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Abstract
We present PESMO, a Bayesian method for iden-
tifying the Pareto set of multi-objective optimiza-
tion problems, when the functions are expen-
sive to evaluate. PESMO chooses the evaluation
points to maximally reduce the entropy of the
posterior distribution over the Pareto set. The
PESMO acquisition function is decomposed as a
sum of objective-specific acquisition functions,
which makes it possible to use the algorithm in
decoupled scenarios in which the objectives can
be evaluated separately and perhaps with differ-
ent costs. This decoupling capability is useful
to identify difficult objectives that require more
evaluations. PESMO also offers gains in effi-
ciency, as its cost scales linearly with the number
of objectives, in comparison to the exponential
cost of other methods. We compare PESMO with
other methods on synthetic and real-world prob-
lems. The results show that PESMO produces
better recommendations with a smaller number
of evaluations, and that a decoupled evaluation
can lead to improvements in performance, par-
ticularly when the number of objectives is large.

1. Introduction
We address the problem of optimizing K real-valued
functions f1(x), . . . , fK(x) over some bounded do-
main X ⊂ Rd, where d is the dimensionality of the input
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space. This is a more general, challenging and realistic
scenario than the one considered in traditional optimization
problems where there is a single-objective function. For ex-
ample, in a complex robotic system, we may be interested
in minimizing the energy consumption while maximizing
locomotion speed (Ariizumi et al., 2014). When selecting
a financial portfolio, it may be desirable to maximize re-
turns while minimizing various risks. In a mechanical de-
sign, one may wish to minimize manufacturing cost while
maximizing durability. In each of these multi-objective ex-
amples, it is unlikely to be possible to optimize all of the
objectives simultaneously as they may be conflicting: a
fast-moving robot probably consumes more energy, high-
return financial instruments typically carry greater risk,
and cheaply manufactured goods are often more likely to
break. Nevertheless, it is still possible to find a set of opti-
mal points X ? known as the Pareto set (Collette & Siarry,
2003). Rather than a single best point, this set represents
a collection of solutions at which no objective can be im-
proved without damaging one of the others.

In the context of minimization, we say that x Pareto
dominates x′ if fk(x) ≤ fk(x′) ∀k, with at least one
of the inequalities being strict. The Pareto set X ? is
then the subset of non-dominated points in X , i.e., the
set such that ∀x? ∈ X ?, ∀x ∈ X , ∃ k ∈ 1, . . . ,K for
which fk(x?) < fk(x). The Pareto set is considered to be
optimal because for each point in that set one cannot im-
prove in one of the objectives without deteriorating some
other objective. Given X ?, the user may choose a point
from this set according to their preferences, e.g., locomo-
tion speed vs. energy consumption. The Pareto set is often
not finite, and most strategies aim at finding a finite set with
which to approximate X ? well.

It frequently happens that there is a high cost to evaluat-
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ing one or more of the functions fk(·). For example, in the
robotic example, the evaluation process may involve a time
consuming experiment with the embodied robot. In this
case, one wishes to minimize the number of evaluations
required to obtain a useful approximation to the Pareto
set X ?. Furthermore, it is often the case that there is no
simple closed form for the objectives fk(·), i.e., they can
be regarded as black boxes. One promising approach in
this setting has been to use a probabilistic model such as a
Gaussian process to approximate each function (Knowles,
2006; Emmerich, 2008; Ponweiser et al., 2008; Picheny,
2015). At each iteration, these strategies use the uncer-
tainty captured by the probabilistic model to generate an
acquisition (utility) function, the maximum of which pro-
vides an effective heuristic for identifying a promising lo-
cation on which to evaluate the objectives. Unlike the ac-
tual objectives, the acquisition function is a function of the
model and therefore relatively cheap to evaluate and max-
imize. This approach contrasts with model-free methods
based on genetic algorithms or evolutionary strategies that
are known to be effective for approximating the Pareto set,
but demand a large number of function evaluations (Deb
et al., 2002; Li, 2003; Zitzler & Thiele, 1999).

Despite these successes, there are notable limitations to
current model-based approaches: 1) they often build the
acquisition function by transforming the multi-objective
problem into a single-objective problem using scalarization
techniques (an approach that is expected to be suboptimal),
2) the acquisition function generally requires the evalua-
tion of all of the objective functions at the same location in
each iteration, and 3) the computational cost of evaluating
the acquisition function typically grows exponentially with
the number of objectives, which limits their applicability to
optimization problems with just 2 or 3 objectives.

We describe here a strategy for multi-objective optimiza-
tion that addresses these concerns. We extend previous
single-objective strategies based on stepwise uncertainty
reduction to the multi-objective case (Villemonteix et al.,
2009; Hernández-Lobato et al., 2014; Henning & Schuler,
2012). In the single-objective case, these strategies choose
the next evaluation location based on the reduction of the
Shannon entropy of the posterior estimate of the mini-
mizer x?. The idea is that a smaller entropy implies that
the minimizer x? is better identified; the heuristic then
chooses candidate evaluations based on how much they are
expected to improve the quality of this estimate. These in-
formation gain criteria have been shown to often provide
better results than other alternatives based, e.g., on the pop-
ular expected improvement (Hernández-Lobato et al., 2014;
Henning & Schuler, 2012; Shah & Ghahramani, 2015).

The extension to the multi-objective case is obtained by
considering the entropy of the posterior distribution over

the Pareto set X ?. More precisely, we choose the next eval-
uation as the one that is expected to most reduce the entropy
of our estimate of X ?. The proposed approach is called
predictive entropy search for multi-objective optimization
(PESMO). Several experiments involving real-world and
synthetic optimization problems, show that PESMO can
lead to better performance than related methods from the
literature. Furthermore, in PESMO the acquisition function
is expressed as a sum across the different objectives, al-
lowing for decoupled scenarios in which we can choose to
only evaluate a subset of objectives at any given location.
In the robotics example, one might be able to decouple the
problems by estimating energy consumption from a simu-
lator even if the locomotion speed could only be evaluated
via physical experimentation. Another example, inspired
by Gelbart et al. (2014), might be the design of a low-
calorie cookie: one wishes to maximize taste while min-
imizing calories, but calories are a simple function of the
ingredients, while taste could require human trials. The
results obtained show that PESMO can obtain better re-
sults with a smaller number of evaluations of the objec-
tive functions in such scenarios. Furthermore, we have ob-
served that the decoupled evaluation provides significant
improvements over a coupled evaluation when the number
of objectives is large. Finally, unlike other methods (Pon-
weiser et al., 2008; Picheny, 2015), the computational cost
of PESMO grows linearly with the number of objectives.

2. Multi-objective Bayesian Optimization via
Predictive Entropy Search

In this section we describe the proposed approach for multi-
objective optimization based on predictive entropy search.
Given some previous evaluations of each objective func-
tion fk(·), we seek to choose new evaluations that maxi-
mize the information gained about the Pareto set X ?. This
approach requires a probabilistic model for the unknown
objectives, and we therefore assume that each fk(·) follows
a Gaussian process (GP) prior (Rasmussen & Williams,
2006), with observation noise that is i.i.d. Gaussian with
zero mean. GPs are often used in model-based approaches
to multi-objective optimization because of their flexibil-
ity and ability to model uncertainty (Knowles, 2006; Em-
merich, 2008; Ponweiser et al., 2008; Picheny, 2015). For
simplicity, we initially consider a coupled setting in which
we evaluate all objectives at the same location in any given
iteration. Nevertheless, the approach described can be eas-
ily extended to the decoupled scenario.

Let D = {(xn,yn)}Nn=1 be the data (function evaluations)
collected up to stepN , where yn is aK-dimensional vector
with the values resulting from the evaluation of all objec-
tives at step n, and xn is a vector in input space denoting
the evaluation location. The next query xN+1 is the one
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that maximizes the expected reduction in the entropy H(·)
of the posterior distribution over the Pareto set X ?, i.e.,
p(X ?|D). The acquisition function of PESMO is hence:

α(x) = H(X ?|D)− Ey [H(X ?|D ∪ {(x,y)})] , (1)

where y is the output of all the GP models at x
and the expectation is taken with respect to the
posterior distribution for y given by these mod-
els, p(y|D,x) =

∏K
k=1 p(yk|D,x). The GPs are assumed

to be independent a priori. This acquisition function is
known as entropy search (Villemonteix et al., 2009; Hen-
ning & Schuler, 2012). Thus, at each iteration we set the lo-
cation of the next evaluation to xN+1 = arg maxx∈X α(x).

A practical difficulty, however, is that the exact evalua-
tion of Eq. (1) is generally infeasible and the function
must be approximated; we follow the approach described
in (Hernández-Lobato et al., 2014; Houlsby et al., 2012).
In particular, Eq. (1) is the mutual information between X ?

and y given D. The mutual information is symmetric and
hence we can exchange the roles of the variables X ? and y,
leading to an expression that is equivalent to Eq. (1):

α(x) = H(y|D,x)− EX? [H(y|D,x,X ?)] , (2)

where the expectation is now with respect to the pos-
terior distribution for the Pareto set X ? given the ob-
served data, and H(y|D,x,X ?) measures the entropy
of p(y|D,x,X ?), i.e., the predictive distribution for the
objectives at x given D and conditioned to X ? being
the Pareto set of the objective functions. This alterna-
tive formulation is known as predictive entropy search
(Hernández-Lobato et al., 2014) and it significantly simpli-
fies the evaluation of the acquisition function α(·). In par-
ticular, we no longer have to evaluate or approximate the
entropy of the Pareto set, X ?, which may be quite difficult.
The new acquisition function obtained in Eq. (2) favors the
evaluation in the regions of the input space for which X ?

is more informative about y. These are precisely also the
regions in which y is more informative about X ?.

The first term in the r.h.s. of Eq. (2) is straight-forward to
evaluate; it is simply the entropy of the predictive distri-
bution p(y|D,x), which is a factorizable K-dimensional
Gaussian distribution. Thus, we have that

H(y|D,x) =
K

2
log(2πe) +

K∑
k=1

0.5 log(vPD
k ) , (3)

where vPD
k is the predictive variance of fk(·) at x. The

difficulty comes from the evaluation of the second term
in the r.h.s. of Eq. (2), which is intractable and must be
approximated; we follow Hernández-Lobato et al. (2014)
and approximate the expectation using a Monte Carlo es-
timate of the Pareto set, X ? given D. This involves sam-
pling several times the objective functions from their pos-
terior distribution p(f1, . . . , fK |D). This step is done as in

Hernández-Lobato et al. (2014) using random kernel fea-
tures and linear models that accurately approximate the
samples from p(f1, . . . , fK |D). In practice, we generate
10 samples from the posterior of each objective fk(·).

Given the samples of the objectives, we must optimize
them to obtain a sample from the Pareto set X ?. Note
that unlike the true objectives, the sampled functions can be
evaluated without significant cost. Thus, given these func-
tions, we use a grid search with d× 1, 000 points to solve
the corresponding multi-objective problem to find X ?,
where d is the number of dimensions. Of course, in high
dimensional problems such a grid search is expected to
be sub-optimal; in that case, we use the NSGA-II evo-
lutionary algorithm (Deb et al., 2002). The Pareto set
is then approximated using a representative subset of 50
points. Given such a sample of X ?, the differential en-
tropy of p(y|D,x,X ?) is estimated using the expectation
propagation algorithm (Minka, 2001), as described in the
proceeding section.

2.1. Approximating the Conditional Predictive
Distribution Using Expectation Propagation

To approximate the entropy of the conditional predic-
tive distribution p(y|D,x,X ?) we consider the distribu-
tion p(X ?|f1, . . . , fK). In particular, X ? is the Pareto set
of f1, . . . , fK iff ∀x? ∈ X ?,∀x′ ∈ X ,∃ k ∈ 1, . . . ,K such
that fk(x?) ≤ fk(x′), assuming minimization. That is,
each point within the Pareto set has to be better or equal to
any other point in the domain of the functions in at least
one of the objectives. Let f be the set {f1, . . . , fK}. Infor-
mally, the conditions just described can be translated into
the following un-normalized distribution for X ?:

p(X ?|f) ∝
∏

x?∈X?

∏
x′∈X

[
1−

K∏
k=1

Θ (fk(x′)− fk(x?))

]
=

∏
x?∈X?

∏
x′∈X

ψ(x′,x?) , (4)

where ψ(x′,x?) = 1−
∏K

k=1 Θ (fk(x′)− fk(x?)), Θ(·)
is the Heaviside step function, and we have used the con-
vention that Θ(0) = 1. Thus, the r.h.s. of Eq. (4) is non-
zero only for a valid Pareto set. Next, we note that in the
noiseless case p(y|x, f) =

∏K
k=1 δ(yk−fk(x)), where δ(·)

is the Dirac delta function; in the noisy case we simply re-
place the delta functions with Gaussians. We can hence
write the unnormalized version of p(y|D,x,X ?) as:

p(y|D,x,X ?) ∝
∫
p(y|x, f)p(X ?|f)p(f |D)df

∝
∫ K∏

k=1

δ(yk − fk(x))
∏

x?∈X?

ψ(x,x?)

×
∏

x′∈X\{x}

ψ(x′,x?) p(f |D) df , (5)
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where we have separated out the factors ψ that do not de-
pend on x, the point in which the acquisition function α(·)
is going to be evaluated. The approximation to the r.h.s. of
Eq. (5) is obtained in two stages. First, we approximate X
with the set X̃ = {xn}Nn=1 ∪ X ? ∪ {x}, i.e., the union of
the input locations where the objective functions have been
already evaluated, the current Pareto set and the candidate
location x on which α(·) should be evaluated. Then, we re-
place each non-Gaussian factor ψ with a corresponding ap-
proximate Gaussian factor ψ̃ whose parameters are found
using expectation propagation (EP) (Minka, 2001). That is,

ψ(x′,x?) = 1−
K∏

k=1

Θ (fk(x′)− fk(x?))

≈ ψ̃(x′,x?) =

K∏
k=1

φ̃k(fk(x′), fk(x?)) , (6)

where each approximate factor φ̃k is an unnormalized
two-dimensional Gaussian distribution. In particular, we
set φ̃k(fk(x′), fk(x?)) = exp

{
− 1

2υ
T
kṼkυk + m̃T

kυk

}
,

where we have defined υk = (fk(x′), fk(x?))T, and Ṽk

and m̃k are parameters to be adjusted by EP, which refines
each ψ̃ until convergence to enforce that it looks similar to
the corresponding exact factor ψ (Minka, 2001). The ap-
proximate factors ψ̃ that do not depend on the candidate
input x are reused multiple times to evaluate the acquisi-
tion function α(·), and they only have to be computed once.
The |X ?| factors that depend on x must be obtained rela-
tively quickly to guarantee that α(·) is not very expensive
to evaluate. Thus, in practice we only update those factors
once using EP, i.e., they are not refined until convergence.

Once EP has been run, we approximate p(y|D,x,X ?)
by the normalized Gaussian that results from replac-
ing each exact factor ψ by the corresponding ap-
proximate ψ̃. Note that the Gaussian distribution is
closed under the product operation, and because all
non-Gaussian factors in Eq. (5) have been replaced by
Gaussians, the result is a Gaussian distribution. That
is, p(y|D,x,X ?) ≈

∏K
k=1N (fk(x)|mCPD

k , vCPD
k ), where

the parameters mCPD
k and vCPD

k can be obtained from each
ψ̃ and p(f1, . . . , fK |D). If we combine this result with
Eq. (3), we obtain an approximation to the acquisition func-
tion in Eq. (2) that is given by the difference in entropies
before and after conditioning on the Pareto sets. That is,

α(x) ≈
K∑

k=1

log vPD
k (x)

2
− 1

S

S∑
s=1

log vCPD
k (x|X ?

(s))

2
, (7)

where S is the number of Monte Carlo samples, {X ?
(s)}

S
s=1

are the Pareto sets sampled to approximate the expectation
in Eq. (2), and vPD

k (x) and vCPD
k (x|X ?

(s)) are respectively
the variances of the predictive distribution at x, before and
after conditioning to X ?

(s). Last, in the case of noisy obser-
vations around each fk(·), we just increase the predictive

variances by adding the noise variance. The next evalua-
tion is simply set to xN+1 = arg maxx∈X α(x).

Note that Eq. (7) is the sum of K functions

αk(x) =
log vPD

k (x)

2
− 1

S

S∑
s=1

log vCPD
k (x|X ?

(s))

2
, (8)

that intuitively measure the contribution of each objective
to the total acquisition. In a decoupled evaluation setting,
each αk(·) can be individually maximized to identify the
location xop

k = arg maxx∈X αk(x), on which it is expected
to be most useful to evaluate each of the K objectives. The
objective k with the largest individual acquisition αk(xop

k )
can then be chosen for evaluation in the next iteration. This
approach is expected to reduce the entropy of the posterior
over the Pareto set more quickly, i.e., with a smaller number
of evaluations of the objectives, and to lead to better results.

The total computational cost of evaluating the acquisi-
tion function α(x) includes the cost of running EP, which
is O(Km3), where m = N + |X ?

(s)|, N is the number of
observations made and K is the number of objectives. This
is done once per each sample X ?

(s). After this, we can re-
use the factors that are independent of the candidate loca-
tion x. The cost of computing the predictive variance at
each x is hence O(K|X ?

(s)|
3). In our experiments, the size

of the Pareto set sampleX ?
(s) is 50, which means thatm is a

few hundred at most. The supplementary material contains
additional details about the EP approximation to Eq. (5).

3. Related Work
ParEGO is another method for multi-objective Bayesian
optimization (Knowles, 2006). ParEGO transforms the
multi-objective problem into a single-objective problem
using a scalarization technique: at each iteration, a vec-
tor of K weights θ = (θ1, . . . , θK)T, with θk ∈ [0, 1]

and
∑K

k=1 θk = 1, is sampled at random from a uniform
distribution. Given θ, a single-objective function is built:

fθ(x) = maxKk=1(θkfk(x)) + ρ

K∑
k=1

θkfk(x) (9)

where ρ is set equal to 0.05. See (Nakayama et al., 2009,
Sec. 1.3.3) for further details. After step N of the opti-
mization process, and given θ, a new set of N observations
of fθ(·) are obtained by evaluating this function in the al-
ready observed points {xn}Nn=1. Then, a GP model is fit
to the new data and expected improvement (Mockus et al.,
1978; Jones et al., 1998) is used find the location of the
next evaluation xN+1. The cost of evaluating the acquisi-
tion function in ParEGO isO(N3), where N is the number
of observations made. This is the cost of fitting the GP to
the new data (only done once). Thus, ParEGO is a simple
and fast technique. Nevertheless, it is often outperformed
by more advanced approaches (Ponweiser et al., 2008).
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SMSego is another technique for multi-objective Bayesian
optimization (Ponweiser et al., 2008). The first step in
SMSego is to find a set of Pareto points X̃ ?, e.g., by
optimizing the posterior means of the GPs, or by find-
ing the non-dominated observations. Consider now an
optimistic estimate of the objectives at input location x
given by mPD

k (x)− c · vPD
k (x)1/2, where c is some con-

stant, and mPD
k (x) and vPD

k (x) are the posterior mean and
variance of the kth objective at location x, respectively.
The acquisition value computed at a candidate location x ∈
X by SMSego is given by the gain in hyper-volume ob-
tained by the corresponding optimistic estimate, after an ε-
correction has been made. The hyper-volume is simply the
volume of points in functional space above the Pareto front
(this is simply the function space values associated to the
Pareto set), with respect to a given reference point (Zitzler
& Thiele, 1999). Because the hyper-volume is maximized
by the actual Pareto set, it is a natural measure of perfor-
mance. Thus, SMSego does not reduce the problem to a
single-objective. However, at each iteration it has to find
a set of Pareto points and to fit a different GP to each one
of the objectives. This gives a computational cost that is
O(KN3). Finally, evaluating the gain in hyper-volume at
each candidate location x is also more expensive than the
computation of expected improvement in ParEGO.

A similar method to SMSego is the Pareto active learning
(PAL) algorithm (Zuluaga et al., 2013). At iteration N ,
PAL uses the GP prediction for each point x ∈ X
to maintain an uncertainty region RN (x) about the
objective values associated with x. This region is
defined as the intersection of RN−1(x), i.e., the un-
certainty region in the previous iteration, and Qc(x),
defined as as the hyper-rectangle with lower-corner
given by mPD

k (x)− c · vPD
k (x)0.5, for k = 1, . . . ,K,

and upper-corner given by mPD
k (x) + c · vPD

k (x)1/2,
for k = 1, . . . ,K, for some constant c. Given these re-
gions, PAL classifies each point x ∈ X as Pareto-optimal,
non-Pareto-optimal or uncertain. A point is classified as
Pareto-optimal if the worst value in RN (x) is not domi-
nated by the best value in RN (x′), for any other x′ ∈ X ,
with an ε tolerance. A point is classified as non-Pareto-
optimal if the best value in RN (x) is dominated by the
worst value in RN (x′) for any other x′ ∈ X , with an ε
tolerance. All other points remain uncertain. After the
classification, PAL chooses the uncertain point x with the
largest uncertainty regionRN (x). The total computational
cost of PAL is hence similar to that of SMSego.

The expected hyper-volume improvement (EHI) (Em-
merich, 2008) is a natural extension of expected improve-
ment to the multi-objective setting (Mockus et al., 1978;
Jones et al., 1998). Given the predictive distribution of
the GPs at a candidate input location x, the acquisition is
the expected increment of the hyper-volume of a candidate

Pareto set X̃ ?. Thus, EHI also needs to find a Pareto set X̃ ?.
This set can be obtained as in SMSego. A difficulty is, how-
ever, that computing the expected increment of the hyper-
volume is very expensive. For this, the output space is di-
vided in a series of cells, and the probability of improve-
ment is simply obtained as the probability that the observa-
tion made at x lies in a non-dominated cell. This involves a
sum across all non-dominated cells, whose number grows
exponentially with the number of objectives K. In particu-
lar, the total number of cells is (|X̃ ?|+1)K . Thus, although
some methods have been suggested to speed-up its calcula-
tion, e.g., (Hupkens et al., 2014; Feliot et al., 2015), EHI is
only feasible for 2 or 3 objectives at most.

Sequential uncertainty reduction (SUR) is another method
proposed for multi-objective Bayesian optimization
(Picheny, 2015). The working principle of SUR is similar
to that of EHI. However, SUR considers the probability
of improving the hyper-volume in the whole domain of
the objectives X . Thus, SUR also needs to find a set of
Pareto points X̃ ?. These can be obtained as in SMSego.
The acquisition computed by SUR is simply the expected
decrease in the area under the probability of improving
the hyper-volume, after evaluating the objectives at a new
candidate location x. The SUR acquisition is computed
also by dividing the output space in a total of (|X̃ ?|+ 1)K

cells, and the area under the probability of improvement is
obtained using a Sobol sequence as the integration points.
Although some grouping of the cells has been suggested
(Picheny, 2015), SUR is an extremely expensive criterion
that is only feasible for 2 or 3 objectives at most.

The proposed approach, PESMO, differs from the methods
described in this section in that 1) it does not transform
the multi-objective problem into a single-objective, 2) the
acquisition function of PESMO can be decomposed as the
sum of K individual acquisition functions, and this allows
for decoupled evaluations, and 3) the computational cost of
PESMO is linear in the total number of objectives K.

4. Experiments
We compare PESMO with the other strategies described
in Section 3: ParEGO, SMSego, EHI and SUR. We do
not compare results with PAL because it is expected to
give similar results to those of SMSego, as both meth-
ods are based on a lower confidence bound. We have
coded all these methods in the software for Bayesian
optimization Spearmint (https://github.com/HIPS/
Spearmint). We use a Matérn covariance function for
the GPs and all hyper-parameters (noise, length-scales and
amplitude) are approximately sampled from their poste-
rior distribution (we generate 10 samples from this distri-
bution). The acquisition function of each method is aver-
aged over these samples. In ParEGO we consider a differ-

https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
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ent scalarization (i.e., a different value of θ) for each sam-
ple of the hyper-parameters. In SMSego, EHI and SUR,
for each hyper-parameter sample we consider a different
Pareto set X̃ ?, obtained by optimizing the posterior means
of the GPs. The resulting Pareto set is extended by includ-
ing all non-dominated observations. At iteration N , each
method gives a recommendation in the form of a Pareto
set obtained by optimizing the posterior means of the GPs.
The acquisition function of each method is maximized us-
ing L-BFGS (a grid of size 1, 000 is used to find a good
starting point). The gradients of the acquisition function
are approximated by differences (except in ParEGO).

4.1. Accuracy of the PESMO Approximation

One question is whether the proposed approximations are
sufficiently accurate for the effective identification of the
Pareto set. We compare in a one-dimensional problem
with 2 objectives the acquisition function computed by
PESMO with a more accurate estimate obtained via expen-
sive Monte Carlo sampling and a non-parametric estimator
of the entropy (Singh et al., 2003). Figure 1 (top) shows at a
given step the observed data and the posterior mean and the
standard deviation of each objective. The figure on the bot-
tom shows the acquisition function computed by PESMO
and by the Monte Carlo method (Exact). Both functions
look very similar, including the location of the global max-
imizer. This indicates that (7), obtained by expectation
propagation, is potentially a good approximation of (2), the
exact acquisition. The supplementary material has extra re-
sults showing that the individual acquisition functions com-
puted by PESMO, i.e., αk(·), for k = 1, 2, are also accurate.

4.2. Experiments with Synthetic Objectives

We compare PESMO with other approaches in a 3-
dimensional problem with 2 objectives obtained by sam-
pling the functions from the GP prior. We generate 100 of
these problems and report the average performance when
considering noiseless observations and when the observa-
tions are contaminated with Gaussian noise with standard
deviation equal to 0.1. The performance metric is the
hyper-volume indicator, which is maximized by the actual
Pareto set (Zitzler & Thiele, 1999). At each iteration we
report the logarithm of the relative difference between the
hyper-volume of the actual Pareto set (obtained by optimiz-
ing the actual objectives) and the hyper-volume of the rec-
ommendation (obtained by optimizing the posterior means
of the GPs). Figure 2 (left-column) shows, as a function
of the evaluations made, the average performance of each
method with error bars. PESMO obtains the best results,
and when executed in a decoupled scenario, slight improve-
ments are observed (only with noisy observations).

Table 1 shows the average time in seconds to determine
the next evaluation in each method. The fastest method

Figure 1. (top) Observations of each objective and posterior mean
and standard deviations of each GP model. (bottom) Estimates
of the acquisition function (2) by PESMO, and by a Monte Carlo
method combined with a non-parametric estimator of the entropy
(Exact), which is expected to be more accurate. Best seen in color.

is ParEGO followed by SMSego and PESMO. The decou-
pled version of PESMO, PESMOdec, takes more time be-
cause it optimizes α1(·) and α2(·). The slowest meth-
ods are EHI and SUR. Most of their cost is in the last
iterations, in which the Pareto set size, |X̃ ?|, is large.
The cost of evaluating the acquisition function in EHI and
SUR is O((|X̃ ?| + 1)K), leading to expensive optimiza-
tion via L-BFGS. In PESMO the cost of evaluating α(·) is
O(K|X ?

(s)|
3) because K linear systems are solved. These

computations are faster because they are performed by the
open-BLAS library, which is optimized for each processor.
The acquisition function of EHI and SUR does not involve
solving linear systems and these methods cannot use open-
BLAS. Note that we also keep fixed |X ?

(s)| = 50 in PESMO.

Table 1. Avg. time in seconds doing calculations per iteration.
PESMO PESMOdec ParEGO SMSego EHI SUR

33±1.0 52±2.5 11±0.2 16±1.3 405±115 623±59

We have carried out additional synthetic experiments with
4 objectives on a 6-dimensional input space. In this case,
EHI and SUR become infeasible, so we do not compare
results with them. Again, we sample the objectives from
the GP prior. Figure 2 (right-column) shows, as a function
of the evaluations made, the average performance of each
method. The best method is PESMO, and in this case, the
decoupled evaluation performs significantly better. This
improvement is because in the decoupled setting, PESMO
identifies the most difficult objectives and evaluates them
more times. In particular, because there are 4 objectives it
is likely that some objectives are more difficult than oth-
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Figure 2. (left-column) Average log relative difference between the hyper-volume of the recommendation and the maximum hyper-
volume for each number of evaluations made. We consider noiseless (top) and noisy observations (bottom). The problem considered
has 2 objectives and 3 dimensions. (right-column) Similar results for a problem with 4 objectives and 6 dimensions. We do not compare
results with EHI and SUR because they are infeasible due to their exponential cost with the number of objectives. Best seen in color.

ers just by chance. Figure 3 illustrates this behavior for
a representative case in which the first two objectives are
non-linear (difficult) and the last two objectives are linear
(easy). We note that the decoupled version of PESMO eval-
uates the first two objectives almost three times more.

Figure 3. (top) Contour curves of 4 illustrative objectives on 6 di-
mensions obtained by changing the first two dimensions in input
space while keeping the other 4 fixed to zero. The first 2 objec-
tives are non-linear while the 2 last objectives are linear. (bottom)
Number of evaluations of each objective done by PESMOdecoupled

as a function of the iterations performed N . Best seen in color.

4.3. Finding a Fast and Accurate Neural Network

We consider the MNIST dataset (LeCun et al., 1998) and
evaluate each method on the task of finding a neural net-
work with low prediction error and small prediction time.

These are conflicting objectives because reducing the pre-
diction error will involve larger networks which will take
longer at test time. We consider feed-forward networks
with ReLus at the hidden layers and a soft-max output
layer. The networks are coded in the Keras library and they
are trained using Adam (D. Kingma, 2014) with a mini-
batch size of 4, 000 instances during 150 epochs. The ad-
justable parameters are: The number of hidden units per
layer (between 50 and 300), the number of layers (between
1 and 3), the learning rate, the amount of dropout, and the
level of `1 and `2 regularization. The prediction error is
measured on a set of 10, 000 instances extracted from the
training set. The rest of the training data, i.e., 50, 000 in-
stances, is used for training. We consider a logit transfor-
mation of the prediction error because the error rates are
very small. The prediction time is measured as the average
time required for doing 10, 000 predictions. We compute
the logarithm of the ratio between the prediction time of
the network and the prediction time of the fastest network,
(i.e., a single hidden layer and 50 units). When measur-
ing the prediction time we do not train the network and
consider random weights (the time objective is also set to
ignore irrelevant parameters). Thus, the problem is suited
for a decoupled evaluation because both objectives can be
evaluated separately. We run each method for a total of
200 evaluations of the objectives and report results after
100 and 200 evaluations. Because there is no ground truth
and the objectives are noisy, we re-evaluate 3 times the
values associated with the recommendations made by each
method (in the form of a Pareto set) and average the results.
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Figure 4. Avg. Pareto fronts obtained by each method after 100 (left) and 200 (right) evaluations of the objectives. Best seen in color.

Then, we compute the Pareto front (i.e., the function space
values of the Pareto set) and its hyper-volume. We repeat
these experiments 50 times and report the average results.

Table 2 shows the hyper-volumes obtained in the experi-
ments (the higher, the better). The best results, after 100
evaluations of the objectives, correspond to the decoupled
version of PESMO, followed by SUR and by the coupled
version. When 200 evaluations are done, the best method
is PESMO in either setting, i.e., coupled or decoupled. After
PESMO, SUR gives the best results, followed by SMSego
and EHI. ParEGO is the worst performing method in either
setting. In summary, PESMO gives the best overall results,
and its decoupled version performs much better than the
other methods when the number of evaluations is small.

Table 2. Avg. hyper-volume after 100 and 200 evaluations.
# Eval. PESMO PESMOdec ParEGO SMSego EHI SUR

100 66.2±.2 67.6±.1 62.9±1.2 65.0±.3 64.0±.9 66.6±.2
200 67.8±.1 67.8±.1 66.1±.2 67.1±.2 66.6±.2 67.2±.1

Figure 4 shows the average Pareto front obtained by each
method after 100 and 200 evaluations of the objectives. The
results displayed are consistent with the ones in Table 2. In
particular, PESMO is able to find networks that are faster
than the ones found by the other methods, for a similar pre-
diction error on the validation set. This is especially the
case of PESMO when executed in a decoupled setting, after
doing only 100 evaluations of the objectives. We also note
that PESMO finds the most accurate networks, with almost
1.5% of prediction error in the validation set.

Figure 5. Number of evaluations of each objective done by
PESMOdecoupled, as a function of the iteration number N , in the
problem of finding good neural networks. Best seen in color.

The good results obtained by PESMOdecoupled are explained
by Figure 5, which shows the average number of evalua-
tions of each objective. More precisely, the objective that
measures the prediction time is evaluated just a few times.
This makes sense because it depends on only two param-
eters, i.e., the number of layers and the number of hidden
units per layer. It is hence simpler than the prediction er-
ror. PESMOdecoupled is able to detect this and focuses on
the evaluation of the prediction error. Of course, evaluating
the prediction error more times is more expensive, since it
involves training the neural network more times. Neverthe-
less, this shows that PESMOdecoupled is able to successfully
discriminate between easy and difficult objective functions.

The supplementary material has extra experiments compar-
ing each method on the task of finding an ensemble of deci-
sion trees of small size and good prediction accuracy. The
results obtained are similar to the ones reported here.

5. Conclusions
We have described PESMO, a method for multi-objective
Bayesian optimization. At each iteration, PESMO evaluates
the objective functions at the input location that is most
expected to reduce the entropy of posterior estimate of the
Pareto set. Several synthetic experiments show that PESMO
has better performance than other methods from the litera-
ture. That is, PESMO obtains better recommendations with
a smaller number of evaluations, both in the case of noise-
less and noisy observations. Furthermore, the acquisition
function of PESMO can be understood as a sum of K indi-
vidual acquisition functions, one per each of the K objec-
tives. This allows for a decoupled evaluation scenario, in
which the most promising objective is identified by maxi-
mizing the individual acquisition functions. When run in a
decoupled evaluation setting, PESMO is able to identify the
most difficult objectives and, by focusing on their evalua-
tion, it provides better results. This behavior of PESMO has
been illustrated on a multi-objective optimization problem
that consists of finding an accurate and fast neural network.
Finally, the computational cost of PESMO is small. In par-
ticular, it scales linearly with the number of objectives K.
Other methods have an exponential cost with respect to K
which makes them infeasible for more than 3 objectives.
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