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Abstract

Many practical modeling problems involve discrete data that are best represented
as draws from multinomial or categorical distributions. For example, nucleotides
in a DNA sequence, children’s names in a given state and year, and text documents
are all commonly modeled with multinomial distributions. In all of these cases,
we expect some form of dependency between the draws: the nucleotide at one
position in the DNA strand may depend on the preceding nucleotides, children’s
names are highly correlated from year to year, and topics in text may be corre-
lated and dynamic. These dependencies are not naturally captured by the typical
Dirichlet-multinomial formulation. Here, we leverage a logistic stick-breaking
representation and recent innovations in Pólya-gamma augmentation to reformu-
late the multinomial distribution in terms of latent variables with jointly Gaussian
likelihoods, enabling us to take advantage of a host of Bayesian inference tech-
niques for Gaussian models with minimal overhead.

1 Introduction

It is often desirable to model discrete data in terms of continuous latent structure. In applications in-
volving text corpora, discrete-valued time series, or polling and purchasing decisions, we may want
to learn correlations or spatiotemporal dynamics and leverage these structures to improve inferences
and predictions. However, adding these continuous latent dependence structures often comes at the
cost of significantly complicating inference: such models may require specialized, one-off inference
algorithms, such as a non-conjugate variational optimization, or they may only admit very general
inference tools like particle MCMC [1] or elliptical slice sampling [2], which can be inefficient and
difficult to scale. Developing, extending, and applying these models has remained a challenge.

In this paper we aim to provide a class of such models that are easy and efficient. We develop models
for categorical and multinomial data in which dependencies among the multinomial parameters are
modeled via latent Gaussian distributions or Gaussian processes, and we show that this flexible class
of models admits a simple auxiliary variable method that makes inference easy, fast, and modular.
This construction not only makes these models simple to develop and apply, but also allows the
resulting inference methods to use off-the-shelf algorithms and software for Gaussian processes and
linear Gaussian dynamical systems.

The paper is organized as follows. After providing background material and defining our general
models and inference methods, we demonstrate the utility of this class of models by applying it to
three domains as case studies. First, we develop a correlated topic model for text corpora. Second,
we study an application to modeling the spatial and temporal patterns in birth names given only
sparse data. Finally, we provide a new continuous state-space model for discrete-valued sequences,
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including text and human DNA. In each case, given our model construction and auxiliary variable
method, inference algorithms are easy to develop and very effective in experiments.

Code to use these models, write new models that leverage these inference methods, and reproduce
the figures in this paper is available at github.com/HIPS/pgmult.

2 Modeling correlations in multinomial parameters

In this section, we discuss an auxiliary variable scheme that allows multinomial observations to
appear as Gaussian likelihoods within a larger probabilistic model. The key trick discussed in the
proceeding sections is to introduce Pólya-gamma random variables into the joint distribution over
data and parameters in such a way that the resulting marginal leaves the original model intact.

The integral identity underlying the Pólya-gamma augmentation scheme [3] is

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω | b, 0) dω, (1)

where κ = a− b/2 and p(ω | b, 0) is the density of the Pólya-gamma distribution PG(b, 0), which
does not depend on ψ. Consider a likelihood function of the form

p(x |ψ) = c(x)
(eψ)a(x)

(1 + eψ)b(x)
(2)

for some functions a, b, and c. Such likelihoods arise, e.g., in logistic regression and in binomial and
negative binomial regression [3]. Using (1) along with a prior p(ψ), we can write the joint density
of (ψ, x) as

p(ψ, x) = p(ψ) c(x)
(eψ)a(x)

(1 + eψ)b(x)
=

∫ ∞
0

p(ψ) c(x) 2−b(x)eκ(x)ψe−ωψ
2/2p(ω | b(x), 0) dω. (3)

The integrand of (3) defines a joint density on (ψ, x, ω) which admits p(ψ, x) as a marginal density.
Conditioned on these auxiliary variables ω, we have

p(ψ |x, ω) ∝ p(ψ)eκ(x)ψe−ωψ
2/2 (4)

which is Gaussian when p(ψ) is Gaussian. Furthermore, by the exponential tilting property of the
Pólya-gamma distribution, we have ω |ψ, x ∼ PG(b(x), ψ). Thus the identity (1) gives rise to a
conditionally conjugate augmentation scheme for Gaussian priors and likelihoods of the form (2).

This augmentation scheme has been used to develop Gibbs sampling and variational inference al-
gorithms for Bernoulli, binomial [3], and negative binomial [4] regression models with logit link
functions, and to the multinomial distribution with a multi-class logistic link function [3, 5].

The multi-class logistic “softmax” function, πLN(ψ), maps a real-valued vectorψ ∈ RK to a proba-
bility vector π ∈ [0, 1]K by setting πk = eψk/

∑K
j=1 e

ψj . It is commonly used in multi-class regres-
sion [6] and correlated topic modeling [7]. Correlated multinomial parameters can be modeled with
a Gaussian prior on the vector ψ, though the resulting models are not conjugate. The Pólya-gamma
augmentation can be applied to such models [3, 5], but it only provides single-site Gibbs updating
of ψ. This paper develops a joint augmentation in the sense that, given the auxiliary variables, the
entire vector ψ is resampled as a block in a single Gibbs update.

2.1 A new Pólya-gamma augmentation for the multinomial distribution

First, rewrite the K-dimensional multinomial recursively in terms of K − 1 binomial densities:

Mult(x |N,π) =
K−1∏
k=1

Bin(xk |Nk, π̃k), (5)

Nk = N −
∑
j<k

xj , π̃k =
πk

1−
∑
j<k πj

, k = 2, 3, . . . ,K, (6)
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Figure 1: Correlated 2D Gaussian priors on ψ and their implied densities on πSB(ψ). See text for details.

where N1 = N =
∑
k xk and π̃1 = π1. For convenience, we define N(x) ≡ [N1, . . . , NK−1].

This decomposition of the multinomial density is a “stick-breaking” representation where
each π̃k represents the fraction of the remaining probability mass assigned to the k-th com-
ponent. We let π̃k = σ(ψk), where σ(·) denotes the logistic function, and define the func-
tion, πSB : RK−1 → [0, 1]K , which maps a vector ψ to a normalized probability vector π.

Next, we rewrite the density into the form required by (1) by substituting σ(ψk) for π̃k:

Mult(x |N,ψ) =
K−1∏
k=1

Bin(xk |Nk, σ(ψk)) =
K−1∏
k=1

(
Nk
xk

)
σ(ψk)

xk(1− σ(ψk))Nk−xk (7)

=

K−1∏
k=1

(
Nk
xk

)
(eψk)xk

(1 + eψk)Nk
. (8)

Choosing ak(x) = xk and bk(x) = Nk for each k = 1, 2, . . . ,K − 1, we can then introduce Pólya-
gamma auxiliary variables ωk corresponding to each coordinate ψk; dropping terms that do not
depend on ψ and completing the square yields

p(x,ω |ψ) ∝
K−1∏
k=1

e(xk−Nk/2)ψk−ωkψ
2
k/2 ∝ N

(
Ω−1κ(x)

∣∣∣∣ψ, Ω−1) , (9)

where Ω ≡ diag(ω) and κ(x) ≡ x−N(x)/2. That is, conditioned on ω, the likelihood ofψ under
the augmented multinomial model is proportional to a diagonal Gaussian distribution.

Figure 1 shows how several Gaussian densities map to probability densities on the simplex. Cor-
related Gaussians (left) put most probability mass near the π1 = π2 axis of the simplex, and anti-
correlated Gaussians (center) put mass along the sides where π1 is large when π2 is small and
vice-versa. Finally, a nearly isotropic Gaussian approximates a symmetric Dirichlet. Appendix A
gives a closed-form expression for the density on π induced by a Gaussian distribution on ψ, and
also an expression for a diagonal Gaussian that approximates a Dirichlet by matching moments.

3 Correlated topic models

The Latent Dirichlet Allocation (LDA) [8] is a popular model for learning topics from text corpora.
The Correlated Topic Model (CTM) [7] extends LDA by including a Gaussian correlation structure
among topics. This correlation model is powerful not only because it reveals correlations among
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Figure 2: A comparison of correlated topic model performance. The left panel shows a subset of the inferred
topic correlations for the AP News corpus. Two examples are highlighted: a) positive correlation between topics
(house, committee, congress, law) and (Bush, Dukakis, president, campaign), and b) anticorrelation between
(percent, year, billion, rate) and (court, case, attorney, judge). The middle and right panels demonstrate the
efficacy of our SB-CTM relative to competing models on the AP News corpus and the 20 Newsgroup corpus,
respectively.

topics but also because inferring such correlations can significantly improve predictions, especially
when inferring the remaining words in a document after only a few have been revealed [7]. How-
ever, the addition of this Gaussian correlation structure breaks the Dirichlet-Multinomial conjugacy
of LDA, making estimation and particularly Bayesian inference and model-averaged predictions
more challenging. An approximate maximum likelihood approach using variational EM [7] is often
effective, but a fully Bayesian approach which integrates out parameters may be preferable, espe-
cially when making predictions based on a small number of revealed words in a document. A recent
Bayesian approach based on a Pólya-Gamma augmentation to the logistic normal CTM (LN-CTM)
[5] provides a Gibbs sampling algorithm with conjugate updates, but the Gibbs updates are limited
to single-site resampling of one scalar at a time, which can lead to slow mixing in correlated models.

In this section we show that MCMC sampling in a correlated topic model based on the stick breaking
construction (SB-CTM) can be significantly more efficient than sampling in the LN-CTM while
maintaining the same integration advantage over EM.

In the standard LDA model, each topic βt (t = 1, 2, . . . , T ) is a distribution over a vocabulary
of V possible words, and each document d has a distribution over topics θd (d = 1, 2, . . . , D).
The n-th word in document d is denoted wn,d for d = 1, 2, . . . , Nd. When each βt and θd is given
a symmetric Dirichlet prior with parameters αβ and αθ, respectively, the generative model is

βt ∼ Dir(αβ), θd ∼ Dir(αθ), zn,d |θd ∼ Cat(θd), wn,d | zn,d, {βt} ∼ Cat(βzn,d
). (10)

The CTM replaces the Dirichlet prior on each θd with a correlated prior induced by first
sampling a correlated Gaussian vector ψd ∼ N (µ,Σ) and then applying the logistic normal
map: θd = πLN(ψd) Analogously, our SB-CTM generates the correlation structure by instead ap-
plying the stick-breaking logistic map, θd = πSB(ψd). The goal is then to infer the posterior dis-
tribution over the topics βt, the documents’ topic allocations ψd, and their mean and correlation
structure (µ,Σ), where the parameters (µ,Σ) are given a conjugate normal-inverse Wishart (NIW)
prior. Modeling correlation structure within the topics β can be done analogously.

For fully Bayesian inference in the SB-CTM, we develop a Gibbs sampler that exploits the block
conditional Gaussian structure provided by the stick-breaking construction. The Gibbs sampler
iteratively samples z |w,β,ψ; β | z,w; ψ | z,µ,Σ,ω; and µ,Σ |ψ as well as the auxiliary
variables ω |ψ, z. The first two are standard updates for LDA models, so we focus on the latter
three. Using the identities derived in Section 2.1, the conditional density of each ψd | zd,µ,Σ,ω
can be written

p(ψd | zd,ωd) ∝ N (Ω−1d κ(cd) |ψd,Ω
−1
d ) N (ψd |µ,Σ) ∝ N (ψd | µ̃, Σ̃), (11)
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where we have defined

µ̃ = Σ̃
[
κ(cd) +Σ−1µ

]
, Σ̃ =

[
Ωd +Σ−1

]−1
, cd,t =

∑
n

I[zn,d = t], Ωd = diag(ωd),

and so it is resampled as a joint Gaussian. The correlation structure parameters µ and Σ are sampled
from their conditional NIW distribution. Finally, the auxiliary variables ω are sampled as Pólya-
Gamma random variables, with ωd | zd,ψd ∼ PG(N(cd),ψd). A feature of the stick-breaking
construction is that the the auxiliary variable update is embarrassingly parallel.

We compare the performance of this Gibbs sampling algorithm for the SB-CTM to the Gibbs sam-
pling algorithm of the LN-CTM [5], which uses a different Pólya-gamma augmentation, as well as
the original variational EM algorithm for the CTM and collapsed Gibbs sampling in standard LDA.
Figure 2 shows results on both the AP News dataset and the 20 Newsgroups dataset, where models
were trained on a random subset of 95% of the complete documents and tested on the remaining 5%
by estimating held-out likelihoods of half the words given the other half. The collapsed Gibbs sam-
pler for LDA is fast but because it does not model correlations its ability to predict is significantly
constrained. The variational EM algorithm for the CTM is reasonably fast but its point estimate
doesn’t quite match the performance from integrating out parameters via MCMC in this setting.
The LN-CTM Gibbs sampler continues to improve slowly but is limited by its single-site updates,
while the SB-CTM sampler seems to both mix effectively and execute efficiently due to its block
Gaussian updating.

The SB-CTM demonstrates that the stick-breaking construction and corresponding Pólya-Gamma
augmentation makes inference in correlated topic models both easy to implement and computa-
tionally efficient. The block conditional Gaussianity also makes inference algorithms modular and
compositional: the construction immediately extends to dynamic topic models (DTMs) [9], in which
the latent ψd evolve according to linear Gaussian dynamics, and inference can be implemented sim-
ply by applying off-the-shelf code for Gaussian linear dynamical systems (see Section 5). Finally,
because LDA is so commonly used as a component of other models (e.g. for images [10]), easy,
effective, modular inference for CTMs and DTMs is a promising general tool.

4 Gaussian processes with multinomial observations

Consider the United States census data, which lists the first names of children born in each state for
the years 1910-2013. Suppose we wish to predict the probability of a particular name in New York
State in the years 2012 and 2013 given observed names in earlier years. We might reasonably expect
that name probabilities vary smoothly over time as names rise and fall in popularity, and that name
probability would be similar in neighboring states. A Gaussian process naturally captures these
prior intuitions about spatiotemporal correlations, but the observed name counts are most naturally
modeled as multinomial draws from latent probability distributions over names for each combination
of state and year. We show how efficient inference can be performed in this otherwise difficult model
by leveraging the Pólya-gamma augmentation.

LetZ ∈ RM×D denote the matrix ofD dimensional inputs andX ∈ NM×K denote the observedK
dimensional count vectors for each input. In our example, each row zm of Z corresponds to the
year, latitude, and longitude of an observation, and K is the number of names. Underlying these
observations we introduce a set of latent variables, ψm,k such that the probability vector at input zm
is πm = πSB(ψm,:). The auxiliary variables for the k-th name, ψ:,k, are linked via a Gaussian
process with covariance matrix, C, whose entry Ci,j is the covariance between input zi and zj
under the GP prior, and mean vector µk. The covariance matrix is shared by all names, and the
mean is empirically set to match the measured name probability. The full model is then,

ψ:,k ∼ GP(µk,C), xm ∼ Mult(Nm,πSB(ψm,:)).

To perform inference, introduce auxiliary Pólya-gamma variables, ωm,k for each ψm,k. Conditioned
on these variables, the conditional distribution of ψ:,k is,

p(ψ:,k |Z,X,ω,µ,C) ∝ N
(
Ω−1k κ(X :,k)

∣∣∣∣ψ:,k, Ω
−1
k

)
N (ψ:,k |µk,C) ∝ N

(
ψ:,k | µ̃k, Σ̃k

)
Σ̃k =

(
C−1 +Ωk

)−1
µ̃k = Σ̃k

(
κ(X :,k) +C

−1µk
)
,
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2012 2013
Model Top 10 Bot. 10 Top 10 Bot. 10

Static 2011 4.2 (1.3) 0.7 (1.2) 4.2 (1.4) 0.8 (1.0)
Raw GP 4.9 (1.1) 0.7 (0.9) 5.0 (1.0) 0.8 (0.9)
LNM GP 6.7 (1.4) 4.8 (1.7) 6.8 (1.4) 4.6 (1.7)
SBM GP 7.3 (1.0) 4.0 (1.8) 7.0 (1.0) 3.9 (1.4)

Average number of names correctly predicted

Figure 3: A spatiotemporal Gaussian process applied to the names of children born in the United States from
1960-2013. With a limited dataset of only 50 observations per state/year, the stick breaking and logistic normal
multinomial GPs (SBM GP and LNM GP) outperform naı̈ve approaches in predicting the top and bottom 10
names (bottom left, parentheses: std. error). Our SBM GP, which leverages the Pólya-gamma augmentation, is
considerably more efficient than the non-conjugate LNM GP (bottom right).

where Ωk = diag(ω:,k). The auxiliary variables are updated according to their conditional distribu-
tion: ωm,k |xm, ψm,k ∼ PG(Nm,k, ψm,k), where Nm,k = Nm −

∑
j<k xm,j .

Figure 3 illustrates the power of this approach on U.S. census data. The top two plots show the
inferred probabilities under our stick-breaking multinomial GP model for the full dataset. Interest-
ing spatiotemporal correlations in name probability are uncovered. In this large-count regime, the
posterior uncertainty is negligible since we observe thousands of names per state and year, and sim-
ply modeling the transformed empirical probabilities with a GP works well. However, in the sparse
data regime with only Nm = 50 observations per input, it greatly improves performance to model
uncertainty in the latent probabilities using a Gaussian process with multinomial observations.

The bottom panels compare four methods of predicting future names in the years 2012 and 2013
for a down-sampled dataset with Nm = 50: predicting based on the empirical probability measured
in 2011; a standard GP to the empirical probabilities transformed by π−1SB (Raw GP); a GP whose
outputs are transformed by the logistic normal function, πLN, to obtain multinomial probabilities
(LNM GP) fit using elliptical slice sampling [2]; and our stick-breaking multinomial GP (SBM
GP). In terms of ability to predict the top and bottom 10 names, the multinomial models are both
comparable and vastly superior to the naive approaches.

The SBM GP model is considerably faster than the logistic normal version, as shown in the bottom
right panel. The augmented Gibbs sampler is more efficient than the elliptical slice sampling algo-
rithm used to handle the non-conjugacy in the LNM GP. Moreover, we are able to make collapsed
predictions in which we compute the predictive distribution test ψ’s given ω, integrating out the
training ψ. In contrast, the LNM GP must condition on the training GP values in order to make pre-
dictions, and effectively integrate over training samples using MCMC. Appendix B goes into greater
detail on how marginal predictions are computed and why they are more efficient than predicting
conditioned on a single value of ψ.
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Figure 4: Predictive log likelihood comparison of time series models with multinomial observations.

5 Multinomial linear dynamical systems

While discrete-state hidden Markov models (HMMs) are ubiquitous for modeling time series and
sequence data, it can be preferable to use a continuous state space model. In particular, while
discrete states have no intrinsic geometry, continuous states can correspond to natural Euclidean
embeddings [11]. These considerations are particularly relevant to text, where word embeddings
[12] have proven to be a powerful tool.

Gaussian linear dynamical systems (LDS) provide very efficient learning and inference algorithms,
but they can typically only be applied when the observations are themselves linear with Gaussian
noise. While it is possible to apply a Gaussian LDS to count vectors [11], the resulting model is
misspecified in the sense that, as a continuous density, the model assigns zero probability to training
and test data. However, Belanger and Kakade [11] show that this model can still be used for several
machine learning tasks with compelling performance, and that the efficient algorithms afforded by
the misspecified Gaussian assumptions confer a significant computational advantage. Indeed, the au-
thors have observed that such a Gaussian model is “worth exploring, since multinomial models with
softmax link functions prevent closed-form M step updates and require expensive” computations
[13]; this paper aims to bridge precisely this gap and enable efficient Gaussian LDS computational
methods to be applied while maintaining multinomial emissions and an asymptotically unbiased
representation of the posterior. While there are other approximation schemes that effectively extend
some of the benefits of LDSs to nonlinear, non-Gaussian settings, such as the extended Kalman filter
(EKF) and unscented Kalman filter (UKF) [14, 15], these methods do not allow for asymptotically
unbiased Bayesian inference, can have complex behavior, and can make model learning a challenge.
Alternatively, particle MCMC (pMCMC) [1] is a very powerful algorithm that provides unbiased
Bayesian inference for very general state space models, but it does not enjoy the efficient block
updates or conjugacy of LDSs or HMMs.

The stick-breaking multinomial linear dynamical system (SBM-LDS) generates states via a linear
Gaussian dynamical system but generates multinomial observations via the stick-breaking map:

z0|µ0,Σ0 ∼ N (µ0,Σ0), zt|zt−1,A,B ∼ N (Azt−1,B), xt|zt,C ∼ Mult(Nt,πSB(Czt)),

where zt ∈ RD is the system state at time t and xt ∈ NK are the multinomial observations.
We suppress notation for conditioning on A, B, C, µ0, and Σ0, which are system parameters of
appropriate sizes that are given conjugate priors. The logistic normal multinomial LDS (LNM-LDS)
is defined analogously but uses πLN in place of πSB.

To produce a Gibbs sampler with fully conjugate updates, we augment the observations with
Pólya-gamma random variables ωt,k. As a result, the conditional state sequence z1:T |ω1:T ,x1:T

is jointly distributed according to a Gaussian LDS in which the diagonal observation potential at
time t is N (Ω−1t κ(xt)|Czt,Ω−1t ). Thus the state sequence can be jointly sampled using off-
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the-shelf LDS software, and the system parameters can similarly be updated using standard al-
gorithms. The only remaining update is to the auxiliary variables, which are sampled according to
ωt|zt,C,x ∼ PG(N(xt),Czt).

We compare the SBM-LDS and the Gibbs sampling inference algorithm to three baseline methods:
an LNM-LDS using pMCMC and ancestor resampling [16] for inference, an HMM using Gibbs
sampling, and a “raw” LDS which treats the multinomial observation vectors as observations in
RK as in [11]. We examine each method’s performance on each of three experiments: in modeling
a sequence of 682 amino acids from human DNA with 22 dimensional observations, a set of 20
random AP news articles with an average of 77 words per article and a vocabulary size of 200
words, and an excerpt of 4000 words from Lewis Carroll’s Alice’s Adventures in Wonderland with
a vocabulary of 1000 words. We reserved the final 10 amino acids, 10 words per news article, and
100 words from Alice for computing predictive likelihoods. Each linear dynamical model had a 10-
dimensional state space, while the HMM had 10 discrete states (HMMs with 20, 30, and 40 states
all performed worse on these tasks).

Figure 4 (left panels) shows the predictive log likelihood for each method on each experiment, nor-
malized by the number of counts in the test dataset and relative to the likelihood under a multinomial
model fit to the training data mean. For the DNA data, which has the smallest “vocabulary” size, the
HMM achieves the highest predictive likelihood, but the SBM-LDS edges out the other LDS meth-
ods. On the two text datasets, the SBM-LDS outperforms the other methods, particularly in Alice
where the vocabulary is larger and the document is longer. In terms of run time, the SBM-LDS is
orders of magnitude faster than the LNM-LDS with pMCMC (right panel) because it mixes much
more efficiently over the latent trajectories.

6 Related Work

The stick-breaking transformation used herein was applied to categorical models by Khan et al. [17],
but they used local variational bound instead of the Pólya-gamma augmentation. Their promising
results corroborate our findings of improved performance using this transformation. Their general-
ized expectation-maximization algorithm is not fully Bayesian, and does not integrate into existing
Gaussian modeling and inference code as easily as our augmentation.

Conversely, Chen et al. [5] used the Pólya-gamma augmentation in conjunction with the logistic
normal transformation for correlated topic modeling, exploiting the conditional conjugacy of a single
entry ψk |ωk,ψ¬k with a Gaussian prior. Unlike our stick-breaking transformation, which admits
block Gibbs sampling over the entire vector ψ simultaneously, their approach is limited to single-
site Gibbs sampling. As shown in our correlated topic model experiments, this has dramatic effects
on inferential performance. Moreover, it precludes analytical marginalization and integration with
existing Gaussian modeling algorithms. For example, it is not immediately applicable to inference
in linear dynamical systems with multinomial observations.

7 Conclusion

These case studies demonstrate that the stick-breaking multinomial model construction paired with
the Pólya-gamma augmentation yields a flexible class of models with easy, efficient, and compo-
sitional inference. In addition to making these models easy, the methods developed here can also
enable new models for multinomial and mixed data: the latent continuous structures used here to
model correlations and state-space structure can be leveraged to explore new models for interpretable
feature embeddings, interacting time series, and dependence with other covariates.
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