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Abstract—Cardiovascular variables such as heart rate (HR)
and blood pressure (BP) are regulated by an underlying control
system, and therefore the time series of these vital signs exhibit
rich dynamical patterns of interaction in response to external
perturbations (e.g., drug administration) as well as pathological
states (e.g., onset of sepsis and hypotension). A question of interest
is whether “similar” dynamical patterns can be identified across
a heterogeneous patient cohort, and be used for prognosis of
patients’ health and progress. In this work, we used a switching
vector autoregressive (SVAR) framework to systematically learn
and identify a collection of vital sign time series dynamics, which
are possibly recurrent within the same patient and may be shared
across the entire cohort. We show that these dynamical behaviors
can be used to characterize the physiological “state” of a patient.
We validate our technique using simulated time series of the
cardiovascular system, and human recordings of HR and BP
time series from an orthostatic stress study with known postural
states. Using the HR and BP dynamics of an intensive care unit
(ICU) cohort of over 450 patients from the MIMIC II database,
we demonstrate that the discovered cardiovascular dynamics are
significantly associated with hospital mortality (dynamic modes
3 and 9, p = 0.001, p = 0.006 from logistic regression after
adjusting for the APACHE scores). Combining the dynamics of
BP time series and SAPS-I or APACHE-III provided a more
accurate assessment of patient survival/mortality in the hospital
than using SAPS-I and APACHE-III alone (p = 0.005 and p =
0.045). Our results suggest that the discovered dynamics of vital
sign time series may contain additional prognostic value beyond
that of the baseline acuity measures, and can potentially be used
as an independent predictor of outcomes in the ICU.

Index Terms—Switching Linear Dynamical Systems, Physio-
logical Control Systems, Intensive Care Unit

I. INTRODUCTION

Modern clinical data acquisition systems are capable of
continuously monitoring and storing measurements of patient
vital signs, such as heart rate (HR) and blood pressure (BP),
over multiple days of hospitalization [1]. Despite this con-
tinuous feed of data, commonly used acuity scores, such as
APACHE and SAPS [2], [3], [4], [5], are based on snap-shot
values of these vital signs, typically the worst values during
a 24 hours period. However, physiologic systems generate
complex dynamics in their output signals that reflect the state
of the underlying control systems [6], [7], [8]. The objective
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of the current investigation is to consider an approach to the
analysis of critical care bed-side monitoring that is based on
the dynamical behaviors of vital sign time series.

The time series of vital signs (e.g., heart rate, blood
pressure) are multidimensional, high resolution (from once
a second to once a minute), highly coupled due to presence
of physiological feedback loops within the body [8], and re-
markably nonstationary as a result of internally and externally-
induced changes in the state of the underlying control systems.
For instance, time series of BP can exhibit oscillations on the
order of seconds (e.g., due to the variations in sympathovagal
balance), to minutes (e.g., as a consequence of fever, blood
loss, or behavioral factors), to hours (e.g., due to humoral
variations, sleep-wake cycle, or circadian effects) [9], [10]. A
growing body of literature is pointing to the clinical utility of
vital signs time series dynamics to inform prognosis [11], [12],
[13], [14], [15], [16], [17], and to provide early predictors of
potentially life-threatening conditions in the ICU [18].

Techniques for modeling and analysis of cardiovascular
and respiratory time series can be broadly classified into
linear mechanistic models [19], [20] and nonlinear descriptive
indices [21], [6], [7]. The linear techniques commonly used
(often based on variants of autoregressive modeling) have
the advantage of revealing the individual relationships among
the observed variables (e.g., the non-invasive measures of
baroreflex gain describes the relationship between HR and BP,
excluding the possible influence of respiration). On the other
hand, nonlinear indices of complexity are capable of capturing
a richer set of dynamical behaviors, with less emphasis on
physiological interpretability in terms of specific underlying
mechanisms.

In this work, we assume that although the underlying
dynamical system may be nonlinear and nonstationary and
the stochastic noise components can be non-Gaussian, the
dynamics can be approximated by a mixture of linear dy-
namical systems. Each such linear “dynamic” (or mode) is
a time-dependent rule that describes how the future state of
the system evolves from its current state, centered around a
given system equilibrium point. Therefore, an ideal algorithm
would be able to identify time series segments that follow a
“similar” dynamic, and would switch to a different mode upon
a change in the state of the underlying system.

To formalize these objectives, we employed a switching
vector autoregressive (SVAR) framework [22], [23]. Given a
collection of time series from a cohort, the proposed SVAR
framework allows for simultaneous learning of the underlying
dynamic behaviors or modes, and segmentation of the time
series in terms of the most likely dynamic describing the
time series evolution at any given point in time. The proposed
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framework enables characterization of patients in terms of the
dynamical modes (e.g., the average time spent within the dif-
ferent modes), and can potentially be used to capture changes
in the underlying cardiovascular control systems of human
subjects in response to internal (such as onset of infection) and
external perturbations (such as postural changes). Furthermore,
we hypothesize that when applied to vital sign time series of
patients in a critical care setting, the proposed technique can
be used to discover dynamical modes with prognostic values
for predicting clinical outcomes of interests.

A preliminary version of this work was presented at the 34th
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC ’12) [14]. Here we
extend on our previous work to include a series of validation
studies, and a more comprehensive assessment of the utility
of the time series dynamics within the ICU.

The rest of the paper is organized as follows. We validated
the proposed technique using HR and BP time series from a
simulation data set, and a human laboratory study of subjects
undergoing a tilt-table test, where the timing of the occurrence
of the different dynamics and the sharing of the dynamics
across multiple time series/subjects were known a priori. To
test the prognostic value of the discovered vital sign dynamics,
we applied the proposed approach to the heart rate (HR) and
blood pressure (BP) dynamics of an ICU cohort from the
MIMIC II database [1] during the first 24 hours of their ICU
stays, and tested whether cardiovascular dynamics during the
first 24 hours of ICU admission are predictive of survival and
mortality after adjusting for the existing acuity scores, such as
SAPS-I and APACHE.

II. MATERIALS AND METHODS

This section describes the utilized datasets, as well as the
proposed technique for discovery of shared dynamics among
patients, and assessment of risks and outcomes.

A. Datasets

1) Cardiovascular Simulation: We simulated a cardiovas-
cular control system with bivariate time series of HR and BP.
The model is based on a delay recruitment model of HR
and BP regulation, as described in Fowler and McGuinness
[24] and McSharry et al. [25]. The model included a coupled
system of nonlinear delayed differential equations, controlling
HR and BP, with respiration as an exogenous input. We
simulated 10 different multivariate time series of HR and
mean arterial BP, each including three different dynamics
that become dominant in a random order and last for a
variable length of time. The three dynamics (color-coded as
red, blue, and black, respectively, in Fig. 1) approximate
aging-related autonomic changes; a progressive reduction in
parasympathetic gain (from 0.40 to 0.13 to 0.07 in normalized
units; see [24]) and an increase in sympathetic delay (from 3 to
5 seconds). To be consistent, we used the same preprocessing
step as the tilt-table experiment to remove the steady-state
baseline and any oscillation in the time series slower than 100
beats/cycle (see below for details).

2) Tilt-Table Experiment: Time series of HR and BP were
acquired from 10 healthy subjects (five males, five females)
undergoing a tilt-table test of orthostatic tolerance [26], [27].
The mean age was 28.7 ± 1.2 years. The details of the protocol
are described in Heldt et al. [27]. Briefly, subjects were placed
in a supine position. Tilting was performed from horizontal
position to vertical position and back to supine. The study
was approved by MIT’s Committee on the Use of Humans
as Experimental Subjects and the Advisory Board of the
MIT-MGH General Clinical Research Center [27]. Volunteers
gave written, informed consent prior to participation in the
study. Since we were interested in the dynamics of interaction
between HR and BP in the frequency range pertinent to
sympathetic and parasympathetic regulation [28], time series
of HR and BP were high-pass filtered to remove the steady-
state baseline and any oscillation in the time series slower
than 100 beats/cycle. This filtering was done using a 7th
order Butterworth digital filter with cutoff frequency of 0.01
cycles/beat. Example time series from before and after filtering
are shown in Fig. 2.

3) MIMIC II Dataset: The MIMIC II database [1], publicly
available via PhysioNet [29], includes clinical (laboratory
values, IV medications, etc.) and physiological data (heart rate,
blood pressure, oxygen saturation, etc.) collected from the
bedside monitors (Component Monitoring System Intellivue
MP-70; Philips Healthcare, Andover, MA) in ICUs of the
Beth Israel Deaconess Medical Center (BIDMC) in Boston.
The MIMIC II waveform database (version 2) includes ap-
proximately 4,000 records of high resolution physiological
waveforms of adult ICU patients with associated minute-
by-minute (averages of the calculated numerics during the
previous minute) vital sign trends. Data collection for the
MIMIC II database was approved by the Institutional Review
Boards of BIDMC and the Massachusetts Institute of Technol-
ogy (Cambridge, MA). Individual patient consent was waived
because the study did not impact clinical care and protected
health information was de-identified [1].

This study includes adult patients from the MIMIC II
waveform database with at least 8 hours of continuous minute-
by-minute heart rate and invasive arterial BP trends during
the first 24 hours in the ICU. Patients with more than 15%
of missing or invalid samples (i.e., outside physiologically
plausible bounds of 20 to 200 mmHg for mean pressures) were
excluded from this study, as were patients with missing SAPS I
and APACHE scores. The data set contains over 9,000 hours of
minute-by-minute heart rate and invasive mean arterial blood
pressure measurements (over 20 hours per patient on average)
from 453 adult patients collected during the first 24 hours in
the ICU. HR and BP time series were detrended. Gaussian
noise was used to fill in the missing or invalid values. The
median age of this cohort was 69 with an inter-quartile range
of (57, 79). 59% of the patients were male. Approximately
15% (67 out of 453) of patients in this cohort died in the
hospital; 28-day mortality of this cohort was approximately
19% (85 out of 453). Distributions of the 453 patients in
care units are 21% coronary care unit (CCU), 42% Cardiac
Surgery Recovery Unit (CSRU), 26% Medical Intensive Care
Unit (MICU), 12% Surgical Intensive Care Unit (SICU).
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(a) Simulated subject 1
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(b) Simulated subject 2
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(c) Simulated subject 3

Fig. 1. Simulation study of the cardiovascular system. Three examples (out of the 10 simulated time series) of HR and BP (after filtering) are shown in
panels A, B and C. In each case, the actual dynamics are color coded. The horizontal red lines show the inferred segmentation. The algorithm consistently
assigned modes 4, and 3 to the dynamics color-coded as red and blue respectively across all the simulated time series. The black dynamics are represented
by modes 1 and 2.

B. Switching Vector Autoregressive Modeling of Cohort Time
Series

Our approach to discovery of shared dynamics among pa-
tients is based on the switching vector autoregressive (SVAR)
model [22]. For the n-th patient (n = 1 · · ·N ), let y(n)

t be a
M×1 vector of observed values of the vital signs at time t (t =
1 · · ·T (n)). We assume that there exists a library of K possible
dynamics or modes; a set of multivariate autoregressive model
coefficient matrices {A(k)

p }Kk=1 of size M ×M , with maximal
time lag p = 1 · · ·P , and the corresponding noise covariances
{Q(k)}Kk=1. Let st be a switching variable, indicating the
active dynamic mode at time t, and evolving according to a
Markovian dynamic with initial distribution π(n) and a K×K
transition matrix Z. Following these definitions, an SVAR
model for the n-th patient is defined as:

y
(n)
t =

P∑
p=1

A
(s

(n)
t )

p y
(n)
t−p + w(s

(n)
t ) , (1)

where the fluctuation term w(s
(n)
t ) is assumed Gaussian dis-

tributed with covariance Q(s
(n)
t ). A collection of related time

series can be modeled as switching between these dynamic
behaviors which describe a locally coherent linear model that
persists over a segment of time. However, in practice we
neither know the set of switching variables (i.e., segmentation
of the time series) nor the modes. In this work, we per-
form expectation-maximization (EM) to find the maximum-
likelihood set of model parameters, as well as a factored
estimate of the posterior distribution over the latent switching
variables. A comprehensive treatment of the EM algorithm
for SVAR is presented in Murphy (1998) [22]. Briefly, EM
is a two-pass iterative algorithm: (1) in the expectation (E)
step we obtain the expected values of the latent switching
variables {s(n)

t }Tt=1 using a forward-backward algorithm [22],
and (2) in the maximization (M) step we update all the
model parameters {A(k)

p }, {Q(k)}, the Markov dynamics Z
and the initial conditions π(n) that maximize the expected
complete data log likelihood. In our implementation of the EM
algorithm, we achieve shared dynamics by pooling together
all subjects’ inferred variables in the M step. Iteration through

several steps of the EM algorithm results in learning a set of
K shared modes and a global transition matrix Z for all the
patients.

For the simulated and the tilt data sets, we modeled the beat-
by-beat HR/BP time series as a switching AR(5) process to
model most of the parasympathetic responses and at least some
of the sympathetic effects, without introducing an unduly com-
plex model. Minute-by-minute BP time series from MIMIC
II were modeled as a switching AR(3) process to capture a
real oscillation and a possible trend per mode. The number of
dynamic modes (K=20) was determined using the Bayesian
Information Criterion (BIC) [30]. Briefly, we computed the
BIC scores from switching-VAR models using 5 to 30 modes.
Results presented were based on the model with the minimum
BIC scores (20 modes).

1) Parallel Computation for Scalable Learning: One of the
advantages of the proposed technique is its scalability to hun-
dreds or thousands of patients, due to the parallel implementa-
tion of the inference step of the SVAR learning algorithm via
Expectation-Maximization [22]. This parallelization strategy is
effective since the majority of the computational cost of the
SVAR training is in running the forward-backward algorithm,
which can be done in parallel for each patient time series.
We used MatLab’s parallel computation toolbox in association
with 120 nodes on our computer cluster to perform a 10 fold
cross-validated study (12 cores per fold). Ten SVAR models
were learned on the training set of each of the folds, followed
by mapping the corresponding mode proportions to outcomes
(e.g., hospital mortality) using logistic regression. Next, mode
assignments of time series in the test set of each fold were
inferred based on the modes learned from the corresponding
training set (by running only the inference), and the regression
weights from the training fold were used to predict outcomes.

C. Evaluation Methods and Statistical Analysis

Let us define a mode proportion MP
(n)
k as the proportion of

time the n-th patient spends within the k-th mode. Given the
maximum expected log-likelihood estimates of the switching
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Fig. 2. Tilt-table study modeled using four dynamic modes - 1 (Blue), 2 (Red), 3 (Black), 4 (Purple). Two examples out of the 10 recordings of HR and BP
from the tilt-table experiment are shown in panels a and b. Panels c and d show a zoomed in 7-minute recording of HR and BP while the subjects transition
to/from supine to non-supine positions after a fast tilt procedure. Actual values are in gray (Y-axis on left) and filtered values (Y-axis on right) are color-coded
based on the inferred dynamical modes. Note that subjects 1 and 2 shared the same inferred non-supine dynamics (in red); the algorithm consistently assigns
the red mode to the non-supine position for both subjects. The supine position for subjects 1 and 2 are captured by the modes in blue and black respectively.
The purple mode seems to capture the high-frequency noise components of the time series. In each case, annotations for the actual tilt procedures performed
are plotted as horizontal bars on the bottom of each figure and are color coded (green to cyan: slow tilt up and down to supine; red to pink: rapid tilt up and
down to supine; yellow: stand up and back to supine).

variables st from the EM algorithm, we have

MP
(n)
k =

1
T (n)

T (n)∑
t=1

Prob(s(n)
t = k) (2)

For classification and prediction purposes, we characterize
each time series with its corresponding mode proportion (a
1×K feature-vector), and use a logistic regression classifier
to make predictions about the outcome variables of interest.
For illustration of the algorithm’s segmentation performance,
each time series sample is assigned to the dynamic mode with
the maximum posterior probability.

1) Time Series Classification and Outcome Prediction:
For the simulated and the tilt-table experiment, we used the
mode proportions within each segment (e.g., supine vs. non-
supine) as inputs to a logistic regression classifier, and report
the classification performance in discriminating between (1)
the three different dynamics (corresponding to different aging-
related autonomic changes) in the simulated dataset, and (2)
two different postural positions (supine vs. non-supine) in the
tilt data set.

To assess the predictive power of the dynamical modes, we
performed a 10-fold cross-validation study. Ten SVAR models
were learned on the training set of each of the folds, followed

by mapping the corresponding mode proportions to outcomes
(e.g., hospital mortality) using logistic regression. Next, mode
assignments of time series in the test set of each fold was
inferred based on the modes learned from the corresponding
training set (by running only the inference or the E-step),
and the regression weights from the training fold was used
to predict outcomes. We compared the mortality prediction
performance of our approach using the mode proportion from
the top ten most common dynamic modes with the existing
acuity metrics, SAPS I [2], APACHE III [4], and APACHE IV
[5]. Comparison of AUCs was based on the method described
in [31].

2) MIMIC Association Analysis: We used univariate and
multivariate logistic regressions to examine the associations
between dynamic mode proportions and hospital mortality.
We built a separate multivariate logistic regression model
for each of the discovered dynamic modes, with the mode
proportion as the primary predictive variable, and APACHE
IV as a covariate. For each mode, we reported its p value,
odds ratio (OR, with 95% confidence interval), and adjusted
OR (after including APACHE IV as a covariate). The Hosmer-
Lemeshow p values (HL p values) were reported to assess the
model fit. The odds ratios were per 10% increase in the mode
proportion. Two-sided p values less than 0.05 were considered



2168-2194 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JBHI.2014.2330827, IEEE Journal of Biomedical and Health Informatics

statistically significant. The analysis was performed to quantify
the mortality risk associated with each dynamic mode; modes
with significant (p < 0.05) associations with mortality were
established as either low-risk (OR < 1), or high-risk (OR >
1) dynamics depending on their odds ratios. Dynamic modes
without statistically significant associations with mortality
were neutral modes. Test of statistical significance was based
on p-values after correcting for the false discovery rate (FDR)
using the technique described in [32].

III. RESULTS

A. Simulated Study

Fig. 1 shows two examples of simulated time series with the
inferred segmentation. In all 10 simulated cases the algorithm
was able to divide each time series into distinct segments
corresponding to different underlying actual dynamics. The
sharing of the dynamics is consistent across the different time
series. Using the mode proportion from each segment for
multi-label classification, the algorithm achieved classification
accuracy of 100%.

B. Tilt-table Experiment

Fig. 2 shows the segmentation results for two subjects. Note
that the two subjects shared the same inferred non-supine
dynamics (in red); the algorithm consistently assigns the red
mode to the non-supine position for both subjects. Application
of logistic regression with 10-fold cross-validation yielded a
median AUC of 1.00 with an interquartile range of (0.98,
1.00).

C. MIMIC II Database

1) Mortality Prediction: Table I evaluates the prognostic
power of heart rate and blood pressure dynamic features
(HRdyn and BPdyn). SAPS I, APACHE III, and APACHE IV
are used as the baselines. Median AUCs (from 10-fold cross
validation) and the interquartile range are shown. Note that
the blood pressure dynamics out-performed both the heart rate
and heart rate and blood pressure combined dynamic features.
Subsequent analyses focus on the predictive power of the
blood pressure dynamics in comparison to the baseline. For
each baseline, we show the performance from the baseline
alone, and the combined approach (combining blood pressure
dynamics and the baseline).

Application of ten-fold cross-validation demonstrated that
dynamic features from blood pressure alone achieved a median
AUC of 0.70, comparable to 0.65 from SAPS I. In compari-
son, using standard deviation of mean arterial blood pressure
resulted in a median AUC (IQR) of 0.55 (0.43, 0.63).

Combining dynamic blood pressure features with SAPS I
resulted in an improved prediction power both in hospital mor-
tality prediction (p = 0.005) and 28-day mortality prediction
(p = 0.002). Combining dynamic features with APACHE III
significantly out-performed APACHE III alone (p = 0.045)
with an improvement in median AUC from 0.80 to 0.84
in hospital mortality prediction. These results indicate that

Hosp. Mortality 28-Days Mortality
(AUC) (AUC)

HRdyn 0.59 (0.54, 0.68) 0.61 (0.51, 0.67)
BPdyn/HRdyn 0.64 (0.61, 0.71) 0.65 (0.64, 0.68)

BPdyn 0.70 (0.67, 0.77) 0.66 (0.61, 0.73)
SAPS I 0.65 (0.59, 0.71) 0.64 (0.56, 0.70)

BPdyn+SAPS I 0.77 (0.69, 0.82) 0.71 (0.69, 0.79)
APACHE III 0.80 (0.70, 0.84) 0.79 (0.65, 0.84)

BPdyn+APACHE III 0.84 (0.79, 0.88) 0.79 (0.76, 0.86)
APACHE IV 0.82 (0.77, 0.85) 0.83 (0.74, 0.86)

BPdyn+APACHE IV 0.85 (0.80, 0.87) 0.82 (0.81, 0.88)

TABLE I
PERFORMANCE OF MORTALITY PREDICTORS.

the dynamic features from vital signs contain complementary
information to the SAPS I and APACHE III scores.

State-of-the-art risk score APACHE IV achieved better
prediction performance than the BP dynamic features alone
(p = 0.008). Adding BP dynamics to APACHE IV, yielded
slight performance improvement from a median AUC of 0.82
to 0.85, however, the performance gain was not statistically
significant.

2) Association Analysis: Table II presents logistical regres-
sion analyses to test the associations between the proportion
of time patients spent in each of the top ten most common BP
dynamics and hospital mortality. See Fig. 3 for illustrations
of these dynamic modes. Dynamic modes were numbered
based on their prevalence across the entire cohort (i.e. mode
1 is the most common dynamic mode). Our results indicate
that six of the modes had significant associations (after FDR
correction) with hospital mortality. Specifically, two dynamic
modes (modes 3 and 5) were significant “high-risk” modes
(p < 0.001, p < 0.001) in which increased proportions of
time in these modes were associated with higher hospital
mortality with odds ratios 1.81 (1.41, 2.32), 1.36 (1.15, 1.61)
respectively.

Dynamic modes 1, 9, 7, 2 were “low-risk” modes in
which increasing proportions of time in these modes were
significantly associated with a decreased risk of hospital
mortality, with odds ratios less than one. Table II lists the AR
coefficients and covariances of the two high-risk and four low-
risk dynamic modes, as well as their respective associations
with hospital mortality. Note that the high-risk modes appear
to correspond to less variability in their dynamics.

For the multivariate analysis (right panel in Table II), each
row is a separate multivariate model, in which the mode
proportion for a given target mode is the primary predictive
variable, and APACHE IV is added as a control variable
in the multivariate model. Results from multivariate logistic
regression indicate that two of the modes (modes 3 and 9)
remain significant predictors of patients’ outcome even after
adjustment for APACHE IV scores (p = 0.001, p = 0.006),
indicating that the proportion of time patients spent in these
two dynamic modes during the first 24 hours in the ICU are
independent risk predictors of hospital mortality.

3) Example Time Series of Patients with Estimated Mortal-
ity Risks Over Time: Fig. 3 shows examples of low-risk and
high-risk dynamical modes learned using the SVAR technique
(see Table II for the odds-ratio associated with each mode).
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Mode AR Coef Cov. P-Val OR(95%CI) Adjusted P-Val Adjusted OR(95%CI) HL PVAL
3 (0.66, 0.22, 0.12) 0.58 < 0.001 1.81 (1.41, 2.32) 0.001 1.60 (1.21 2.11) 0.64
5 (1.00, 0.00, -0.00) 0.22 < 0.001 1.36 (1.15, 1.61) 0.426 1.08 (0.89 1.32) 0.16
1 (0.66, 0.16, 0.17) 2.69 0.002 0.59 (0.42, 0.82) 0.489 0.88 (0.62 1.26) 0.54
9 (1.50, -0.65, 0.06) 7.26 0.002 0.25 (0.10, 0.62) 0.006 0.26 (0.10 0.68) 0.80
7 (1.00, -0.01, -0.00) 3.46 0.003 0.30 (0.13, 0.67) 0.124 0.54 (0.25 1.18) 0.58
2 (0.79, 0.05, 0.12) 8.81 0.005 0.65 (0.48, 0.88) 0.265 0.84 (0.62 1.14) 0.69
10 (1.05, -0.01, -0.02) 0.71 0.032 2.95 (1.10, 7.94) 0.791 1.18 (0.36 3.88) 0.07
8 (0.44, 0.30, 0.24) 1.27 0.373 1.18 (0.82, 1.69) 0.318 1.22 (0.82 1.82) 0.22
4 (0.96, -0.01, 0.04) 1.31 0.417 0.81 (0.48, 1.36) 0.887 0.96 (0.53 1.72) 0.02
6 (0.92, -0.10, 0.07) 46.70 0.419 0.83 (0.53, 1.30) 0.658 0.90 (0.57 1.43) 0.08

TABLE II
ASSOCIATIONS OF BP DYNAMIC MODES AND HOSPITAL MORTALITY.

(a) High-risk modes (b) Low-risk modes (c) Neutral modes

Fig. 3. Discovered dynamic modes of mean arterial blood pressure of 453 patients during the first 24-hours in the ICU. Figure shows the top 10 most
common dynamic modes, simulated using the AR coefficients from each dynamic mode. High-risk dynamic modes (from left to right): 3 (Magenta), 5 (Red).
Low-risk dynamic modes: 1 (Violet), 9 (Cyan), 7 (Blue), 2 (Green). Neutral dynamic modes: 10 (Brown), 8 (Orange), 4 (Light Green), 6 (Royal Blue). All
modes were simulated and plotted with the same time duration (150 minutes) and amplitude scale.

Blood pressure time series of four patients are presented in
Fig. 4 panels (a) and (b). Hourly risk scores (dark green lines)
were computed as the probability of death from the logistic
function using a sliding window of six hours to illustrate that
these risk scores could be updated on a continuous basis for
real-time monitoring purposes.

Panel (a) shows two of the patients with the highest risk
scores (within the test set) at the end of the 24-hour period;
both patients died in the hospital. Panel (b) shows two patients
with a decreasing trend in their risk scores during their first
day in the ICU; both patients survived the hospital stay.
All four patients were from the same test set, with mode
assignment inferred based on dynamic modes learned from
the corresponding training set. Note that as time progresses,
patients in panel (a) tend to spend more time in the high-
risk dynamic modes (mode 3 in magenta, mode 5 in red);
their estimated mortality risks rise accordingly over time.
In contrast, panel (b) patients show a decreasing trend in
mortality risks as they transition to lower-risk dynamic modes
over time.

IV. DISCUSSION AND CONCLUSIONS

We presented a switching vector autoregressive framework
to systematically learn and identify dynamic behaviors from
vital sign time series within a patient cohort. We demonstrated
that the discovered dynamics may contain prognostic values
and can be used for prediction and tracking of a patient’s
propensity to survive a hospital stay, as well as their 28-
days survival. Interestingly, the BP time series dynamics alone
had a comparable performance to that of the SAPS I score
which uses age and the most extreme values of 13 variables,
including systolic blood pressure, heart rate, temperature,
respiratory rate, urinary output, blood nitrogen, hematocrit,

white blood cell count, serum glucose, serum potassium, serum
sodium, serum bicarbonate, and Glasgow coma score.

Additionally, our results indicate that the blood pressure
dynamics may contain complimentary information to existing
acuity metrics, which assess the health of multiple organ
systems based on a variety of physiological and lab variables.
Specifically, combining the dynamics of BP time series and
SAPS I or APACHE III provided a more accurate assessment
of patient survival/mortality in the hospital (p = 0.005 and
p = 0.045) than using SAPS I and APACHE III alone.

Association analysis of individual dynamic mode and hos-
pital mortality revealed that two of the dynamic modes (modes
3 and 9) remained significant predictors of patients’ outcome
even after adjusting for APACHE IV scores, indicating that
the proportion of time patients spent in these two dynamic
modes during the first 24 hours in the ICU may contain
additional, independent prognostic value beyond that in the
APACHE IV acuity score. Future work remains to investigate
the prognostic power of these discovered dynamic modes using
a larger cohort.

The dynamic features can be calculated in an online manner
without delay, and well before the end of the first 24 hours
of the ICU stay as is required for the standard risk scores.
One possible online deployment strategy is to construct a
library of dynamic modes on archived patient data, and assign
each incoming time series sample (or a sliding window of
samples) to the most likely mode in the library (for instance,
by using the Viterbi algorithm [22], [16]). Recent studies
suggest that therapeutic interventions not only should aim at
maintaining the mean BP within an acceptable range, but
also should direct the patient’s trajectory towards healthy
dynamical regimes with enhanced variability [10] . Thus,
a real-time implementation of the technique presented here
may provide clinicians with a tool for quantification of the
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(a) Patients with the highest ending risk scores at the end of the first day ICU stay. Patients were from MICU (top) and CCU (bottom). Both
patients died in the hospital.
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(b) Patients with decreasing risk scores during their first day ICU stays. Patients were from CSRU (top) and CCU (bottom). Both patients
survived the hospital stay.

Fig. 4. Mortality risk scores and mean arterial blood pressure of four patients during the first 24-hours in the ICU. Samples color-coded by their mode
assignment. Mortality risk scores, computed as the probability of death from the logistic regression, were based on mode proportions from a six-hour sliding
window by stride of one hour; estimated risks were plotted as dark green lines with scale indicated by y-axes on right-side of each graph. Blood pressure
measurements plotted in original units (before de-trending). All four patients were from the same test set, with dynamic modes and logistic regression
parameters learned from the corresponding training set.

effectiveness of such interventions in the ICU.

We showed that changes in the dynamics of HR and BP,
either as a result of an altered underlying control system
(aging-related changes in the simulated data) or due to external
perturbations (positional changes in the tilt-table experiment),
can be captured in an automated fashion. Since the proposed
framework is built on the dynamical systems framework
(which includes the class of vector autoregressive models), the
discovered modes can be used to reveal the oscillations that
are present within the individual time series, and therefore
can be used to extract useful indices of HR and BP variability
(assuming beat-to-beat time series). Moreover, given beat-to-
beat multivariate time-series of vital-signs, one may use the
learned dynamics to derive the directional transfer functions
of the system [8] (e.g., baroreflex control of HR and BP).

Association analysis using the minute-by-minute MIMIC-
II blood pressure time series revealed that the high-risk
modes often correspond to less variable dynamical patterns.
It is interesting to note that such low-frequency variability,

observed at the minute-to-minute scale, is associated with an
enhanced chance of survival, corresponding well to existing
heart rate/blood pressure variability literature using beat-by-
beat vital sign time series [33], [12], [13], [10]. The working
hypothesis of our ongoing research is that the observed dy-
namical patterns are due to patients’ underlying physiology,
patient-specific response to clinical interventions, and mea-
surement artifacts. Future developments of machine learning
techniques should aim at combining time series dynamics with
contextual information pertaining to clinical intervention (ad-
ministration of fluids, pressors, and titration of medications) to
further investigate the clinical and physiological interpretation
of the discovered modes.

The SVAR framework allows for defining a notion of “sim-
ilarity” among multivariate physiological time series based
on their underlying shared dynamics. Therefore, one may
consider two subjects to be similar if their underlying vi-
tal signs time series exhibit similar dynamics in response
to external (e.g., tilting of body) or internal perturbations
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(e.g., onset of blood infection). This approach provides an
improvement over time series similarity measures based on
trend-detection [34], wavelet-based symbolic representations
[35], or Gaussian Mixture modeling [36] due to its compact
representation and sharing of the model parameters within and
across time series. Prior work using a factorial switching linear
dynamical systems for patient monitoring [37] focused on
detection of events associated with artifactual measurements
and pathological states. Our work, in contrast, jointly models
multiple time series across a large patient cohort to identify
phenotypic dynamical patterns for patient outcome prediction.

Although we used mortality as our target outcome, there
are many other physiological events of significant interest,
including timely and successful discontinuation of procedures
such as hemodialysis [38] or mechanical ventilation [39],
as well as prediction of potentially life-threatening clinical
events such as onset of severe sepsis and hypotension [13].
Other short and long-term outcomes such as probability of
readmission to hospital and long-term cognitive impairment
beyond ICU [40] also play an important role in closing the
gap between the critical care medicine, primary care doctors,
and other healthcare providers.

Current and ongoing work involve combining the switching
linear dynamical system framework with all available clinical
data, including lab tests, medication records, and nursing
notes [41] to devise a comprehensive risk score, capable of
integrating clinical data of diverse modality over long temporal
stretches (order of hours to days). This will allow us to
investigate whether continuous patient monitoring based on
vital signs dynamics, and other types of sequential data, can
alert clinicians to deteriorating patient conditions at an earlier
stage than the existing acuity scores, and result in improved
patient care and outcome both within ICU and after hospital
discharge. Such analysis is likely to provide some insight into
the promise of large-scale critical care databases for the future
of medicine.
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