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Abstract

Computing the marginal likelihood (ML) of a model requires marginalizing out all of the
parameters and latent variables, a difficult high-dimensional summation or integration problem.
To make matters worse, it is often hard to measure the accuracy of one’s ML estimates. We
present bidirectional Monte Carlo, a technique for obtaining accurate log-ML estimates on data
simulated from a model. This method obtains stochastic lower bounds on the log-ML using
annealed importance sampling or sequential Monte Carlo, and obtains stochastic upper bounds
by running these same algorithms in reverse starting from an exact posterior sample. The true
value can be sandwiched between these two stochastic bounds with high probability. Using
the ground truth log-ML estimates obtained from our method, we quantitatively evaluate a
wide variety of existing ML estimators on several latent variable models: clustering, a low rank
approximation, and a binary attributes model. These experiments yield insights into how to
accurately estimate marginal likelihoods.

1 Introduction

One commonly used model selection criterion is the marginal likelihood (ML) of the model, or
p(D|Mi), where D denotes the observed data andMi denotes the model class (Kass and Raftery,
1995). Marginal likelihood is an appealing criterion for several reasons. First, it can be plugged
into Bayes’ Rule to compute a posterior distribution over models, a practice known as Bayesian
model comparison:

p(Mi |D) =
p(Mi) p(D|Mi)∑
j p(Mj) p(D|Mj)

.

Second, the ML criterion manages the tradeoff between model complexity and the goodness of
fit to the data. Integrating out the model parameters results in a sophisticated form of Occam’s
Razor which penalizes the complexity of the model itself, rather than the specific parameterization
(MacKay, 1992; Rasmussen and Ghahramani, 2001). Third, it is closely related to description
length (Barron et al., 1998), a compression-based criterion for model selection. Finally, since the
ML can be decomposed into a product of predictive likelihoods, it implicitly measures a model’s
ability to make predictions about novel examples. For these reasons, marginal likelihood is often
the model selection criterion of choice when one is able to compute it efficiently. It is widely
used to compare Gaussian process models (Rasmussen and Williams, 2006) and Bayesian network
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structures (Teyssier and Koller, 2005), where either closed-form solutions or accurate, tractable
approximations are available.

The main difficulty in applying marginal likelihood is that it is intractable to compute for most
models of interest. Computing p(D|Mi) requires marginalizing out all of the parameters and
latent variables of the model, an extremely high-dimensional summation or integration problem. It
is equivalent to computing a partition function, a problem which is #P-hard for graphical models
in general. Much effort has been spent finding ways to compute or approximate partition functions
for purposes of model selection (Kass and Raftery, 1995; Meng and Wong, 1996; Gelman and
Meng, 1998; Neal, 2001a; Murray and Salakhutdinov, 2008; Attias, 2000; Chib, 1995; Murray and
Salakhutdinov, 2009; Skilling, 2006; Wallach et al., 2009). Different partition function estimation
algorithms vary greatly in their accuracy, computational efficiency, and ease of implementation.
Unfortunately, it is often difficult to determine which method to use in a given situation.

ML estimators can give inaccurate results in several ways. Subtle implementation bugs can lead
to extremely inaccurate estimates with little indication that anything is amiss. Most estimators
are based on sampling or optimization algorithms, and a failure to explore important modes of the
posterior can also lead to highly inaccurate estimates. It is common for a particular algorithm to
consistently under- or overestimate the true ML, even when the variance of the estimates appears
to be small (e.g. Neal, 2008).

A major obstacle to developing effective ML estimators, and partition function estimators more
generally, is that it is difficult even to know whether one’s approximate ML estimates are accurate.
The output of an ML estimator is a scalar value, and typically one does not have independent access
to that value (otherwise one would not need to run the estimator). In a handful of cases, such as
Ising models (Jerrum and Sinclair, 1992), one can tractably approximate the partition function to
arbitrary accuracy using specialized algorithms. These models can be used to benchmark partition
function estimators. However, such polynomial-time approximation schemes may not be known
for any models sufficiently similar to the one whose ML needs to be measured. Alternatively, one
can test the estimator on small problem instances for which the partition function can be easily
computed (e.g. Murray and Salakhutdinov, 2008), but this might not accurately reflect how it
will perform on hard instances. It is also common to run multiple estimators and evaluate them
based on their consistency with each other, under the implicit assumption that multiple algorithms
are unlikely to fail in the same way. However, it has been observed that seemingly very different
algorithms can report nearly the same value with high confidence, yet be very far from the true
value (Iain Murray, personal communication).

In this paper, we present bidirectional Monte Carlo, a method for accurately estimating the
ML for data simulated from a model by sandwiching the true value between stochastic upper and
lower bounds. In the limit of infinite computation, the two stochastic bounds are guaranteed to
converge, so one need only run the algorithms for enough steps to achieve the desired accuracy. The
technique is applicable both in the setting of ML estimation (where one integrates out both the
parameters and the latent variables for an entire dataset) and in the setting of held-out likelihood
estimation (where the parameters are fixed and one wants to integrate out the latent variables for
a single data case).

As of yet, we do not know of a way to obtain accurate ML upper bounds on real-world data.
However, the ability to accurately estimate ML on simulated data has several implications. First,
one can measure the accuracy of an ML estimator on simulated data with similar characteristics
to the real-world data. This can give a rough indication of how accurate the results would be
in practice, even though there is no rigorous guarantee. Second, one can use this technique to
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construct a rigorous testbed for quantitatively evaluating ML estimators. This can be used to guide
development of sampling algorithms, and perhaps even to optimize algorithm hyperparameters using
Bayesian optimization (Snoek et al., 2012). Finally, this method also provides a rigorous way to
quantitatively evaluate MCMC transition operators. In particular, the gap between the stochastic
upper and lower bounds is itself a stochastic upper bound on the KL divergence of the distribution
of approximate samples from the true posterior. By testing one’s approximate posterior sampler
on simulated data, one can get a rough idea of how it is likely to perform in practice, at least if one
trusts that the simulated data are sufficiently realistic.

The organization of this paper is as follows. Section 3 provides background on existing ML
estimators which this work builds on. In Section 4, we describe bidirectional Monte Carlo, our
method for sandwiching the marginal likelihood for simulated data. Section 5 describes some
additional ML estimators which we compare in our experiments. Finally, in Section 6, we present
experiments where we used our method to compute ML values on simulated data for three models:
a clustering model, a low rank factorization, and a binary attribute model. We compare a wide
variety of existing ML estimators on these models and conclude with recommendations for how the
ML should be estimated in practice.

2 Preliminaries

Throughout this paper, in some cases it will be convenient to discuss the general partition function
estimation problem, and in other cases it will be more convenient to discuss marginal likelihood
estimation in particular. In the general partition function estimation setting, we have an unnor-
malized probability distribution f over states x ∈ X , and we wish to evaluate the partition function
Z =

∑
x∈X f(x).

When we discuss marginal likelihood in particular, we let y denote the observations, θ denote
the parameters, and z denote the latent variables. (For instance, in a clustering model, θ might
correspond to the locations of the cluster centers and z might correspond to the assignments of
data points to clusters.) For notational convenience, we will assume continuous parameters and
discrete latent variables, but this is not required by any of the algorithms we discuss. One defines
the model by way of a joint distribution which we assume obeys the factorization

p(θ,y, z) = p(θ)p(z |θ)p(y |z,θ) (1)

= p(θ)

N∏
i=1

p(zi |θ) p(yi |zi,θ) (2)

We are interested in computing the marginal likelihood

p(y) =

∫
p(θ)

N∏
i=1

∑
zi

p(zi |θ) p(yi |zi,θ) dθ. (3)

Marginal likelihood estimation can be seen as a special case of partition function estimation,
where x = (θ, z), and f is the joint distribution p(θ, z,y) viewed as a function of θ and z.
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3 Background

Our method for sandwiching the marginal likelihood builds closely upon prior work on marginal
likelihood estimation, in particular annealed importance sampling (AIS) and sequential Monte Carlo
(SMC). This section reviews the techniques which we use in our procedure. Discussion of alternative
ML estimators is deferred to Section 5.

3.1 Likelihood weighting

Partition function estimators are often constructed from simple importance sampling (SIS). In
particular, suppose we wish to compute the partition function Z =

∑
x f(x). We generate a

collection of samples x(1), . . . ,x(K) from a proposal distribution q whose support contains the
support of p, and compute the estimate

Ẑ =
1

K

K∑
k=1

w(k) ,
1

K

K∑
k=1

f(x(k))

q(x(k))
. (4)

This is an unbiased estimator of Z, because of the identity

Ex∼q

[
f(x)

q(x)

]
= Z. (5)

Likelihood weighting is a special case of this approach where the prior is used as the proposal
distribution. In particular, for estimating the held-out likelihood of a directed model, latent vari-
ables z(1), . . . , z(K) are sampled from p(z;θ). By inspection, the weight w(k) is simply the data
likelihood p(y |z(k);θ). This method can perform well if the latent space is small enough that the
posterior can be adequately covered with a large enough number of samples. Unfortunately, like-
lihood weighting is unlikely to be an effective method for estimating marginal likelihood, because
the model parameters would have to be sampled from the prior, and the chance that a random set
of parameters happens to model the data well is vanishingly small.

3.2 The harmonic mean of the likelihood

The harmonic mean estimator of Newton and Raftery (1994) is another estimator based on SIS.
Here, the posterior is used as the proposal distribution, and the prior as the target distribution. By
plugging these into Eqn. 5, we obtain:

Eθ,z∼p(θ,z |y)

[
p(θ, z)

p(θ, z,y)

]
=

1

p(y)
. (6)

This suggests the following estimator: draw samples {θ(k), z(k)}Kk=1 from the posterior p(θ, z |y),

and compute weights w(k) = p(θ(k), z(k))/p(θ(k), z(k),y) = 1/p(y |θ(k), z(k)). The weights w(k)

are unbiased estimators of the reciprocal of the marginal likelihood. The ML estimate, then, is
computed from the harmonic mean of the likelihood values:

p̂(y) =
K∑K

k=1 w
(k)

=
K∑K

k=1 1/p(y |θ(k), z(k))
. (7)

While simple to implement, this estimator is unlikely to perform well in practice (Newton and
Raftery, 1994; Neal, 2008).
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Algorithm 1 Annealed Importance Sampling

for k = 1 to K do
x1 ← sample from p1(x)
w(k) ← Z1

for t = 2 to T do
w(k) ← w(k) ft(xt−1)

ft−1(xt−1)

xt ← sample from Tt (x |xt−1)
end for

end for
return Ẑ =

∑K
k=1 w

(k)/K

3.3 Annealed importance sampling

The problem with both likelihood weighting and the harmonic mean estimator is that each one is
based on a single importance sampling computation between two very dissimilar distributions. A
more effective method is to bridge between the two distributions using a sequence of intermediate
distributions. Annealed importance sampling (AIS; Neal, 2001a) is one algorithm based on this
idea, and is widely used for estimating partition functions. Mathematically, the algorithm takes
as input a sequence of T distributions p1, . . . , pT , with pt(x) = ft(x)/Zt, where pT is the target
distribution and p1 is a tractable initial distribution, i.e. one for which we can efficiently evaluate the
normalizing constant and generate exact samples. Most commonly, the intermediate distributions
are taken to be geometric averages of the initial and target distributions: ft(x) = f1(x)1−βtfT (x)βt ,
where the βt are monotonically increasing parameters with β1 = 0 and βT = 1.

The AIS procedure, shown in Algorithm 1, involves applying a sequence of MCMC transition
operators T1, . . . , TT , where Tt leaves pt invariant. The result of the algorithm is a weight w which
is an unbiased estimator of the ratio of partition functions ZT /Z1. Since Z1 is typically known,
Z1w can be viewed as an unbiased estimator of ZT = Z.

For purposes of evaluating marginal likelihood, f1 is the prior distribution p(θ, z), and fT is the
joint distribution p(θ, z,y) (viewed as an unnormalized distribution over θ and z). Because y is
fixed, the latter is proportional to the posterior p(θ, z |y). The intermediate distributions are given
by geometric averages of the prior and the posterior, which is equivalent to raising the likelihood
term to a power less than 1:

ft(θ, z) = p(θ, z) p(y |θ, z)βt . (8)

Note that this form of annealing can destroy the directed factorization structure which is present
in the prior and the joint distribution. Conditional independencies satisfied by the original model
may not hold in the intermediate distributions. Unfortunately, this can make the implementation
of MCMC operators for the intermediate distributions considerably more complicated compared to
the analogous operators applied to the posterior.

AIS can be justified as an instance of SIS over an extended state space (Neal, 2001a). In
particular, the full set of states x1, . . . ,xT−1 visited by the algorithm has a joint distribution
(which we call the forward distribution) represented by:

qfor(x1, . . . ,xT−1) = p1(x1) T2(x2 |x1) · · · TT−1(xT−1 |xT−2). (9)
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We can also postulate a reverse chain, where xT−1 is first sampled exactly from the distribution pT ,
and the transition operators are applied in the reverse order. (Note that the reverse chain cannot
be explicitly simulated in general, since it requires sampling from pT .) The joint distribution is
given by:

qback(x1, . . . ,xT−1) = pT (xT−1) TT−1(xT−2 |xT−1) · · · T2(x1 |x2). (10)

If qfor is used as a proposal distribution for qback, the importance weights come out to:

qback(x1, . . . ,xT )

qfor(x1, . . . ,xT )
=
pT (xT−1)

p1(x1)

T2(x1 |x2)

T2(x2 |x1)
· · · TT−1(xT−2 |xT−1)

TT−1(xT−1 |xT−2)
(11)

=
pT (xT−1)

p1(x1)

f2(x1)

f2(x2)
· · · fT−1(xT−2)

fT−1(xT−1)
(12)

=
Z1

ZT
w, (13)

where w is the weight computed in Algorithm 1 and (12) follows from the reversibility of Tt. Since
this quantity corresponds to an importance weight between normalized distributions, its expectation
is 1, and therefore E[w] = ZT /Z1.

Note also that qback(xT−1) = pT (xT−1). Therefore, AIS can also be used as an importance
sampler for pT :

Eqfor
[wh(xT−1)] =

ZT
Z1

EpT [h(x)] (14)

for any statistic h. (The partition function estimator corresponds to the special case where h(x) =
1.) Ordinarily, one uses the normalized importance weights when estimating expectations.

3.4 Sequential Monte Carlo

Observe that the marginal distribution p(y) can be decomposed into a series of predictive distribu-
tions:

p(y1:N ) = p(y1) p(y2 |y1) · · · p(yN |y1:N−1). (15)

(In this section, we use Matlab-style slicing notation.) Since the predictive likelihood terms can’t be
computed exactly, approximations are required. Sequential Monte Carlo (SMC) methods (del Moral
et al., 2006) use particles to represent the parameters and/or the latent variables. In each step, as
a new data point is observed, the particles are updated to take into account the new information.
While SMC is most closely associated with filtering problems where there are explicit temporal
dynamics, it has also been successfully applied to models with no inherent temporal structure, such
as the ones considered in this work. This is the setting that we focus on here.

SMC is a very broad family of algorithms, so we cannot summarize all of the advances. Instead,
we give a generic implementation in Algorithm 2 where several decisions are left unspecified. In each
step, the latent variables are sampled according to a proposal distribution q, which may optionally
take into account the current data point. (Some examples are given below.) The weights are then
updated according to the evidence, and the model parameters (and possibly latent variables) are
updated based on the new evidence.
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This procedure corresponds the most closely to the particle learning approach of Carvalho et al.
(2010), where z is approximated in the typical particle filter framework, and θ is resampled from
the posterior after each update. Our formulation is slightly more general: since it may not be
possible to sample θ exactly from the posterior, we allow any MCMC operator to be used which
preserves the posterior distribution. Furthermore, we allow z to be included in the MCMC step as
well. Carvalho et al. (2010) do not allow this, because it would require revisiting all of the data
after every sampling step. However, we consider it because it may be advantageous to pay the extra
cost in the interest of more accurate results.

Algorithm 2 leaves open the choice of q(zi |yi,θ(k)), the proposal distribution for the latent
variables at the subsequent time step. The simplest method is to ignore the observations and

sample z
(k)
i from the predictive distribution, i.e.

q(zi |yi,θ(k)) = p(zi |θ(k)). (16)

The particles are then weighted according to the observation likelihood:

w(k) ← w(k)p(yi |z(k)i ,θ(k)). (17)

A more accurate method, used in the posterior particle filter, is to sample z
(k)
i from the posterior:

q(zi |yi,θ(k)) = p(zi |yi,θ(k)). (18)

In this case, the weight update corresponds to the predictive likelihood:

w(k) ← w(k)p(yi |θ(k)) (19)

= w(k)
∑
zi

p(zi |θ(k))p(yi |zi,θ(k)). (20)

Posterior particle filtering can result in considerably lower variance of the weights compared to
standard particle filtering, and therefore better marginal likelihood estimates. (We note that the
posterior particle filter can only be applied to those models for which posterior inference of latent
variables is tractable.)

For simplicity of notation, Algorithm 2 explicitly samples the model parameters θ. However,
for models where θ has a simple closed form depending on certain sufficient statistics of y and z,
it can be collapsed out analytically, giving a Rao-Blackwellized particle filter. The algorithm is the
same as Algorithm 2, except that steps involving θ are ignored and the updates for z and w are
modified:

z
(k)
i ← sample from q(z

(k)
i |y1:i, z

(k)
1:i−1) (21)

w(k) ← w(k) p(z
(k)
i |z

(k)
1:i−1) p(yi |z(k)1:i ,y1:i−1)

q(z
(k)
i |y1:i, z

(k)
1:i−1)

(22)

3.4.1 Relationship with AIS

While SMC is based on a different intuition from AIS, the underlying mathematics is equivalent.
In particular, we discuss the unifying view of del Moral et al. (2006). For simplicity, assume
there is only a single particle, i.e. K = 1. While Algorithm 2 incrementally builds up the latent
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Algorithm 2 Particle learning

for k = 1 to K do
θ(k) ← sample from p(θ)
w(k) ← 1

end for
for i = 1 to T do

for k = 1 to K do
z
(k)
i ← sample from q(zi |yi,θ

(k))

w(k) ← w(k)p(z
(k)
i |θ)p(yi |z(k)i ,θ(k))/q(zi |yi,θ

(k))

(z
(k)
1:i ,θ

(k))← MCMC transition which leaves p(z1:i,θ |y1:i) invariant
end for
if resampling criterion met then

Sample (z
(k)
1:i ,θ

(k)) proportionally to w(k)

S ←
∑K

k=1 w
(k)

for k = 1 to K do
w(k) ← S/K

end for
end if

end for

return Ẑ = 1
K

∑K
k=1 w

(k)

representation one data point at a time, we can imagine that all of the latent variables are explicitly
represented at every step. Recall that AIS was defined in terms of a sequence of unnormalized
distributions ft and MCMC transition operators Tt which leave each distribution invariant. In this
section, t ranges from 0 to T , rather than 1 to T as in Section 3.3.

The intermediate distributions are constructed by including only a subset of the data likelihood
terms:

ft(θ, z) = p(θ)

N∏
i=1

p(zi)

t∏
i=1

p(yi |θ, zi). (23)

This distribution is shown in Figure 1. Since each distribution in the sequence differs from its
predecessor simply by adding an additional observation likelihood term,

ft(θ, z)

ft−1(θ, z)
= p(yt |θ, zt). (24)

The transition operator first samples θ from the conditional distribution p(θ |y1:t, z1:t), and then
resamples zt+1:N from p(zt+1:N |θ).

4 Sandwiching the marginal likelihood

In this section, we first define our notion of stochastic upper and lower bounds. We then describe our
techniques for obtaining accurate stochastic upper and lower bounds on the log marginal likelihood
for simulated data; in combination, these bounds give precise estimates of the true value. Stochastic
lower bounds can be computed using various existing methods, as described in Section 4.1. Our
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Figure 1: The intermediate distribution f2(y, z) = p(θ) p(z |y) p(y1:2 |θ, z).

main technical contribution is a set of techniques for obtaining accurate stochastic upper bounds.
These techniques require an exact sample from the posterior distribution, which one can obtain for
simulated data. As described in Sections 4.2.1 and 4.2.2, the key idea is to run AIS or SMC in
reverse, starting from the exact posterior sample. Since our final log-ML estimates are obtained
by running AIS or SMC both forwards and backwards, we call our approach bidirectional Monte
Carlo (BDMC).1

4.1 Obtaining stochastic lower bounds

One can obtain stochastic lower bounds on the log-ML using a variety of existing algorithms, as
we now outline. In this section, it is more convenient to discuss the general setting of partition
function estimation.

Many partition function estimators, such as SIS (Section 3.1) and AIS (Section 3.3), are unbi-
ased, i.e. E[Ẑ] = Z.2 Since Z can vary over many orders of magnitude, it is often more meaningful
to talk about estimating logZ, rather than Z. Unfortunately, unbiased estimators of Z may corre-
spond to biased estimators of logZ. In particular, they are stochastic lower bounds, in two senses.
First, because ML estimators are nonnegative estimators of a nonnegative quantity, Markov’s in-
equality implies that Pr(Ẑ > aZ) < 1/a. By taking the log, we find that

Pr(log Ẑ > logZ + b) < e−b. (25)

In other words, the estimator is exceedingly unlikely to overestimate logZ by more than a few nats.
One can improve this tail bound by combining multiple independent samples (Gogate et al., 2007),
but in the context of log-ML estimation, an error of a few nats is insignificant.

The other sense in which log Ẑ is a stochastic lower bound on logZ follows from Jensen’s

1While we limit our discussion to exact samples obtained from simulated data, other techniques have also been
proposed for obtaining exact samples. For instance, this can be done for Ising models using coupling from the past
(Propp and Wilson, 1996). BDMC could be used in conjunction with such techniques, without the requirement of
simulated data.

2In this context, unbiasedness can be misleading: because partition function estimates can vary over many orders
of magnitude, it’s common for an unbiased estimator to drastically underestimate Z with overwhelming probability,
yet occasionally return extremely large estimates. (An extreme example is likelihood weighting (Section 3.1), which
is unbiased, but is extremely unlikely to give an accurate answer for a high-dimensional model.) Unless the estimator
is chosen very carefully, the variance is likely to be extremely large, or even infinite.
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inequality:

E[log Ẑ] ≤ logE[Ẑ] = logZ. (26)

In general, we will use the term stochastic lower bound to refer to an estimator which satisfies
Eqns. 25 and 26.

Of course, it is not enough to have a stochastic lower bound; we would also like the estimates to
be close to the true value. Fortunately, AIS and SMC are both consistent, in that they converge to
the correct value in the limit of infinite computation. (For AIS, this means adding more intermediate
distributions (Neal, 2001a); for SMC, it means adding more particles (del Moral et al., 2006).) We
note that it is also possible to (deterministically) lower bound the log-ML using variational Bayes
(discussed in more detail in Section 5.1). However, variational Bayes does not enjoy the same
consistency guarantees as AIS and SMC.

4.2 Obtaining stochastic upper bounds

Heuristically speaking, we would expect good upper bounds to be harder to obtain than good lower
bounds. For a lower bound on the log-ML, it suffices to exhibit regions of high posterior mass. For
an upper bound, one would have to demonstrate the absence of any additional probability mass.
Indeed, while variational upper bounds have been proposed (Wainwright et al., 2002), we aren’t
aware of any practical stochastic upper bounds which achieve comparable accuracy to AIS. But
suppose we are given a hint in the form of an exact posterior sample. Here, we propose methods
which make use of an exact posterior sample to give accurate stochastic upper bounds on the
log-ML.

As discussed in Section 3.2, the harmonic mean estimator (HME) is derived from an unbiased
estimate of the reciprocal of the ML. The arguments of Section 4.1 show that such unbiased estimates
of the reciprocal correspond to stochastic upper bounds on the log-ML. Unfortunately, there are
two problems with simply using the HME: first, if approximate posterior samples are used, the
estimator is not a stochastic upper bound, and in fact can underestimate the log-ML if the sampler
failed to find an important mode. Second, as pointed out by Neal (2008) and further confirmed in
our experiments, even when exact samples are used, the bound can be extremely poor.

For simulated data, it is possible to work around both of these issues. For the issue of finding
exact posterior samples, observe that there are two different ways to sample from the joint distri-
bution p(θ, z,y) over parameters θ, latent variables z, and observations y: On one hand, we can
simulate from the model by first sampling (θ, z) from p(θ, z), and then sampling y from p(y |θ, z).
Alternatively, we can first sample y from p(y), and then sample (θ, z) from the posterior p(θ, z |y).
Since these two processes sample from the same joint distribution, the (θ, z) generated during for-
ward sampling is also an exact sample from the posterior p(θ, z |y). (The Geweke test (Geweke,
2004) is based on the same identity.) In other words, for a simulated dataset, we have available a
single exact sample from the posterior, namely the parameters and latent variables used to generate
the data.3

The other problem with the HME is that the bound can be extremely poor even when computed
with exact samples. This happens because the estimator is based on simple importance sampling
from the posterior to the prior — two very dissimilar distributions in a high-dimensional space. As

3More posterior samples can be obtained by running an MCMC algorithm starting from the original one. However,
the statistics would likely be correlated with those of the original sample. We used a single exact sample for each of
our experiments.
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discussed in Section 3.2, the HME is essentially the mirror image of likelihood weighting, which
is simple importance sampling from the prior to the posterior. Sections 3.3 and 3.4 discussed two
algorithms — annealed importance sampling (AIS) and sequential Monte Carlo (SMC) — which
estimate marginal likelihoods though a series of much smaller importance sampling steps bridging
from the prior to the posterior. The use of many small steps, rather than a single large step,
typically results in far more accurate estimates of the log-ML. This suggests that, in place of the
HME, one should use a series of small importance sampling steps bridging from the posterior to
the prior. We now discuss two particular instantiations of this idea: reverse AIS and the sequential
harmonic mean estimator.

4.2.1 Reverse AIS

In Section 3.3, we discussed an interpretation of AIS as simple importance sampling over an extended
state space, where the proposal and target distributions correspond to forward and backward an-
nealing chains. We noted that that the reverse chain generally could not be sampled from explicitly
because it required an exact sample from pT (x) – in this case, the posterior distribution. However,
for simulated data, the reverse chain can be run starting from an exact sample as described above.
The importance weights for the forward chain using the backward chain as a proposal distribution
are given by:

qfor(x1, . . . ,xT )

qback(x1, . . . ,xT )
=
ZT
Z1

w, (27)

where

w ,
fT−1(xT−1)

fT (xT−1)
· · · f1(x1)

f2(x1)
. (28)

As in Section 3.3, because Eqn. 27 represents the importance weights between two normalized
distributions, its expectation must be 1, and therefore E[w] = Z1/ZT . Since p1 is chosen to be the
prior, Z1 = 1, and we obtain the following estimate of the ML:

p̂back(y) =
K∑K

k=1 w
(k)
. (29)

This estimator corresponds to a stochastic upper bound on log p(y), for reasons which mirror
those given in Section 4.1. By Markov’s inequality, since E[1/p̂back(y)] = 1/p(y),

Pr (log p̂back(y) < log p(y)− b) = Pr

(
1

p̂back(y)
>

eb

p(y)

)
< e−b. (30)

Also, by Jensen’s inequality,

E[log p̂back(y)] = −E
[
log

1

p̂back(y)

]
≥ − logE

[
1

p̂back(y)

]
= − log

1

p(y)
= log p(y) (31)

Since this estimator is an instance of AIS, it inherits the consistency guarantees of AIS (Neal,
2001a).
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Algorithm 3 Sequential harmonic mean estimator (SHME)

for k = 1 to K do
(z(k),θ(k))← exact sample from p(z,θ |y)
w(k) ← 1

end for
for i = T to 1 do

for k = 1 to K do
(z

(k)
1:i ,θ

(k))← MCMC transition which leaves p(z1:i,θ |y1:i) invariant

w(k) ← w(k)p(z
(k)
i |θ)p(yi |z(k)i ,θ(k))/q(zi |yi,θ

(k))
end for
if resampling criterion met then

Resample (z
(k)
1:i ,θ

(k)) proportionally to 1/w(k)

S ←
∑K

k=1 1/w(k)

for k = 1 to K do
w(k) ← K/S

end for
end if

end for

return Ẑ = K∑K
k=1

1/w(k)

4.2.2 Sequential harmonic mean estimator

It is also possible to run sequential Monte Carlo (SMC) in reverse to obtain a log-ML upper bound.
We call the resulting algorithm the sequential harmonic mean estimator (SHME). Mathematically,
this does not require any new ideas beyond those used in reverse AIS. As discussed in Section 3.4.1,
SMC with a single particle can be analyzed as a special case of AIS. Therefore, starting from an
exact posterior sample, we can run the reverse chain for SMC as well. The resulting algorithm,
which we call the sequential harmonic mean estimator (SHME), corresponds to starting with full
observations and an exact posterior sample, and deleting one observation at a time. Each time an
observation is deleted, the weights are updated with the likelihood of the observations, similarly
to SMC. The difference is in how the weights are used: when the resampling criterion is met, the
particles are sampled proportionally to the reciprocal of their weights. Also, while SMC computes
arithmetic means of the weights in the resampling step and in the final ML estimate, SHME uses
the harmonic means of the weights.

As in SMC, we leave open the choice of proposal distribution q(zi |yi,θ(k)). Possibilities include
Eqns. 16 and 18 of Section 3.4. Unlike in standard SMC, the proposal distribution does not affect
the sequence of states sampled in the algorithm—rather, it is used to update the weights. Proposal
distributions which better match the posterior are likely to result in lower variance weights.

The näıve harmonic mean estimator has been criticized for its instability (Neal, 2008), so it is
worth examining whether the same issues are relevant to SHME. One problem with the näıve HME
is that it is an instance of simple importance sampling where the target distribution is more spread
out than the proposal distribution. Therefore, samples corresponding to the tails of the target
distribution can have extremely large importance weights. The same problem is present in SHME
(though to a lesser degree) because the weight update steps are based on importance sampling where
the proposal distribution is the posterior p(z1:i,θ |y1:i), and the target distribution is the slightly
less peaked posterior p(z1:i,θ |y1:i−1) (which conditions on one less data point). Therefore, the
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individual weight updates, as well as the final output, may have large variance when the algorithm
is interpreted as an estimator of p(y).

Yet, when used as an estimator of log p(y), SHME can still yield accurate estimates. To justify

this theoretically, suppose we have a model for which θ and z
(k)
i can both be integrated out ana-

lytically in the predictive distribution p(yi |z(k)1:i−1,y1:i−1). (E.g., this is the case for the clustering
model we consider in our experiments.) We analyze the gap between the SMC (stochastic lower
bound) and SHME (stochastic upper bound) estimates. For simplicity, assume that only a single
particle is used in each algorithm, and that the MCMC transition operator yields exact samples in
each step. (These correspond to assumptions made by Neal (2001a) when analyzing AIS.) In this
case, the expected SMC estimate of log p(y) is given by:

E[log p̂SMC(y)] =

N∑
i=1

Ep(z1:i−1 |y1:i−1) [log p(yi |z1:i−1,y1:i−1)] . (32)

On the other hand, the expected SHME estimate is given by:

E[log p̂SHME(y)] =

N∑
i=1

Ep(z1:i−1 |y1:i) [log p(yi |z1:i−1,y1:i−1)] . (33)

(The difference between these two equations is that the distribution in Eqn. 33 conditions on one
additional data point.) Since E[log p̂SMC(y)] ≤ log p(y) ≤ E[log p̂SHME(y)], we can bound the
estimation error:

|E[log p̂SHME(y)]− log p(y)| ≤ E[log p̂SHME(y)]− E[log p̂SMC(y)] (34)

=

N∑
i=1

Ep(z1:i−1 |y1:i) [log p(yi |z1:i−1,y1:i−1)]

− Ep(z1:i−1 |y1:i−1) [log p(yi |z1:i−1,y1:i−1)] . (35)

To understand the terms in this sum, suppose we are predicting the next observation yi given our
past observations. If we “cheat” by using yi to help infer the latent variables for past observations,
we would expect this to improve the predictive likelihood. Each of the terms in Eqn. 35 corresponds
to the magnitude of this improvement. This is, however, a very indirect way for yi to influence the
model’s predictions, so arguably we should expect these terms to be relatively small. If they are
indeed small, then SHME will have small error in estimating log p(y).

4.3 Bidirectional Monte Carlo

So far, we have discussed techniques for obtaining stochastic lower and upper bounds on the log
marginal likelihood for simulated data. The stochastic lower bounds are obtained using standard
sampling-based techniques, such as AIS or SMC. The stochastic upper bounds are obtained by
running one of these algorithms in reverse, starting from an exact posterior sample. The methods
are most useful in combination, since one can sandwich the true log-ML value between the stochastic
bounds. Both AIS and SMC are consistent, in the sense that they approach the correct value in
the limit of infinite computation (Neal, 2001a; del Moral et al., 2006). Therefore, it is possible
to run both directions with enough computation that the two stochastic bounds agree. Once the
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stochastic bounds agree closely (e.g. to within 1 nat), one has a log-ML estimate which (according
to the above analysis based on Markov’s inequality) is very unlikely to be off by more than a few
nats. Errors of this magnitude are typically inconsequential in the context of log-ML estimation,
so one can consider the final log-ML estimate to be ground truth. We refer to this overall approach
to computing ground truth log-ML values as bidirectional Monte Carlo (BDMC).

4.4 Relationship with RAISE

Our BDMC method is similar in spirit to the reverse AIS estimator (Burda et al., 2015), which has
been used to evaluate log-likelihoods of Markov random fields. Like BDMC, RAISE runs AIS both
forwards and backwards in order to sandwich the log-likelihoods between two values. The main
differences between the methods are as follows:

1. RAISE is used in the setting of Markov random fields, or undirected graphical models. Al-
gorithms such as AIS compute stochastic lower bounds on the partition function, which cor-
respond to stochastic upper bounds on the log-likelihood. The main difficulty was lower
bounding the log-likelihoods.

BDMC is applied to models described as generative processes (and often represented with
directed graphical models). The challenge is to integrate out parameters and latent variables in
order to compute the likelihood of observations. Prior methods often returned stochastic lower
bounds on the log-likelihood, and the technical novelty concerns stochastic upper bounds.

2. RAISE runs the reverse AIS chain starting from the data on which one wishes to evaluate
log-likelihoods. BDMC runs the reverse chain starting from an exact posterior sample.

3. RAISE computes stochastic log-likelihood lower bounds for an approximate model. If the
approximate model describes the data better than the original MRF, RAISE’s supposed lower
bound may in fact overestimate the log-likelihood. By contrast, BDMC returns stochastic
upper and lower bounds on the original model, so one can locate the true value between the
bounds with high probability.

4.5 Evaluating posterior inference

So far, the discussion has focused on measuring the accuracy of log-ML estimators. In some cases,
BDMC can also be used to quantitatively measure the quality of an approximate posterior sampler
on simulated data. To do this, we make use of a relationship between posterior inference and
marginal likelihood estimation which holds for some sampling-based inference algorithms.

It is well known that the problems of inference and ML estimation are equivalent for variational
Bayes (Section 5.1): the KL divergence between the approximate and true posteriors equals the
gap between the variational lower bound and the true log-ML. A similar relationship holds for
some sampling-based log-ML estimators, except that the equality may need to be replaced with an
inequality. First, consider the case of simple importance sampling (Section 3.1). If q(z,θ) is the
proposal distribution, then the expected log-ML estimate based on a single sample (see Eqn. 4) is
given by:

Eq(z,θ) [log p(z,θ,y)− log q(z,θ)] = log p(y) + Eq(z,θ) [log p(z,θ |y)− log q(z,θ)]

= log p(y)−DKL(q(z,θ) ‖ p(z,θ |y)). (36)

14



Interestingly, this formula is identical to the variational Bayes lower bound when q is used as the
approximating distribution.

We have discussed two sampling-based ML estimators which can be seen as importance sampling
on an extended state space: AIS (Section 3.3) and SMC with a single particle (Section 3.4.1). Let
v denote all of the variables sampled in one of these algorithms other than z and θ. (For instance,
in AIS, it denotes all of the states other than the final one.) In this case, the above derivation can
be modified:

E[log p̂(y)] = Eq(z,θ,v) [log p(z,θ,v,y)− log q(z,θ,v)]

= log p(y)−DKL(q(z,θ,v) ‖ p(z,θ,v |y))

≤ log p(y)−DKL(q(z,θ) ‖ p(z,θ |y)). (37)

This implies that the KL divergence of the approximate posterior samples from the true posterior is
bounded by the bias of the log-ML estimator. Eqn. 37, in conjunction with BDMC, can be used to
demonstrate the accuracy of posterior samples on simulated datasets. In particular, to measure the
accuracy of AIS or SMC, one can compute the gap between its log-ML estimate and the stochastic
upper bound from BDMC. This gap will be a stochastic upper bound on the KL divergence of the
distribution of approximate samples from the true posterior.

5 Other marginal likelihood estimators

In this section, we overview some additional ML estimation algorithms not discussed in Section 3.

5.1 Variational Bayes

All of the methods described above are sampling-based estimators. Variational Bayes (Hinton
and van Camp, 1993; Waterhouse et al., 1996; Attias, 2000; Ghahramani and Beal, 2001) is an
alternative set of techniques based on optimization. In particular, the aim is to approximate the
intractable posterior distribution p(z,θ |y) with a tractable approximation q(z,θ), i.e. one whose
structure is simple enough to represent explicitly. Typically, z and θ are constrained to be inde-
pendent, i.e. q(z,θ) = q(z)q(θ), and the two factors may themselves have additional factorization
assumptions. The objective function being maximized is the following:

F(q) , Eq(z,θ) [log p(θ, z,y)] +H [q(z,θ)] , (38)

whereH denotes entropy. This functional is typically optimized using a coordinate ascent procedure,
whereby each factor of q is optimized given the other factors. Assuming the factorization given
above, the update rules which optimize Eqn 38 are:

q(z) ∝ exp
(
Eq(θ) [log p(z,θ,y)]

)
(39)

q(θ) ∝ exp
(
Eq(z) [log p(z,θ,y)]

)
(40)

Variational Bayes is used for both posterior inference and marginal likelihood estimation, and
the two tasks are equivalent, according to the following identity:

logF(q) = log p(y)−DKL(q(z,θ) ‖ p(z,θ |y)). (41)

I.e., variational Bayes underestimates the true log marginal likelihood, and the gap is determined
by the KL divergence from the true posterior.
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5.2 Chib-style estimators

Another estimator which is popular because of its simplicity is Chib’s method (Chib, 1995). This
method is based on the identity

p(y) =
p(z?,θ?,y)

p(z?,θ? |y)
(42)

for any particular values (z?,θ?) of the latent variables and parameters. While (42) holds for any
choice of (z?,θ?), they are usually taken to be high probability locations, such as the maximum a
posteriori (MAP) estimate. The numerator can generally be computed from the model definition.
The denominator is based on a Monte Carlo estimate of the conditional probability obtained from
posterior samples (z(1),θ(1)), . . . , (z(K),θ(K)). In particular, let T represent an MCMC operator
which leaves p(z,θ |y) invariant; the basic version of the algorithm assumes a Gibbs sampler. For
models where the Gibbs transitions can’t be computed exactly, another variant uses Metropolis-
Hastings instead (Chib and Jeliazkov, 2001). (The posterior samples may be obtained from a
Markov chain using T , but this is not required.) The denominator is estimated as:

p̂(z?,θ? |y) =
1

K

K∑
k=1

T (z?,θ? |z(k),θ(k),y). (43)

How should the estimator be expected to perform? Observe that if exact samples are used,
(43) is an unbiased estimate of the denominator of (42). Therefore, following the analysis of
Section 4.1, it would tend to underestimate the denominator, and therefore overestimate the true
marginal likelihood value. If approximate posterior samples are used, nothing can be said about its
relationship with the true value. In this review, we focus on latent variable models, which generally
have symmetries corresponding to relabeling of latent components or dimensions. Since transition
probabilities between these modes are very small, the estimator could drastically overestimate the
marginal likelihood unless the posterior samples happen to include the correct mode. Accounting
for the symmetries in the algorithm itself can be tricky, and can cause subtle bugs (Neal, 1999).

Murray and Salakhutdinov (2009) proposed a variant on Chib’s method which yields an unbi-
ased estimate of the marginal likelihood. We will refer to the modified version as the Chib-Murray-
Salakhutdinov (CMS) estimator. The difference is that, rather than allowing an arbitrary initial-
ization for the Markov chain over (z,θ), they initialize the chain with a sample from T̃ (z,θ |z?,θ?),
where

T̃ (z′,θ′ |z,θ) ,
T (z,θ |z′,θ′) p(z′,θ′ |y)∑

z′,θ′ T (z,θ |z′,θ′) p(z′,θ′ |y)
(44)

is the reverse operator of T .

5.3 Nested sampling

Nested sampling (NS; Skilling, 2006) is a marginal likelihood estimator which, like AIS, samples
from a sequence of distributions where the strength of the evidence is gradually amplified. In
this section, we denote the state as x = (θ, z), the prior as π(x) = p(θ, z), and the likelihood as
L(x) = p(y |θ, z). Central to the method is the notion of the constrained prior, which is the prior
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distribution restricted to a region of high likelihood:

π̆C(x) ,

{
π(x)/V (C) L(x) > C

0 L(x) ≤ C
(45)

V (C) , π({x : L(x) > C}). (46)

The prior volume V (C) is the fraction of the prior probability mass which lies within the likelihood
constraint. For simplicity, we assume the set {x : L(x) = C} has measure zero for any C. Each
step of NS attempts to sample from a constrained prior, where the cutoff C is increased (and hence
the volume V (C) is decreased) at a controlled rate.

We first describe the idealized version of NS, where one assumes an oracle that returns an exact
sample from the constrained prior. One begins with a set of K particles {x(k)}Kk=1 drawn i.i.d. from
the prior π, with K ≥ 2. In each step (indexed by t), one chooses the particle with the smallest
likelihood; call its index k? , arg mink L(x(k)). The likelihood cutoff is updated to Ct = L(x(k?)).
The particle x(k?) is then replaced with a sample from the constrained prior π̆Ct . All of the other
particles remain untouched. This process is repeated until a stopping criterion (described below) is
met.

After step t of the algorithm, theK particles are independently distributed according to π̆Ct
. The

prior volumes V (L(x(k))) are therefore uniformly distributed on the interval [0, Ct]. (By convention,
C0 = 0.) The particle x(k?) (which was chosen to have the minimum likelihood) has a prior volume
of approximately V (Ct) ·K/(K + 1). Hence, the prior volume is expected to decrease by roughly a
factor of K/(K + 1) in each iteration. Since V (C0) = V (0) = 1, this implies

V (Ct) ≈
(

K

K + 1

)t
. (47)

Now, observe that for each t, V (Ct)− V (Ct+1) fraction of the prior volume has a likelihood value
between Ct and Ct+1. Since the marginal likelihood is given by p(y) =

∫
π(x)L(x) dx, we can

bound the marginal likelihood above and below:

∞∑
t=0

(V (Ct)− V (Ct+1))Ct ≤ p(y) ≤
∞∑
t=0

(V (Ct)− V (Ct+1))Ct+1. (48)

The true volumes V (Ct) are unknown, but one can achieve a good approximation by plugging in
Eqn 47. As a stopping criterion, one typically stops when the next term in the summation increases
the total by less than a pre-specified ratio (such as 1 + 10−10).

The idealized algorithm requires the ability to sample exactly from the constrained prior. In
practice, this is typically intractable or inefficient. Instead, one tries to approximately sample
from the constrained prior using the following procedure: first replace x(k?) with one of the other
particles, chosen uniformly at random. Apply one or more steps of MCMC, where the transition
operator has the constrained prior as its stationary distribution. If the transition operator mixes
fast enough, then this should be a reasonable approximate sample from the constrained prior.

Like AIS, NS has the interpretation of moving through a series of distributions where the
evidence gradually becomes stronger. One of the arguments made for NS, in contrast with AIS, is
that its schedule for moving through its space of distributions is potentially more stable (Skilling,
2006). In particular, AIS has been observed to suffer from phase transitions: around some critical
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temperature, the distribution may suddenly change from being very broad to very peaked. If the
particles do not quickly find their way into the peak, the results might be inaccurate. In NS, the
prior volume decreases at a controlled rate, so this sort of phase transition is impossible. This effect
was shown to improve the stability of partition function estimation for Potts models (Murray et al.,
2005).

On the flip side, NS does not have quite as strong a theoretical guarantee as AIS. AIS is
guaranteed to be an unbiased estimator of the ML, even when MCMC operators (rather than exact
samples) are used in each step. By contrast, the theoretical analysis of the variance of NS (Skilling,
2006) assumes exact samples in each step. Indeed, in our own experiments, we found that while
NS tended to underestimate the ML on average (similarly to AIS), it overestimated the true value
too often for it to be a stochastic lower bound in the sense of Section 4.1.

6 Experiments

In this section, we use our proposed bidirectional Monte Carlo technique to evaluate a wide variety
of ML estimators on several latent variable models. In particular, we consider the following models:

• Clustering. Roughly speaking, this model is a Bayesian analogue of K-means. Each data
point is assumed to be drawn from one of K mixture components. Each mixture component
is associated with a spherical Gaussian distribution whose variance is fixed but whose mean
is unknown. Mathematically,

zi ∼ Multinomial(π)

θkj ∼ N (0, σ2
θ)

yij ∼ N (θzi,j , σ
2
n).

The mixture probabilities π, the between-cluster variance σ2
θ , and the within-cluster variance

σ2
n are all fixed. In the matrix decomposition grammar of Grosse et al. (2012), this model

would be written as MG + G.

• Low-rank approximation. In this model, we approximate an N×D matrix Y as a low rank
matrix plus Gaussian noise. In particular, we approximate it with the product UV, where
U and V are matrices of size N ×K and K ×D, respectively. We assume K < min(N,D),
so the product has rank K. We assume a spherical Gaussian observation model, as well as
spherical Gaussian priors on the components U and V. More precisely,

uik ∼ N (0, σ2
u)

vkj ∼ N (0, σ2
v)

yij ∼ N (uTi vj , σ
2
n).

The prior variances σ2
u and σ2

v and noise variance σ2
n are all fixed. This model is roughly

equivalent to probabilistic matrix factorization (Salakhutdinov and Mnih, 2008), except that
in our experiments, Y is fully observed. While the model is symmetric with respect to rows
and columns, we follow the convention where rows of Y represent data points. In this setup,
we can think of the component V as the parameters of the model and U as the latent variables.
In the grammar of Grosse et al. (2012), this model would be written as GG + G.
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• Binary attributes. This model assumes each data point can be described in terms of K
binary-valued attributes. In particular, we approximate the observation matrix Y with the
product ZA, where Z is an N×K binary-valued matrix and A is a K×D real-valued matrix.
Each row of Y corresponds to a single data point. Each row of Z can be thought of as a latent
vector explaining a data point, and each row of A can be thought of as a set of parameters
describing the effect one of the binary attributes has on the observations. Mathematically,
this model is defined as

zik ∼ Bernoulli(πk)

akj ∼ N (0, σ2
a)

yij ∼ N (
∑
k

zikakj , σ
2
n).

The attribute probabilities {πk}, feature variance σ2
a, and noise variance σ2

n are all fixed. This
model is related to the Indian buffet process linear-Gaussian model (Griffiths and Ghahramani,
2005), with the important difference that both the number of attributes and the probability
of each one are fixed. In the grammar of Grosse et al. (2012), this model would be written as
BG + G.

We note that all of the models described above have hyperparameters, such as mixture probabilities
or noise variance. In a practical setting, these hyperparameters are typically unknown. One would
typically include them as part of the model, using appropriate priors, and attempt to infer them
jointly with the model parameters and latent variables. Unfortunately, this does not work well in
our setting, due to our need to simulate data from the model. One ordinarily assigns weak priors to
the hyperparameters, but sampling from such priors usually results in pathological datasets where
the structure is either too weak to detect or so strong that it is trivial to find the correct explanation.
To avoid these pathologies, we assigned fixed values to the hyperparameters, and we chose these
values such that the posterior distribution captures most of the structure, but is not concentrated
on a single explanation.

We evaluated the following ML estimators on all three of these models:

• the Bayesian information criterion (BIC)

• likelihood weighting (Section 3.1)

• the harmonic mean estimator (HME) (Section 3.2), using a Markov chain starting from the
exact sample

• annealed importance sampling (AIS) (Section 3.3)

• sequential Monte Carlo (SMC), using a single particle (Section 3.4)

• variational Bayes (Section 5.1). We report results both with and without the symmetry
coorection, where the ML lower bound is multiplied by the number of equivalent relabelings
(K! for all models we consider).

• the Chib-Murray-Salakhutdinov (CMS) estimator (Section 5.2)

• nested sampling (Section 5.3)
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6.1 Implementation

In order to make the running times of different algorithms directly comparable, the implementations
share the same MCMC transition operators wherever possible. The only exceptions are variational
Bayes and nested sampling, whose update rules are not shared with the other algorithms.

All of the estimators except for BIC, likelihood weighting, and variational Bayes require an
MCMC transition operator which preserves the posterior distribution. In addition, some of the
algorithms require implementing some additional computations:

• AIS requires MCMC operators for each of the intermediate distributions.

• SMC requires the ability to compute or approximate the likelihood of a data point under the
predictive distribution.

• The CMS estimator requires implementing the reverse transition operators. It also requires
computing the transition probabilities between any pair of states. The latter imposes a
nontrivial constraint on the choice of MCMC operators, in that it disallows operators which
compute auxiliary variables.

• Nested sampling requires an MCMC operator whose stationary distribution is the constrained
prior.

• Unlike the other algorithms, variational Bayes is based on optimization, rather than sampling.
In our implementation, the updates all involved optimizing one of the component distributions
given the others.

For all three models, the MCMC transition operator was a form of Gibbs sampling. Here are
some more model-specific details:

• Clustering. The cluster centers were collapsed out wherever possible in all computations.
The predictive likelihood can be computed exactly given the cluster assignments and variance
parameters, with the cluster centers collapsed out.

• Low rank. Each of the two factors U and V was resampled as a block. For computing
predictive likelihood, V was sampled from the posterior, and the U was marginalized out
analytically.

• Binary attributes. The feature matrix A was collapsed out wherever possible, and the
tricks of Doshi-Velez and Ghahramani (2009) were used to efficiently update the posterior
distribution over A.

ML estimators are notoriously difficult to implement correctly, as small bugs can sometimes
lead to large errors in the outputs without any obvious indication that something is amiss. (Indeed,
checking correctness of MCMC samplers and ML estimators is one potential application of this
work.) Appendix B discusses in detail our approach to testing the correctness of the implementa-
tions of our algorithms.

In general, we face a tradeoff between performance and difficulty of implementation. Therefore,
it is worth discussing the relative difficulty of implementing different estimators. In general, BIC,
likelihood weighting, and the harmonic mean estimator required almost no work to implement
beyond the MCMC sampler. Of the sampling based estimators, AIS and nested sampling required
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the most work to implement, because they each required implementing a full set of MCMC transition
operators specific to those algorithms.4 SMC and the CMS estimator were in between: they required
only a handful of additional functions beyond the basic MCMC operators.

Compared with the sampling methods, variational Bayes typically required somewhat more math
to derive the update rules. However, it was considerably simpler to test (see Appendix B). For the
low rank and clustering models, implementing variational Bayes required a comparable amount of
effort to implementing the MCMC transitions. For the binary attribute model, variational Bayes
was considerably easier to implement than the efficient collapsed sampler.

6.2 Algorithm parameters

Each of the ML estimators provides one or more knobs which control the tradeoff between accuracy
and computation time. In order to investigate the accuracy as a function of running time, we varied
one knob for each algorithm and set the rest to reasonable defaults. The following parameters were
varied for each algorithm:

• Likelihood weighting and harmonic mean: The independent variable was the number of
proposals.

• Annealed importance sampling: The annealing path consisted of geometric averages of
the initial and target distributions. Because AIS is sometimes unstable near the endpoints
of a linear path, we used the following sigmoidal schedule which allocates more intermediate
distributions near the endpoints:

β̃t = σ

(
δ

(
2t

T
− 1

))
βt =

β̃t − β̃1
β̃T − β̃1

,

where σ denotes the logistic sigmoid function and δ is a free parameter. (We used δ = 4.) In
our experiments, the independent variable was T , the number of intermediate distributions.

• Sequential Monte Carlo: We used only a single particle in all experiments, and the inde-
pendent variable was the number of MCMC transitions per data point.

• Chib-Murray-Salakhutdinov: We used a single sample (θ∗, z∗) and varied the number of
MCMC transitions starting from that sample.

• Variational Bayes: The independent variable was the number of random restarts in the
optimization procedure. Specifically, in each attempt, optimization was continued until the
objective function improved by less than 0.01 nats over 50 iterations, at which point another
random restart was done. The highest value obtained over all random restarts was reported.

4AIS is most often used in the undirected setting, where the transition operators for the model itself are easily
converted to transition operators for the intermediate distributions. In the directed setting, however, raising the
likelihood to a power can destroy the directed structure, and therefore implementing collapsed samplers can be more
involved.
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• Nested sampling: The algorithm has three parameters: the number of steps, the number
of particles, and the number of MCMC transitions per step. The number of steps was chosen
automatically by stopping when the (multiplicative) likelihood updates dropped below 1 +
e−10. We found that using only 2 particles (the smallest number for which the algorithm is
defined) consistently gave the most accurate results for modest computation time. Therefore,
the independent variable was the number of MCMC transitions per step.

When applying algorithms such as AIS or SMC, it is common to average the estimates over
multiple samples, rather than using a single sample. For this set of experiments, we ran 25 inde-
pendent trials of each estimator. We report two sets of results: the average estimates using only
a single sample, and the estimates which combine all of the samples.5 As discussed in Section 6.4,
there was little qualitative difference between the two conditions.

6.3 How much accuracy is required?

What level of accuracy do we require from an ML estimator? At the very least, we would like
the errors in the estimates to be small enough to detect “substantial” log-ML differences between
alternative models. Kass and Raftery (1995) offered the following table to summarize significance
levels of ML ratios:

log10 p1(y)− log10 p2(y) p1(y)/p2(y) Strength of evidence against p2

0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

This table serves as a reference point if one believes one of the models is precisely correct. However,
in most cases, all models under consideration are merely simplifications of reality.

Concretely, suppose we have a dataset consisting ofN = 1000 data points, and we are considering
two models,M1 andM2. IfM1 achieves an average predictive likelihood score which is 0.1 nats per
data point higher than that ofM2, this translates into a log-ML difference of 100 nats. Interpreted
as a log-odds ratio, this would be considered overwhelming evidence. However, the difference in
predictive likelihood is rather small, and in practice may be outweighed by other factors such as
computation time and interpretability. Roughly speaking, 1 nat is considered a large difference in
predictive likelihood, while 0.1 nats is considered small. Therefore, we may stipulate that an ML
estimation error of 0.1N nats is acceptable, while one of N nats is not.

Alternatively, there is an empirical yardstick we can use, namely comparing the ML scores of
different models fit to the same datasets. Table 1 shows the ML estimates for all three models under
consideration, on all three of the simulated datasets.6 The estimates were obtained from AIS with

5For algorithms which are unbiased estimators of the marginal likelihood (AIS, SMC, CMS, and likelihood weight-
ing), the arithmetic mean of the individual estimates was taken. For algorithms which are unbiased estimators of
the reciprocal (harmonic mean, reverse AIS, SHME), the harmonic mean was used. For variational inference, the
max over all trials was used. For nested sampling, the average of the log-ML estimates was used.

6Unlike in the rest of our experiments, it did not make sense to freeze the model hyperparameters for the cross-
model ML evaluation, as there is no “correct” choice of hyperparameters when the model is wrong. Therefore, for
the results in this table, we included the hyperparameters in the model, and these were integrated out along with the
parameters and latent variables. We used standard priors for hyperparameters: inverse gamma distributions for vari-
ances, Dirichlet distributions for mixture probabilities, and beta distributions for Bernoulli probability parameters.
AIS was generally able to infer the correct hyperparameter values in this experiment.
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Clustering Low rank Binary

Clustering -2377.5 -2390.6 (13.1) -2383.2 (5.7)
Low rank -2214.2 (69.1) -2145.1 -2171.4 (26.3)

Binary -2268.6 (49.2) -2241.7 (22.3) -2219.4

Table 1: Marginal likelihood scores for all three models evaluated on simulated data drawn from all three
models. Rows: the model used to generate the simulated data. Columns: the model fit to the data. Each
entry gives the marginal likelihood score estimated using AIS, and (in parentheses) the log-ML difference
from the correct model.

30,000 intermediate distributions.7 These numbers suggest that, for a dataset with 50 data points
and 25 dimensions, the ML estimators need to be accurate to within tens of nats to distinguish
different Level 1 factorization models.

6.4 Results

All of the ML estimation algorithms were run on all three of the models. A simulated dataset
was generated for each model with 50 data points and 25 input dimensions. There were 10 latent
components for the clustering and binary models and 5 for the low rank model. In all cases, the
“ground truth” estimate was obtained by averaging the log-ML estimates of the forward and reverse
AIS chains with the largest number of intermediate distributions. In all cases, the two estimates
agreed to within 1 nat. Therefore, by the analysis of Section 4.1, the ground truth value is accurate
to within a few nats with high probability.

As mentioned in Section 6.2, each algorithm was run independently 25 times, and the results
are reported both for the individual trials and for the combined estimates using all 25 trials. We
plot the average log-ML estimates as a function of running time in order to visualize the bias of
each estimator. In addition, we plot the mean squared error (MSE) values as a function of running
time. We do not report MSE values for the AIS runs with the largest number of intermediate
distributions because the estimates were used to compute the ground truth value.

Section 6.3 argued, from various perspectives, that the log-ML estimates need to be accurate
on the order of 10 nats to distinguish different model classes. Therefore, for all models, we report
which algorithms achieved root mean squared error (RMSE) of less than 10 nats, and how much
time they required to do so.

Clustering. The results for the clustering model are shown in Figures 2 and 3. Figure 2 shows
the log-ML estimates for all estimators, while Figure 3 shows the RMSE of the log-ML estimates
compared to the ground truth. Of the algorithms which do not require an exact posterior sample,
only three achieved the desired accuracy: AIS, SMC, and nested sampling (NS). SMC gave accurate
results the fastest, achieving an RMSE of 4.6 nats in only 9.7 seconds. By comparison, AIS took
37.8 seconds for an RMSE of 7.0 nats, and NS took 51.2 seconds for an RMSE of 5.7 nats.

We are not aware of any mathematical results concerning whether NS is an upper or lower
bound on the log-ML. Our results suggest that it tends to underestimate the log-ML, similarly to
the other algorithms. However, it significantly overestimated the log-ML on many individual runs,
suggesting that it is not truly a stochastic lower bound.

7The entries in this table are guaranteed only to be stochastic lower bounds. However, AIS with 30,000 interme-
diate distributions yielded accurate estimates in all comparisons against ground truth (see Section 6.4).
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Figure 2: Comparison of marginal likelihood estimators on the clustering model. Top: average log-ML
estimates for each of the 25 individual trials. (The right-hand figure is zoomed in.) Bottom: average
log-ML estimates combined between the 25 trials. (The right-hand figure is zoomed in.) Note that there
is little qualitative difference from the individual trials. HME = harmonic mean estimator. rev AIS
= reverse AIS. SHME = sequential harmonic mean estimator. SMC = sequential Monte Carlo. NS =
nested sampling. AIS = annealed importance sampling. VB+sym = variational Bayes with symmetry
correction. CMS = Chib-Murray-Salakhutdinov estimator. VB = variational Bayes. LW = likelihood
weighting. Confidence intervals are given for the expected log-ML estimate for a given estimator. (They are
not confidence intervals for the log-ML itself, so it is not problematic that they generally do not cover the
true log-ML.)
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Figure 3: Mean squared error relative to ground truth for individual trials (left) and combined estimates
(right) for the clustering model. See Figure 2 for the legend.

The most naive ML estimator, likelihood weighting (LW), vastly underestimated the true value.
Its mirror image, the harmonic mean estimator (HME), vastly overestimated it. The Bayesian
information criterion (BIC) gave by far the least accurate estimate, with MSE dwarfing even that
of LW. This is remarkable, since the BIC requires fitting the model, while LW is simply a form
of random guessing. This suggests that the BIC should be treated cautiously on small datasets,
despite its asymptotic guarantees. The CMS estimator was more accurate than LW and HME, but
still far from the true value. The MSE values for LW, HME, and CMS were nearly constant over at
least 2 orders of magnitude in running time, suggesting that these methods cannot be made more
accurate simply by running them longer.

A single run of the variational Bayes optimization took only 0.1 seconds, after which it returned
a log-ML lower bound which was better than LW achieved after many samples. However, even after
many random restarts, the best lower bound it achieved was still 15 nats below the true value, even
with the symmetry correction. According to our earlier analysis, this suggests that it would not be
accurate enough to distinguish different model classes. In order to determine if the gap was due
to local optima, we ran an additional experiment where we gave VB a “hint” by initializing it to
a point estimate on the sample which generated the data. In this experiment (as well as for the
low rank and binary attribute models), VB with random initializations was able to find the same
optimum, or a slightly better one, compared with the condition where it was given the hint. This
suggests that the gap is due to an inherent limit in the approximation rather than to local optima.

For parameter settings where individual samples of AIS and SMC gave results accurate to within
10 nats, combining the 25 samples gave quantitatively more accurate estimates. However, for all of
the other algorithms and parameter settings, combining 25 trials made little difference to the overall
accuracy, suggesting that an inaccurate estimator cannot be made into an accurate one simply by
using more samples. (The same effect was observed for the low rank and binary attribute models.)
Roughly speaking, if one has a fixed computational budget, it is better to compute a handful of
accurate estimates rather than a large number of sloppy ones. (Note that this is not true for all
partition function estimation problems; for instance, in some of the experiments of Grosse et al.
(2013), high-accuracy results were often obtained by averaging over many AIS runs, even though a
large fraction of individual runs gave inaccurate estimates.)
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Figure 4: Comparison of marginal likelihood estimators on the low rank model. Left: average log-ML
estimates across the 25 trials. Middle: same as left, but zoomed in. Right: MSE of individual samples.
See Figure 2 for the abbreviation key.

Low rank. The results on the low rank factorization overwhelmingly favor AIS: its accuracy
after only 1.6 seconds (RMSE = 8.6) matched or surpassed all other algorithms with up to 20
minutes of running time. In fact, AIS was the only algorithm to achieve an RMSE of less than 10.

One reason that NS did not perform as well on this model as it did on the clustering model is
that it took more steps to reach the region with high posterior mass. E.g., with 5 MCMC transitions
per step, it required 904 steps, as compared with 208 for clustering and 404 for binary. Another
reason is that the MCMC implementation could not take advantage of the same structure which
allowed block Gibbs sampling for the remaining algorithms; instead, one variable was resampled at
a time from its conditional distribution. (For the clustering and binary models, the NS transition
operators were similar to the ones used by the other algorithms.)

The CMS estimator underestimated the true value by over 1000 nats. The reason is that
p(U?,V? |Y) was estimated using an MCMC chain starting close to the point estimate p(U?,V?).
The model has a large space of symmetries which the Markov chain explored slowly, because U and
V were tightly coupled. Therefore, the first few samples dramatically overestimated the probability
of transitioning to (U?,V?), and it was impossible for later samples to cancel out this bias because
the transition probabilities were averaged arithmetically.

In general, variational Bayes is also known to have a similar difficulty when tightly coupled
variables are constrained to be independent in the variational approximation. Interestingly, in this
experiment, it was able to attenuate the effect by making U and V small in magnitude, thereby
reducing the coupling between them.

Binary attributes. Finally, the results for the binary attribute model are shown in Figure 5.
Similarly to the clustering model, three algorithms came within 10 nats of the true value: NS, AIS,
and SMC. NS and AIS each crossed the 10 nat threshold in similar amounts of time: AIS achieved
an RMSE of 7.5 nats in 16.5 minutes, while NS achieved an RMSE of 9.0 nats in 15.1 minutes. By
contrast, SMC achieved RMSE values of 11.9 and 4.7 in 20.5 minutes and 69 minutes, respectively.
AIS and SMC continued to give more accurate results with increased computation time, while the
accuracy of NS was hindered by the variance of the estimator. Overall, this experiment suggests
that estimating the ML of a binary attribute model remains a difficult problem. 15 minutes is a
very long time for a dataset with only 50 data points and 25 input dimensions.
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Figure 5: Comparison of marginal likelihood estimators on the binary attribute model. Left: average
log-ML estimates across the 25 trials. Middle: same as left, but zoomed in. Right: MSE of individual
samples. See Figure 2 for the abbreviation key.

7 Discussion

Based on our experiments, we observe that no single algorithm consistently dominated the others.
The relative performance of different estimators varied tremendously depending on the model class,
and it seems likely that other factors, such as the signal-to-noise ratio or the number of data points,
could make a big difference. More work is required to understand which algorithms perform well on
which models and why. However, we can draw some tentative recommendations from our results.
As a general rule of thumb, we would suggest trying AIS first, because in all of our experiments,
it achieved accurate results given enough intermediate distributions. If AIS is too slow, then SMC
and NS are also worth considering. Likelihood weighting, the harmonic mean estimator, and the
BIC are unlikely to give accurate results. These recommendations are consistent with the folklore
in the field, and it is reassuring that we can now support them with quantitative evidence.

Interestingly, of the three strongest performing algorithms in our experiments—AIS, SMC, and
NS—both AIS and SMC are instances of bridging between a tractable distribution and an in-
tractable one using a sequence of intermediate distributions (see Section 3.4.1). Any algorithm
which shares this structure can be reversed using our proposed technique to obtain a stochastic
upper bound on the log-ML of simulated data. Therefore, if better algorithms are devised which
build upon AIS and SMC (either separately or in combination), they can automatically be used in
the context of BDMC to obtain more precise ground truth log-ML values on simulated data.

We believe the ability to rigorously and quantitatively evaluate algorithms is what enables us
to improve them. In many application areas of machine learning, especially supervised learning,
benchmark datasets have spurred rapid progress in developing new algorithms and clever refine-
ments to existing algorithms. One can select hyperparameters, such as learning rates or the number
of units in a neural network, by quantitatively measuring performance on held-out validation data.
This process is beginning to be automated through Bayesian optimization (Snoek et al., 2012).
So far, the lack of quantitative performance evaluations in marginal likelihood estimation, and in
sampling-based inference more generally, has left us fumbling around in the dark. ML estimators
often involve design choices such as annealing schedules or which variables to collapse out. Just as
careful choices of learning rates and nonlinearities can be crucial to the performance of a neural
network, similar algorithmic hyperparameters and engineering choices may be crucial to building
effective samplers and marginal likelihood estimators. We hope the framework we have presented
for quantitatively evaluating ML estimators will enable the same sort of rapid progress in posterior
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inference and ML estimation which we have grown accustomed to in supervised learning.
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A Caveats about marginal likelihood

While the focus of this work is on the algorithmic issues involved in estimating ML, we should
mention several caveats concerning the ML criterion itself. First, the very notion of a “correct” or
“best” model (as used to motivate Bayesian model comparison) may not be meaningful if none of
the models under consideration accurately describe the data. In such cases, different models may
better capture different aspects of the data, and the best choice is often application-dependent.
This caveat should be kept in mind when applying the methods of this paper: since the estimators
are evaluated on simulated data, the results might not be representative of practical situations if
the model is a poor match to the data. In general, ML should not be applied blindly, but should
rather be used in conjunction with model checking methods such as posterior predictive checks
(Gelman et al., 2014, chap. 6).

Another frequent criticism of ML is that it is overly sensitive to the choice of hyperparameters,
such as the prior variance of the model parameters (Kass, 1993; Kass and Raftery, 1995). Predictive
criteria such as predictive likelihood and held-out error are insensitive to these hyperparameters in
the big data setting, because with enough data, the likelihood function will overwhelm the prior. By
contrast, the ML can be significantly hurt by a poor choice of hyperparameters, even for arbitrarily
large datasets. This sensitivity to hyperparameters can lead to a significant bias towards overly
simple models, since the more parameters a model has, the stronger the effect of a poorly chosen
prior. We note, however, that this problem is not limited to the practice of explicitly comparing
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models by their ML: it also applies to the (more common) practice of tuning model complexity as
part of posterior inference, for instance using reversible jump MCMC (Green, 1995) or Bayesian
nonparametrics (Ghahramani, 2012). Just as with explicit ML comparisons, these techniques can
suffer from the bias towards simple models when the priors are misspecified.

Several techniques have been proposed which aim to alleviate the problem of hyperparameter
sensitivity. Berger and Pericchi (1996) proposed the intrinsic Bayes factor, which is the probability
of the data conditioned on a small number of data points. This can be equivalently viewed as
computing the ratio of marginal likelihoods of different size datasets. Fractional Bayes factors
(O’Hagan, 1995) have a similar form, but the denominator includes all of the data points, and each
likelihood term is raised to a power less than 1. Another approach maximizes the ML with respect
to the hyperparameters; this is known as empirical Bayes, the evidence approximation, or type-II
maximum likelihood (MacKay, 1999). The motivation is that we can optimize over a small number
of hyperparamters without overfitting too badly. Others suggest using ML, but designing the priors
such that a poor choice of hyperparameters doesn’t favor one model over another (Heckerman
et al., 1995; Neal, 2001b). We note that all of these alternative approaches require computing
high-dimensional integrals over model parameters and possibly latent variables, and these integrals
closely resemble the ones needed for ML. Therefore, one will run into the same computational
obstables as in computing ML, and the techniques of this paper will still be relevant.

B Testing correctness of the implementation

ML estimators are notoriously difficult to implement correctly, for several reasons. First, an ML
estimator returns a scalar value, and it’s not clear how to recognize if that value is far off. This is in
contrast with supervised learning, where one can spot of the algorithm is making silly predictions,
or much unsupervised learning, where it is apparent when the algorithm fails to learn important
structure in the data. Furthermore, buggy MCMC transition operators often yield seemingly plau-
sible posterior samples, yet lead to bogus ML estimates when used in an algorithm such as AIS. For
these reasons, we believe ML estimation presents challenges for testing which are unusual in the
field of machine learning. In this section, we discuss methods for testing mathematical correctness
of ML estimator implementations.

In this work, we used several strategies, which we recommend following in any work involving
ML estimation. Grosse and Duvenaud (2014) discuss some of these techniques in more detail.

1. Most of the MCMC operators were implemented in terms of functions which returned con-
ditional probability distributions. (The distributions were represented as classes which knew
how to sample from themeslves and evaluate their density functions.) The conditional prob-
ability computations can be “unit tested” by checking that they are consistent with the joint
probability distribution. In particular,

p(x |u)

p(x′ |u)
=

p(x, u)

p(x′, u)

must hold for any triple (x, x′, u). This form of unit testing is preferable to simulation-based
tests, because the identity must hold exactly, and fails with high probability if the functions
computing conditional probabilities are incorrect.

Analogously, the updates for variational Bayes were tested by checking that they returned
local maxima of the variational lower bound.
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2. To test the MCMC algorithms themselves, we used the Geweke test (Geweke, 2004). This
can be thought of as an “integration test,” since it checks that all of the components of the
sampler are working together correctly. This test is based on the fact that there are two
different ways of sampling from the joint distribution over parameters θ, latent variables z,
and data y. First, one can sample forwards from the model. Second, one can begin with a
forwards sample and alternate between (a) applying the MCMC transition operator, which
preserves the posterior p(θ, z |y), and (b) resampling y from p(y |θ, z). If the implementation
is correct, these two procedures should yield samples from exactly the same distribution. One
can check this by checking P-P plots of various statistics of the data.

The Geweke test is considered the gold standard for testing MCMC algorithms. It can detect
surprisingly subtle bugs, because the process of resampling the data tends to amplify small
biases in the sampler. (E.g., if the MCMC operator slightly overestimates the noise, the data
will be regenerated with a larger noise; this bias will be amplified over many iterations.) The
drawback of the Geweke test is that it gives no indication of where the bug is. Therefore, we
recommend that it be run only after all of the unit tests pass.

3. The ML estimators were tested on toy distributions, where the ML could be computed ana-
lytically, and on very small instances of the clustering and binary models, where it could be
computed through brute force enumeration of all latent variable configurations.

4. Because we had implemented a variety of ML estimators, we could check that they agreed
with each other on easy problem instances: in particular, instances with extremely small or
large single-to-noise ratios (SNR), or small numbers of data points.

The vast majority of bugs that we caught were caught in step 1, only a handful in steps 2 and
3, and none in step 4. We would recommend using 1, 2, and 3 for any work which depends on ML
estimation. (Steps 1 and 3 are applicable to partition function estimation more generally, while the
Geweke test is specific to directed models.) Step 4 may be overkill for most applications because
it requires implementing multiple estimators, but it provides an additional degree of reassurance in
the correctness of the implementation.

The techniques of this section test only the mathematical correctness of the implementation, and
do not guarantee that the algorithm returns an accurate answer. The algorithm may still return
inaccurate results because the MCMC sampler fails to mix or because of statistical variability in
the estimator. These are the effects that the experiments of this paper are intended to measure.
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