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Abstract

Many natural systems, such as neurons firing
in the brain or basketball teams traversing a
court, give rise to time series data with com-
plex, nonlinear dynamics. We can gain in-
sight into these systems by decomposing the
data into segments that are each explained by
simpler dynamic units. Building on switch-
ing linear dynamical systems (SLDS), we de-
velop a model class and Bayesian inference
algorithms that not only discover these dy-
namical units but also, by learning how tran-
sition probabilities depend on observations or
continuous latent states, explain their switch-
ing behavior. Our key innovation is to de-
sign these recurrent SLDS models to enable
recent Pólya-gamma auxiliary variable tech-
niques and thus make approximate Bayesian
learning and inference in these models easy,
fast, and scalable.

1 Introduction

Complex dynamical behaviors can often be broken
down into simpler units. A basketball player finds the
right court position and starts a pick and roll play.
A mouse senses a predator and decides to dart away
and hide. A neuron’s voltage first fluctuates around a
baseline until a threshold is exceeded; it spikes to peak
depolarization, and then returns to baseline. In each
of these cases, the switch to a new mode of behavior
can depend on the continuous state of the system or
on external factors. By discovering these behavioral
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units and their switching dependencies, we can gain
insight into the rich processes generating complex nat-
ural phenomena.

This paper proposes a class of recurrent state space
models that captures these intuitive dependencies, as
well as corresponding Bayesian inference and learn-
ing algorithms that are computationally tractable and
scalable to large datasets. We extend switching linear-
Gaussian dynamical systems (SLDS) [Ackerson and
Fu, 1970, Chang and Athans, 1978, Hamilton, 1990,
Bar-Shalom and Li, 1993, Ghahramani and Hinton,
1996, Murphy, 1998, Fox et al., 2009] by allowing the
discrete switches to depend on the continuous latent
state and exogenous inputs through a logistic regres-
sion. This model falls into the general class of hybrid
systems, but previously including this kind of depen-
dence has destroyed the conditionally linear-Gaussian
structure in the states and complicated inference, as in
the augmented SLDS of Barber [2006]. To avoid these
complications, we design our model to enable the use
of recent auxiliary variable methods for Bayesian in-
ference. In particular, our main technical contribution
is an inference algorithm that leverages Pólya-gamma
auxiliary variable methods [Polson, Scott, and Windle,
2013, Linderman, Johnson, and Adams, 2015] to make
inference both fast and easy.

The class of models and the corresponding learning
and inference algorithms we develop have several ad-
vantages for understanding rich time series data. First,
these models decompose data into simple segments and
attribute segment transitions to changes in latent state
or environment; this provides interpretable represen-
tations of data dynamics. Second, we fit these models
using fast, modular Bayesian inference algorithms; this
makes it easy to handle Bayesian uncertainty, missing
data, multiple observation modalities, and hierarchi-
cal extensions. Finally, these models are interpretable,
readily able to incorporate prior information, and gen-
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erative; this lets us take advantage of a variety of tools
for model validation and checking.

In the following section we provide background on
the key models and inference techniques on which our
method builds. Next, we introduce the class of re-
current switching state space models, and then ex-
plain the main algorithmic contribution that enables
fast learning and inference. Finally, we illustrate the
method on a variety of synthetic data experiments and
an application to real recordings of professional basket-
ball players.

2 Background

Our model has two main components: switching linear
dynamical systems and stick-breaking logistic regres-
sion. Here we review these components and fix the
notation we will use throughout the paper.

2.1 Switching linear dynamical systems

Switching linear dynamical system models (SLDS)
break down complex, nonlinear time series data into
sequences of simpler, reused dynamical modes. By fit-
ting an SLDS to data, we not only learn a flexible non-
linear generative model, but also learn to parse data
sequences into coherent discrete units.

The generative model is as follows. At each
time t = 1, 2, . . . , T there is a discrete latent state
zt ∈ {1, 2, . . . ,K} that following Markovian dynamics,

zt+1 | zt, {πk}Kk=1 ∼ πzt (1)

where {πk}Kk=1 is the Markov transition matrix and
πk ∈ [0, 1]K is its kth row. In addition, a continu-
ous latent state xt ∈ RM follows conditionally linear
(or affine) dynamics, where the discrete state zt deter-
mines the linear dynamical system used at time t:

xt+1 = Azt+1
xt + bzt+1

+ vt, vt
iid∼ N (0, Qzt+1

),(2)

for matrices Ak, Qk ∈ RM×M and vectors bk ∈ RM
for k = 1, 2, . . . ,K. Finally, at each time t a linear
Gaussian observation yt ∈ RN is generated from the
corresponding latent continuous state,

yt = Cztxt + dzt + wt, wt
iid∼ N (0, Szt), (3)

for Ck ∈ RN×M , Sk ∈ RN×N , and dk ∈ RN . The sys-
tem parameters comprise the discrete Markov transi-
tion matrix and the library of linear dynamical system
matrices, which we write as

θ = {(πk, Ak, Qk, bk, Ck, Sk, dk)}Kk=1.

For simplicity, we will require C, S, and d to be shared
among all discrete states in our experiments.

To learn an SLDS using Bayesian inference, we place
conjugate Dirichlet priors on each row of the transition
matrix and conjugate matrix normal inverse Wishart
(MNIW) priors on the linear dynamical system param-
eters, writing

πk |α
iid∼ Dir(α), (Ak, bk), Qk |λ

iid∼ MNIW(λ),

(Ck, dk), Sk | η
iid∼ MNIW(η),

where α, λ, and η denote hyperparameters.

2.2 Stick-breaking logistic regression and
Pólya-gamma augmentation

Another component of the recurrent SLDS is a stick-
breaking logistic regression, and for efficient block in-
ference updates we leverage a recent Pólya-gamma
augmentation strategy [Linderman, Johnson, and
Adams, 2015]. This augmentation allows certain lo-
gistic regression evidence potentials to appear as con-
ditionally Gaussian potentials in an augmented distri-
bution, which enables our fast inference algorithms.

Consider a logistic regression model from regres-
sors x ∈ RM to a categorical distribution on the dis-
crete variable z ∈ {1, 2, . . . ,K}, written as

z |x ∼ πSB(ν), ν = Rx+ r,

where R ∈ RK−1×M is a weight matrix and r ∈ RK−1
is a bias vector. Unlike the standard multiclass lo-
gistic regression, which uses a softmax link func-
tion, we instead use a stick-breaking link function
πSB : RK−1 → [0, 1]K , which maps a real vector to a
normalized probability vector via the stick-breaking
process

πSB(ν) =
(
π
(1)
SB (ν) · · · π

(K)
SB (ν)

)
,

π
(k)
SB (ν) = σ(νk)

∏
j<k

(1− σ(νj)) = σ(νk)
∏
j<k

σ(−νj),

for k = 1, 2, . . . ,K − 1 and π
(K)
SB (ν) =

∏K
k=1 σ(−νk),

where σ(x) = ex/(1 + ex) denotes the logistic func-
tion. The probability mass function p(z |x) is

p(z |x) =

K∏
k=1

σ(νk)I[z=k]σ(−νk)I[z>k]

where I[ · ] denotes an indicator function that takes
value 1 when its argument is true and 0 otherwise.

If we use this regression model as a likelihood p(z |x)
with a Gaussian prior density p(x), the posterior
density p(x | z) is non-Gaussian and does not admit
easy Bayesian updating. However, Linderman, John-
son, and Adams [2015] show how to introduce Pólya-
gamma auxiliary variables ω = {ωk}Kk=1 so that the
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Figure 1: A draw from the prior over recurrent switching linear dynamical systems with K = 5 discrete states shown in
different colors. (Top) The linear dynamics of each latent state. Dots show the fixed point (I −Ak)−1bk. (Bottom)
The conditional p(zt+1|xt) plotted as a function of xt (white=0; color=1). Note that the stick breaking construction
iteratively partitions the continuous space with linear hyperplanes. For simpler plotting, in this example we restrict
p(zt+1 |xt, zt) = p(zt+1|xt).

conditional density p(x | z, ω) becomes Gaussian. In
particular, by choosing ωk |x, z ∼ PG(I[z ≥ k], νk),
we have,

x | z, ω ∼ N (Ω−1κ, Ω−1),

where the mean vector Ω−1κ and covariance ma-
trix Ω−1 are determined by

Ω = diag(ω), κk = I[z = k]− 1

2
I[z ≥ k].

Thus instantiating these auxiliary variables in a Gibbs
sampler or variational mean field inference algorithm
enables efficient block updates while preserving the
same marginal posterior distribution p(x | z).

3 Recurrent Switching State Space
Models

The discrete states in the SLDS of Section 2.1 are
generated via an open loop: the discrete state zt+1

is a function only of the preceding discrete state zt,
and zt+1 | zt is independent of the continuous state xt.
That is, if a discrete switch should occur whenever
the continuous state enters a particular region of state
space, the SLDS will be unable to learn this depen-
dence.

We consider recurrent switching linear dynamical sys-
tem (rSLDS), also called the augmented SLDS [Bar-
ber, 2006], an extension of the SLDS to model these
dependencies directly. Rather than restricting the dis-
crete states to open-loop Markovian dynamics as in
Eq. (1), the rSLDS allows the discrete state transi-
tion probabilities to depend on additional covariates,
and in particular on the preceding continuous latent

state [Barber, 2006]. In our version of the model, the
discrete states are generated as

zt+1 | zt, xt, {Rk, rk} ∼ πSB(νt+1),

νt+1 = Rztxt + rzt , (4)

where Rk ∈ RK−1×M is a weight matrix that specifies
the recurrent dependencies and rk ∈ RK−1 is a bias
that captures the Markov dependence of zt+1 on zt.
The remainder of the rSLDS generative process follows
that of the SLDS from Eqs. (2)-(3). See Figure 2a for a
graphical model, where the edges representing the new
dependencies of the discrete states on the continuous
latent states are highlighted in red.

Figure 1 illustrates an rSLDS with K = 5 discrete
states and M = 2 dimensional continuous states. Each
discrete state corresponds to a set of linear dynamics
defined by Ak and bk, shown in the top row. The
transition probability, πt, is a function of the previous
states zt−1 and xt−1. We show only the dependence
on xt−1 in the bottom row. Each panel shows the con-
ditional probability, Pr(zt+1 = k |xt), as a colormap
ranging from zero (white) to one (color). Due to the
logistic stick breaking, the latent space is iteratively
partitioned with linear hyperplanes.

There are several useful special cases of the rSLDS.

Recurrent ARHMM (rAR-HMM) Just as the
autoregressive HMM (AR-HMM) is a special case of
the SLDS in which we observe the states x1:T directly,
we can define an analogous rAR-HMM. See Figure 2b
for a graphical model, where the edges representing
the dependence of the discrete states on the continuous
observations are highlighted in red.
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Figure 2: Graphical models for the recurrent SLDS (rSLDS) and recurrent AR-HMM (rAR-HMM). Edges that represent
recurrent dependencies of discrete states on continuous observations or continuous latent states are highlighted in red.

Shared rSLDS (rSLDS(s)) Rather than having
separate recurrence weights (and hence a separate par-
tition) for each value of zt, we can share the recurrence
weights as,

νt+1 = Rxt + rzt .

Recurrence-Only (rSLDS(ro)) There is no de-
pendence on zt in this model. Instead,

νt+1 = Rxt + r.

While less flexible, this model is eminently inter-
pretable, easy to visualize, and, as we show in exper-
iments, works well for many dynamical systems. The
example in Figure 1 corresponds to this special case.

We can recover the standard SLDS by setting νt+1 =
rzt .

4 Bayesian Inference

Adding the recurrent dependencies from the latent
continuous states to the latent discrete states intro-
duces new inference challenges. While block Gibbs
sampling in the standard SLDS can be accomplished
with message passing because x1:T is conditionally
Gaussian given z1:T and y1:T , the dependence of zt+1

on xt renders the recurrent SLDS non-conjugate. To
develop a message-passing procedure for the rSLDS,
we first review standard SLDS message passing, then
show how to leverage a Pólya-gamma augmentation
along with message passing to perform efficient Gibbs
sampling in the rSLDS. We discuss stochastic varia-
tional inference [Hoffman et al., 2013] in the supple-
mentary material.

4.1 Message Passing

First, consider the conditional density of the latent
continuous state sequence x1:T given all other vari-
ables, which is proportional to

T−1∏
t=1

ψ(xt, xt+1, zt+1)ψ(xt, zt+1)

T∏
t=1

ψ(xt, yt),

where ψ(xt, xt+1, zt+1) denotes the potential from the
conditionally linear-Gaussian dynamics and ψ(xt, yt)
denotes the evidence potentials. The potentials
ψ(xt, zt+1) arise from the new dependencies in the
rSLDS and do not appear in the standard SLDS. This
factorization corresponds to a chain-structured undi-
rected graphical model with nodes for each time index.

We can sample from this conditional distribution using
message passing. The message from time t to time
t′ = t+ 1, denoted mt→t′(xt′), is computed via∫

ψ(xt, yt)ψ(xt, zt′)ψ(xt, xt′ , zt′)mt′′→t(xt) dxt, (5)

where t′′ denotes t − 1. If the potentials were all
Gaussian, as is the case without the rSLDS potential
ψ(xt, zt+1), this integral could be computed analyti-
cally. We pass messages forward once, as in a Kalman
filter, and then sample backward. This constructs a
joint sample x̂1:T ∼ p(x1:T ) in O(T ) time. A simi-
lar procedure can be used to jointly sample the dis-
crete state sequence, z1:T , given the continuous states
and parameters. However, this computational strat-
egy for sampling the latent continuous states breaks
down when including the non-Gaussian rSLDS poten-
tial ψ(xt, zt+1).

Note that it is straightforward to handle missing data
in this formulation; if the observation yt is omitted, we
simply have one fewer potential in our graph.

4.2 Augmentation for non-Gaussian Factors

The challenge presented by the recurrent SLDS is
that ψ(xt, zt+1) is not a linear Gaussian factor; rather,
it is a categorical distribution whose parameter de-
pends nonlinearly on xt. Thus, the integral in the mes-
sage computation (5) is not available in closed form.
There are a number of methods of approximating such
integrals, like particle filtering [Doucet et al., 2000],
Laplace approximations [Tierney and Kadane, 1986],
and assumed density filtering as in Barber [2006], but
here we take an alternative approach using the recently
developed Pólya-gamma augmentation scheme [Polson
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et al., 2013], which renders the model conjugate by in-
troducing an auxiliary variable in such a way that the
resulting marginal leaves the original model intact.

According to the stick breaking transformation de-
scribed in Section 2.2, the non-Gaussian factor is

ψ(xt, zt+1) =

K∏
k=1

σ(νt+1,k)I[zt+1=k] σ(−νt+1,k)I[zt+1>k],

where νt+1,k is the k-th dimension of νt+1, as defined
in (4). Recall that νt+1 is linear in xt. Expanding the
definition of the logistic function, we have,

ψ(xt, zt+1) =

K−1∏
k=1

(eνt+1,k)I[zt+1=k]

(1 + eνt+1,k)I[zt+1≥k]
. (6)

The Pólya-gamma augmentation targets exactly such
densities, leveraging the following integral identity:

(eν)a

(1 + eν)b
= 2−beκν

∫ ∞
0

e−ων
2/2pPG(ω | b, 0) dω, (7)

where κ = a− b/2 and pPG(ω | b, 0) is the density of
the Pólya-gamma distribution, PG(b, 0), which does
not depend on ν.

Combining (6) and (7), we see that ψ(xt, zt+1) can be
written as a marginal of a factor on the augmented
space, ψ(xt, zt+1, ωt), where ωt ∈ RK−1+ is a vector of
auxiliary variables. As a function of νt+1, we have

ψ(xt, zt+1, ωt) ∝
K−1∏
k=1

exp
{
κt+1,k νt+1,k− 1

2ωt,k ν
2
t+1,k

}
,

where κt+1,k = I[zt+1 = k]− 1
2 I[zt+1 ≥ k]. Hence,

ψ(xt, zt+1, ωt) ∝ N (νt+1 |Ω−1t κt+1, Ω−1t ),

with Ωt = diag(ωt) and κt+1 = [κt+1,1 . . . , κt+1,K−1].
Again, recall that νt+1 is a linear function of xt.
Thus, after augmentation, the potential on xt is ef-
fectively Gaussian and the integrals required for mes-
sage passing can be written analytically. Finally,
the auxiliary variables are easily updated as well,
since ωt,k |xt, zt+1 ∼ PG(I[zt+1 ≥ k], νt+1,k).

4.3 Updating Model Parameters

Given the latent states and observations, the model pa-
rameters benefit from simple conjugate updates. The
dynamics parameters have conjugate MNIW priors, as
do the emission parameters. The recurrence weights
are also conjugate under a MNIW prior, given the aux-
iliary variables ω1:T . We set the hyperparameters of
these priors such that random draws of the dynam-
ics are typically stable and have nearly unit spectral

radius in expectation, and we set the mean of the re-
currence bias such that states are equiprobable in ex-
pectation.

As with other many models, initialization is impor-
tant. We propose a step-wise approach, starting with
simple special cases of the rSLDS and building up. The
supplement contains full details of this procedure.

5 Experiments

We demonstrate the potential of recurrent dynam-
ics in a variety of settings. First, we consider a
case in which the underlying dynamics truly follow
an rSLDS, which illustrates some of the nuances in-
volved in fitting these rich systems. With this expe-
rience, we then apply these models to simulated data
from a canonical nonlinear dynamical system – the
Lorenz attractor – and find that its dynamics are well-
approximated by an rSLDS. Moreover, by leveraging
the Pólya-gamma augmentation, these nonlinear dy-
namics can even be recovered from discrete time series
with large swaths of missing data, as we show with a
Bernoulli-Lorenz model. Finally, we apply these recur-
rent models to real trajectories on basketball players
and discover interpretable, location-dependent behav-
ioral states.

5.1 Synthetic NASCARr

We begin with a toy example in which the true dynam-
ics trace out ovals, like a stock car on a NASCARr

track.1 There are four discrete states, zt ∈ {1, . . . , 4},
that govern the dynamics of a two dimensional con-
tinuous latent state, xt ∈ R2. Fig. 3a shows the dy-
namics of the most likely state for each point in latent
space, along with a sampled trajectory from this sys-
tem. The observations, yt ∈ R10 are a linear projection
of the latent state with additive Gaussian noise. The
10 dimensions of yt are superimposed in Fig. 3b. We
simulated T = 104 time-steps of data and fit an rSLDS
to these data with 103 iterations of Gibbs sampling.

Fig. 3c shows a sample of the inferred latent state and
its dynamics. It recovers the four states and a rotated
oval track, which is expected since the latent states
are non-identifiable up to invertible transformation.
Fig. 3d plots the samples of z1:1000 as a function of
Gibbs iteration, illustrating the uncertainty near the
change-points.

From a decoding perspective, both the SLDS and the
rSLDS are capable of discovering the discrete latent
states; however, the rSLDS is a much more effective
generative model. Whereas the standard SLDS has

1Unlike real NASCAR drivers, these states turn right.
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Figure 3: Synthetic NASCARr, an example of Bayesian inference in a recurrent switching linear dynamical system
(rSLDS). (a) In this case, the true dynamics switch between four states, causing the continuous latent state, xt ∈ R2,
to trace ovals like a car on a NASCARr track. The dynamics of the most likely discrete state at a particular location
are shown with arrows. (b) The observations, yt ∈ R10, are a linear projection with additive Gaussian noise (colors not
given; for visualization only). (c) Our rSLDS correctly infers the continuous state trajectory, up to affine transformation.
It also learns to partition the continuous space into discrete regions with different dynamics. (d) Posterior samples of
the discrete state sequence match the true discrete states, and show uncertainty near the change points. (e) Generative
samples from a standard SLDS differ dramatically from the true latent states in (a), since the run lengths in the SLDS
are simple geometric random variables that are independent of the continuous state. (f) In contrast, the rSLDS learns to
generate states that shares the same periodic nature of the true model.

only a Markov model for the discrete states, and hence
generates the geometrically distributed state durations
in Fig 3e, the rSLDS leverages the location of the la-
tent state to govern the discrete dynamics and gener-
ates the much more realistic, periodic data in Fig. 3f.

5.2 Lorenz Attractor

Switching linear dynamical systems offer a tractable
approximation to complicated nonlinear dynamical
systems. Indeed, one of the principal motivations
for these models is that once they have been fit, we
can leverage decades of research on optimal filtering,
smoothing, and control for linear systems. However,
as we show in the case of the Lorenz attractor, the
standard SLDS is often a poor generative model, and
hence has difficulty interpolating over missing data.
The recurrent SLDS remedies this by connecting dis-
crete and continuous states.

Fig. 4a shows the states of a Lorenz attractor whose
nonlinear dynamics are given by,

dx

dt
=

 α(x2 − x1)
x1(β − x3)− x2
x1x2 − γx3

 .

Though nonlinear and chaotic, we see that the Lorenz
attractor roughly traces out ellipses in two opposing
planes. Fig. 4c unrolls these dynamics over time,
where the periodic nature and the discrete jumps be-
come clear.

Rather than directly observing the states of the
Lorenz attractor, x1:T , we simulate N = 100 dimen-
sional discrete observations from a generalized linear
model, ρt,n = σ(cTnxt + dn), where σ(·) is the logistic
function, and yt,n ∼ Bern(ρt,n). A window of obser-
vations is shown in Fig. 4d. Just as we leveraged
the Pólya-gamma augmentation to render the contin-
uous latent states conjugate with the multinomial dis-
crete state samples, we again leverage the augmenta-
tion scheme to render them conjugate with Bernoulli
observations. As a further challenge, we also hold out
a slice of data for t ∈ [700, 900), identified by a gray
mask in the center panels. We provide more details in
the supplementary material.

Fitting an rSLDS via the same procedure described
above, we find that the model separates these two
planes into two distinct states, each with linear, ro-
tational dynamics shown in Fig. 4b. Note that the la-
tent states are only identifiable up to invertible trans-
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Figure 4: A recurrent switching linear dynamical system (rSLDS) applied to simulated data from a Lorenz attractor —
a canonical nonlinear dynamical system. (a) The Lorenz attractor chaotically oscillates between two planes. Scale bar
shared between (a), (b), (g) and (h). (b) Our rSLDS, with xt ∈ R3, identifies these two modes and their approximately
linear dynamics, up to an invertible transformation. It divides the space in half with a linear hyperplane. (c) Unrolled
over time, we see the points at which the Lorenz system switches from one plane to the other. Gray window denotes
masked region of the data. (d) The observations come from a generalized linear model with Bernoulli observations and
a logistic link function. (e) Samples of the discrete state show that the rSLDS correctly identifies the switching time
even in the missing data. (f) The inferred probabilities (green) for the first output dimension along with the true event
times (black dots) and the true probabilities (black line). Error bars denote ±3 standard deviations under posterior. (g)
Generative samples from a standard SLDS differ substantially from the true states in (a) and are quite unstable. (h) In
contrast, the rSLDS learns to generate state sequences that closely resemble those of the Lorenz attractor.

formation. Comparing Fig. 4e to 4c, we see that the
rSLDS samples changes in discrete state at the points
of large jumps in the data, but when the observations
are masked, there is more uncertainty. This uncer-
tainty in discrete state is propagated to uncertainty in
the event probability, ρ, which is shown for the first
output dimension in Fig. 4f. The times {t : yt,1 = 1}
are shown as dots, and the mean posterior probabil-
ity E[ρt,1] is shown with ±3 standard deviations.

The generated trajectories in Figures 4g and 4h pro-
vide a qualitative comparison of how well the SLDS
and rSLDS can reproduce the dynamics of a non-
linear system. While the rSLDS is a better fit by
eye, we have quantified this using posterior predic-
tive checks (PPCs) [Gelman et al., 2013]. The SLDS,
and rSLDS both capture low-order moments of the
data, but one salient aspect of the Lorenz model is
the switch between “sides” roughly every 200 time
steps. This manifests in jumps between high prob-
ability (ρ1 > 0.4) and low probability for the first
output (c.f. Figure 4f). Thus, a natural test statis-
tic, t, is the maximum duration of time spent in
the high probability side. Samples from the SLDS
show tSLDS ∼ 91 ± 33 time steps, dramatically under-

estimating the true value of ttrue = 215. The rSLDS
samples are much more realistic, with trslds ∼ 192± 84
time steps. While the rSLDS samples have high vari-
ance, it covers the true value of the statistic with its
state-dependent model for discrete state transitions.

5.3 Basketball Player Trajectories

We further illustrate our recurrent models with an
application to the trajectories run by five National
Basketball Association (NBA) players from the Miami
Heat in a game against the Brooklyn Nets on Nov. 1st,

2013. We are given trajectories, y
(p)
1:Tp
∈ RTp×2, for

each player p. We treat these trajectories as inde-
pendent realizations of a “recurrence-only” AR-HMM
with a shared set of K = 30 states. Positions are
recorded every 40ms; combining the five players yields
256,103 time steps in total. We use our rAR-HMM to
discover discrete dynamical states as well as the court
locations in which those states are most likely to be de-
ployed. We fit the model with 200 iteration of Gibbs
sampling, initialized with a draw from the prior.

The dynamics of five of the discovered states are shown
in Fig. 5 (top), along with the names we have assigned
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Figure 5: Exploratory analysis of NBA player trajectories from the Nov. 1, 2013 game between the Miami Heat and the
Brooklyn Nets. (Top) When applied to trajectories of five Heat players, the recurrent AR-HMM (ro) discovers K = 30
discrete states with linear dynamics; five hand-picked states are shown here along with our names. Speed of motion is
proportional to length of arrow. (Bottom) The probability with which players use the state under the posterior.

them. Below, we show the frequency with which each
player uses the states under the posterior distribution.
First, we notice lateral symmetry; some players drive
to the left corner whereas others drive to the right.
Anecdotally, Ray Allen is known to shoot more from
the left corner, which agrees with the state usage here.
Other states correspond to unique plays made by the
players, like cuts along the three-point line and drives
to the hoop or along the baseline. The complete set of
states is shown in the supplementary material.

The recurrent AR-HMM strictly generalizes the stan-
dard AR-HMM, which in turn strictly generalizes AR
models, and so on. Thus, barring overfitting or a infer-
ence pathologies, the recurrent model should perform
at least as well as its special cases in likelihood com-
parisons. Here, the AR-HMM achieves a heldout log
likelihood of 8.110 nats/time step, and the rAR-HMM
achieves 8.124 nats/time step. Compared to a naive
random walk baseline, which achieves 5.073 nats/time
step, the recurrent model provides a small yet signif-
icant relative improvement (0.47%), but likelihood is
only one aggregate measure of performance. It does
not necessarily show that the model better captures
specific salient features of the data (or that the model
is more interpretable).

6 Discussion

This work is similar in spirit to the piecewise affine
(PWA) framework in control systems [Sontag, 1981,
Juloski et al., 2005, Paoletti et al., 2007]. The most
relevant approximate inference work for these mod-
els is developed in Barber [2006], which uses varia-
tional approximations and assumed density filtering

to perform inference in recurrent SLDS with softmax
link functions. Here, because we design our models to
use logistic stick-breaking, we are able to use Pólya-
gamma augmentation to derive asymptotically unbi-
ased MCMC algorithms for inferring both the latent
states and the parameters.

Recurrent SLDS models strike a balance between flex-
ibility and tractability. Composing linear systems
through simple switching achieves globally nonlinear
dynamics while admitting efficient Bayesian inference
algorithms and easy interpretation. The Bernoulli-
Lorenz example suggests that these methods may be
applied to other discrete domains, like multi-neuronal
spike trains [e.g. Sussillo et al., 2016]. Likewise, be-
yond the realm of basketball, these models may nat-
urally apply to model social behavior in multiagent
systems. These are exciting avenues for future work.
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