

LO
G

LI
KE

LI
HO

OD

#CLUSTERS=512; #DATA=1048576; #DIMENSIONS=256

0 10000 20000 30000 40000 50000 60000
TIME (SECONDS)

1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60

M
OD

EL
 S

CO
RE

1e8

ground truth
#workers=32

#workers=16 #workers=8

0 10000 20000 30000 40000 50000 600002.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3

LO
G1

0
AL

PH
A

#CLUSTERS=512; #DATA=1048576; #DIMENSIONS=256

0 10000 20000 30000 40000 50000 60000
TIME (SECONDS)

0

2000

4000

6000

8000

10000

12000

NU
M

 C
LU

ST
ER

S

ground truth
#workers=32

#workers=16 #workers=8

Fig 7: Parallel efficiencies for 32 workers can be seen with 1MM rows and 512
clusters. Consistent with our numerical calculations, larger datasets with more clusters afford
more opportunities for parallel gains. At this scale, larger than the one from Figure 6, we see
parallel efficiencies up to 32 workers and no slowdown in latent structure convergence.

coin weights and updated each βd during the reduce step using a Griddy Gibbs (Ritter and
Tanner, 1992) kernel.

Figure 5 shows results supporting the accuracy of our inference scheme as a density estima-
tor given high-dimensional datasets with large numbers of clusters. We see reliable convergence
to predictive probabilities close to the true entropy of the generating mixture.

Figure 6 shows the convergence behavior of our sampler: predictive densities (and joint
probabilities) typically asymptote quickly, while latent structure estimates (such as the num-
ber of clusters, or the concentration parameter) converge far more slowly. As the Dirichlet
process is known to not result in consistent estimates of number of clusters for finite mix-
ture datasets (Miller and Harrison, 2013) (which have no support under the DP prior), it is
perhaps not surprising that predictive likelihood converges more quickly than estimates of
number of clusters – especially given our auxiliary variable representation, which may en-
courage representations with multiple predictively equivalent clusters. It would be interesting
to characterize the regimes where these dynamics occur, and to determine whether they are
also present for approximate parallelization schemes or variational algorithms based on our
auxiliary variable representation. Figure 8 shows a typical pattern of efficiencies for parallel
computation: for a given problem size, speed increases until some saturation point is reached,
after which additional compute nodes slow down the computation. In future work we will
explore means of separating the components of this tradeoff due to communication costs,
initialization, and any components due to convergence slowdown.

Finally, in Figures 9 and 10, we show a representative run on a 1MM vector subset of the
Tiny Images (Torralba, 2008) dataset, where we use the Dirichlet process mixture to perform
vector quantization. The input data are binary features obtained by running a randomized
approximation to PCA on 100,000 rows and thresholding the top 256 principal components
into binary values at their component-wise median. After one day of elapsed time and 32 CPU-
days of computation, the sampler is still making significant progress compressing the data,
and has converged to the vicinity of 3000 clusters. Serial MCMC (not shown) is intractable

10 LOVELL, MALMAUD, ADAMS, MANSINGHKA

0 5000 10000 15000 20000 25000 30000 35000 40000180
175
170
165
160
155
150
145
140
135

TE
ST

 S
ET

M
EA

N
LO

G
LI

KE
LI

HO
OD

#CLUSTERS=1024; #DATA=500000; #DIMENSIONS=256

0 5000 10000 15000 20000 25000 30000 35000 40000
TIME (SECONDS)

9.5

9.0

8.5

8.0

7.5

7.0

6.5

M
OD

EL
 S

CO
RE

1e7

ground truth
#workers=128
#workers=64

#workers=32
#workers=16

#workers=8
#workers=4

Fig 8: Saturation as communication
costs and convergence slowdown over-
whelm per-iteration parallelism gains.
Results on a 500,000 row problem with 1024
clusters, including 2, 8, 32 and 128 compute
nodes (for a max of 64 machines), show-
ing more rapid convergence up to saturation,
then slower convergence afterwards.

0 10000 20000 30000 40000 50000 60000 70000177.5

177.0

176.5

176.0

175.5

175.0

174.5

TE
ST

 S
ET

M
EA

N
LO

G
LI

KE
LI

HO
OD

0 10000 20000 30000 40000 50000 60000 70000
TIME (SECONDS)

3000
3500
4000
4500
5000
5500
6000
6500
7000

NU
M

 C
LU

ST
ER

S

#workers=32

Fig 9: An illustration on vector quan-
tization of a 1MM subset of the Tiny
image dataset with 32 workers. Conver-
gence of a representative run in terms of pre-
dictive accuracy and number of clusters.

on this problem.

7. Conclusion. We have introduced an auxiliary variable representation of the Dirichlet
process and applied it to mixture models, where it yields superclusters that cluster the clus-
ters. We have shown how this representation enables an exact parallelization of the standard
MCMC schemes for inference, where the DP learns how to parallelize itself, despite the lack of
conditional independencies in the traditional form of the model. We have also shown that this
representation naturally meshes with the Map-Reduce approach to distributed computation
on a large compute cluster, and developed a prototype distributed implementation atop Ama-
zon’s Elastic Compute Cloud, tested on over 50 machines and 100 cores. We have explored
its performance on synthetic and real-world density estimation problems, including runs on
over 1MM row, 256-dimensional data sets.

These results point to a potential path forward for “big data” applications of Bayesian
statistics for models that otherwise lack apparent conditional independencies. We suspect
searching for auxiliary variable representations that induce independencies may lead to new
ways to scale up a range of nonparametric Bayesian models, and may perhaps also lead
to further correspondences with established distributed computing paradigms for MCMC
inference. We hope our results present a useful step in this direction.

CLUSTERCLUSTER: PARALLEL MARKOV CHAIN MONTE CARLO 11

Discovered
cluster

Random
subset of
images

Binary feature matrixExample images

Fig 10: (left) 9 input images from a representative cluster, versus 9 random input images,
showing less visual coherence. (right) 100 binary feature vectors from a single inferred cluster,
versus 100 random binary feature vectors from the dataset, showing significant compression.

Acknowledgments. This work was partially supported by DARPA XDATA contract FA8750-
12-C-0315. RPA was funded in part by DARPA Young Faculty Award N66001-12-1-4219.
VKM was partially supported by gifts from Google and Analog Devices.

References.

R. J. Adler and Jonathan E. Taylor. Random Fields and Geometry. Springer Monographs in Mathematics.
Springer, 2007.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, Cambridge, MA, 2006.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2):
209–230, 1973.

Thomas S. Ferguson. Prior distributions on spaces of probability measures. The Annals of Statistics, 2(4):
615–629, 1974.

Thomas L. Griffiths and Zoubin Ghahramani. Infinite latent feature models and the Indian buffet process. In
Advances in Neural Information Processing Systems 18, 2006.

Zoubin Ghahramani, Thomas L. Griffiths, and Peter Sollich. Bayesian nonparametric latent feature models.
In Bayesian Statistics 8, pages 201–226. 2007.

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581, 2006.

Erik Sudderth, Antonio Torralba, William Freeman, and Alan Willsky. Describing visual scenes using trans-
formed Dirichlet processes. In Advances in Neural Information Processing Systems 18, pages 1297–1304,
2006.

Emily Fox, Erik Sudderth, Michael Jordan, and Alan Willsky. Nonparametric Bayesian learning of switching
linear dynamical systems. In Advances in Neural Information Processing Systems 21, pages 457–464, 2009a.

Michael D. Escobar and Mike West. Bayesian density estimation and inference using mixtures. Journal of the
American Statistical Association, 90(430):577–588, June 1995.

Carl Edward Rasmussen. The infinite Gaussian mixture model. In Advances in Neural Information Processing
Systems 12, pages 554–560, 2000.

12 LOVELL, MALMAUD, ADAMS, MANSINGHKA

Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen. Log Gaussian Cox processes.
Scandinavian Journal of Statistics, 25:451–482, 1998.

Ryan P. Adams, Iain Murray, and David J. C. MacKay. Tractable nonparametric Bayesian inference in Poisson
processes with Gaussian process intensities. In Proceedings of the 26th International Conference on Machine
Learning, 2009a.

Emily B. Fox, Erik B. Sudderth, Michael I. Jordan, and Alan S. Willsky. Sharing features among dynamical
systems with beta processes. In Advances in Neural Information Processing Systems 22, 2009b.

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Compu-
tational and Graphical Statistics, 9(2):249–265, 2000.

Stephen G. Walker. Sampling the Dirichlet mixture model with slices. Communications in Statistics, 36:45–54,
2007.

Omiros Papaspiliopoulos and Gareth O. Roberts. Retrospective Markov chain Monte Carlo methods for
Dirichlet process hierarchical models. Biometrika, 95(1):169–186, 2008.

Ryan P. Adams, Iain Murray, and David J. C. MacKay. The Gaussian process density sampler. In Advances
in Neural Information Processing Systems 21, 2009b.

Arthur Asuncion, Padhraic Smyth, and Max Welling. Asynchronous distributed learning of topic models. In
Advances in Neural Information Processing Systems 21, pages 81–88, 2008.

J. Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Communications of
the ACM, 51, 2008.

Herodotos Herodotou and Shivnath Babu. Profiling, what-if analysis, and cost-based optimization of mapreduce
programs. Proceedings of the VLDB Endowment, 4(11), 2011.

K. Shvachko. The haddop distributed file system. 26th Sympsoium Mass Storage Systems and Technologies,
2010.

S. Williamson, A. Subey, and E. P. Xing. Parallel Markov chain Monte Carlo for nonparametric mixture
models. Proceedings of the 30th International Conference on Machine Learning (To Appear), 2013.

D. Lovell, R. P. Adams, and V. K. Mansinghka. Parallel Markov chain Monte Carlo for Dirichlet process
mixtures. NIPS Workshop on Big Learning, 2012.

Christian Ritter and Martin A. Tanner. Facilitating the Gibbs sampler: The Gibbs stopper and the griddy-
Gibbs sampler. Journal of the American Statistical Association, 87(419):861–868, 1992.

Jeffrey W. Miller and Matthew T. Harrison. A simple example of Dirichlet process mixture inconsistency for
the number of components. http://arxiv.org/abs/1301.2708, 2013.

A. Torralba. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30:1958–1970, 2008.

Dan Lovell
Massachusetts Institute of Technology
E-mail: dlovell@alum.mit.edu

Jonathan M. Malmaud
Massachusetts Institute of Technology
E-mail: malmaud@mit.edu

Ryan P. Adams
School of Engineering and Applied Sciences
Harvard University
E-mail: rpa@seas.harvard.edu

Vikash K. Mansinghka
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
E-mail: vkm@mit.edu

http://arxiv.org/abs/1301.2708
mailto:dlovell@alum.mit.edu
mailto:malmaud@mit.edu
mailto:rpa@seas.harvard.edu
mailto:vkm@mit.edu

	1 Introduction
	2 The Dirichlet Process
	3 Nesting Partitions in the Dirichlet Process
	4 Markov Transition Operators for Parallelized Inference
	5 Distributed implementation
	6 Experiments
	7 Conclusion
	References
	Author's addresses

