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Substantial research on structured sparsity has contributed to
analysis of many different applications. However, there have been few
Bayesian procedures among this work. Here, we develop a Bayesian
model for structured sparsity that uses a Gaussian process (GP) to
share parameters of the sparsity-inducing prior in proportion to fea-
ture similarity as defined by an arbitrary positive definite kernel.
For linear regression, this sparsity-inducing prior on regression coef-
ficients is a relaxation of the canonical spike-and-slab prior that flat-
tens the mixture model into a scale mixture of normals. This prior
retains the explicit posterior probability on inclusion parameters—
now with GP probit prior distributions—but enables tractable com-
putation via elliptical slice sampling for the latent Gaussian field. We
motivate development of this prior using the genomic application of
association mapping, or identifying genetic variants associated with
a continuous trait. Our Bayesian structured sparsity model produced
sparse results with substantially improved sensitivity and precision
relative to comparable methods. Through simulations, we show that
three properties are key to this improvement: i) modeling structure
in the covariates, ii) significance testing using the posterior probabil-
ities of inclusion, and iii) model averaging. We present results from
applying this model to a large genomic dataset to demonstrate com-
putational tractability.

1. Introduction and Motivation. Sparsity is an important tool in applied statistics from
three perspectives. First, in the settings where there are many more features than samples (so-
called p� n problems), employing a sparsity-inducing prior, or penalty term, has proven to be
effective for regularization. For regression, the likelihood-maximizing parameters in the unregular-
ized p� n setting correspond to a continuum of solutions in a high-dimensional linear subspace.
Many of these solutions will result in overfitting, in which the samples are well-captured by the pa-
rameters, but the model generalizes poorly for out-of-sample data. Overfitting is typically avoided
by penalizing parameters, and in the Bayesian setting this corresponds to specifying a prior for the
coefficients. In high dimensional problems, penalties that remove features by setting their contribu-
tions to 0 are ideal: rather than choosing the likelihood-maximizing parameters with the smallest
Euclidean norm, overfitting may be overcome through model selection, or choosing feature set with
the smallest number of elements. Model selection is performed for penalized regression by minimiz-
ing the `0 norm of the feature inclusion parameters. In practice, however, this is an exponentially
large search space with 2p possible solutions; convex relaxations provide popular and effective ap-
proximate objectives and enable computational tractability. Continuous Bayesian sparsity-inducing
priors, such as the double-exponential (Hans, 2009) and the horseshoe (Carvalho et al., 2009), as
well as explicit penalization approaches such as `1 (Lasso) (Tibshirani, 1996) and elastic net (Zou
and Hastie, 2005), have been used effectively for such relaxation. Mapping these sparse feature
parameters in the relaxed space back to the corners of a p-hypercube, in order to determine which
features are included and which are excluded, must be performed thoughtfully, however.

Second, sparse priors often enable computational tractability by explicitly modeling a lower di-
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mensional feature space (Tropp and Wright, 2010). Such computational savings have often been
difficult to realize in practice; for example, the LARS algorithm for `1 regularized regression con-
siders all features at each iteration (Efron and Hastie, 2004). One explanation for this behavior is
that, in general, these methods were not optimized for the p� n setting. Here we take advantage
of sparsity to improve tractability in parameter estimation.

Third, sparsity, and model selection more generally, are crucial to the scientific goal of discov-
ering which features are useful for our statistical task and which may be safely ignored (O’Hara
and Sillanpää, 2009; Breiman, 2001). In problems across the sciences and beyond, estimating the
relative contribution of each feature is often less important than estimating whether or not a fea-
ture contributes at all (Petretto et al., 2010). The downstream value of selecting a small subset
of features is in creating a small number of testable hypotheses from which we can generalize sci-
entific mechanisms (Efron, 2008). Occam’s Razor motivates the `0 penalty; conversely, estimating
a contribution from every feature contradicts a simple explanation and, downstream, produces a
more complex hypothesis to experimentally validate and to generalize across correlated scientific
samples. The approach of model selection using some approximation to the `0 penalty has other
downstream benefits as well. When the inclusion of a specific feature is modeled explicitly, so that
the posterior probability of inclusion is estimated, we decouple the estimation of the effect size
and the inclusion of the feature (Bottolo et al., 2011). This has the effect of removing the Zero
Assumption (ZA) from the statistical test, which is the assumption that coefficients with effects
near zero are null associations and should be excluded (Efron, 2008); the ZA is often false for a
specific application, as truly alternative associations often have effect sizes near zero. Separately
modeling signals and noise using a hierarchical model leads to more natural tests for association
directly on the inclusion variable, and improves statistical power to detect associated predictors
with small effects (Polson and Scott, 2010).

We examine the development of a Bayesian structured sparse prior within a linear regression
framework. Let y ∈ Rn be the continuous scalar responses for n samples. Let X be an n× p matrix
of predictors. We will use a linear regression model with independent Gaussian noise:

y |X,β, ν ∼ N (Xβ, ν−1In),

where β ∈ Rp is the vector of coefficients, ν > 0 is the precision of the residual, and In is the n× n
identity matrix. The coefficients β are often referred to as effect sizes, because each βj captures
the slope of the linear effect of predictor j on the continuous response (Kendziorski et al., 2006;
Stephens and Balding, 2009).

1.1. Bayesian approaches to sparsity. Bayesian sparsity uses a prior distribution for model se-
lection to encourage a model to incorporate as few features as possible. A sparse prior on regression
coefficients creates an a priori preference for β to be nonzero for only a subset of the predictors.
In the absence of a detectable effect on the conditional probability of y, a sparsity-inducing prior
will encourage the βj coefficient corresponding to predictor j to be 0, indicating no linear associa-
tion between predictor j and the response, and excluding predictor j from the model. Parameter
estimation in sparse Bayesian regression is performed by examining the posterior distribution on
the βj coefficients.

The canonical Bayesian sparsity-inducing prior is the spike-and-slab prior (Mitchell and Beauchamp,
1988; George and McCulloch, 1993). This two-groups prior introduces sparsity into the model via
latent binary variables for each predictor that capture whether that predictor is modeled as noise
or signal. That is, each dimension of β is taken to be a mixture of a Dirac delta function at zero
(a spike, which assigns positive probability to the event that predictor j has exactly zero effect
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on the response) and a continuous density function on R (a slab, which regularizes the included
predictor, allowing a wide range of possible contributions). The spike-and-slab formulation is

βj |ω, τ ∼ ω δ(βj) + (1− ω)N (βj | 0, τ2) ,(1)

where we are modeling the “slab” as a zero-mean Gaussian with variance τ2. The mixing parame-
ter ω ∈ [0, 1] determines the expected proportion of sparse (excluded) components. This spike-and-
slab prior is an elegant and direct approach to sparsity, in line with `0 regularization: it results in
posterior hypotheses that directly quantify whether or not a particular predictor is relevant to the
response. These hypotheses are explicitly represented as latent inclusion variables zj = {0, 1}, which
indicate whether predictor j is included or excluded from the model. When zj = 0, the correspond-
ing βj is distributed according to a point mass at zero and when zj = 1, βj is marginally Gaussian.
Thus, we may interpret the posterior probability of zj as the probability that predictor j is in-
cluded in the model, while the estimated effect size of predictor j (conditioned on the event zj = 1)
is modeled separately in βj . There are a number of variations on this version of the spike-and-slab
prior, all of which, to our knowledge, include an indicator variable that captures the inclusion of
predictor j (Smith and Kohn, 1996; Ishwaran and Rao, 2005; Guan and Stephens, 2011). This
elegant interpretation motivates the use of a two-groups prior for the regression framework when a
sparse solution is desirable.

One of the challenges of the two-groups prior is the difficulty of managing the hypothesis space
for the zj variables, which has 2p discrete configurations. The need for computational tractability
has catalyzed the burgeoning field of continuous Bayesian sparsity-inducing priors; these priors
encourage the removal of features from the model, but in a computationally tractable one-group
framework (Polson and Scott, 2010). One continuous prior is the Laplacian, or double exponential,
prior, the Bayesian analog to the Lasso (Tibshirani, 1996; Hans, 2009). Another approach, the
Gaussian-inverse gamma prior, called the automatic relevance determination (ARD) prior in the
machine learning literature (Tipping, 2001), induces sparsity via a scale mixture of Gaussians with
an inverse gamma mixing measure on predictor-specific variance terms. This class of scale mixtures
corresponds to the Student’s t-distribution when integrating over the predictor-specific variance
parameters, and, when the degrees-of-freedom parameter ν = 1, it reduces to the Cauchy distri-
bution; both of these have been suggested as approaches to one-group Bayesian sparsity (Polson
and Scott, 2010). Other more recent continuous sparsity-inducing priors include the horseshoe (Car-
valho et al., 2009, 2010), the generalized double Pareto (Armagan et al., 2011a), the three parameter
beta (Armagan et al., 2011b), and the Dirichlet Laplace prior (Bhattacharya et al., 2012). These
continuous priors differentially modulate shrinkage effects for large and small signals while avoid-
ing the computational challenges associated with discrete sparsity models. In particular, each of
these one-group continuous priors has substantial density around zero, shrinking noise to zero, and
heavy, sub-exponential tails, allowing large signals to remain intact, without explicitly parameter-
izing predictor inclusion (Mohamed et al., 2011). For a review of Bayesian sparsity-inducing priors,
see Polson and Scott (2010).

While one-group priors are appealing for computational reasons as continuous relaxations of
discrete model-selection problems, they obfuscate the core statistical questions surrounding esti-
mates and tests of inclusion (Richardson et al., 2010). The posterior distribution of parameter βj
captures the marginal effect size of the predictor j on the response, and, in the context of model
selection, a zero-valued βj excludes predictor j from the model. Under continuous one-group priors
and practical likelihoods, however, βj = 0 measure zero under the posterior. That is, none of the βj
variables will be exactly zero with positive probability. In practice, often a global threshold on the

3



estimated effect size is defined to determine model inclusion based on the estimated β̂j variables.
Using these posterior distributions to evaluate model inclusion is not statistically well-motivated
with finite samples: features with small effect sizes may be excluded because the resulting bimodal
distribution of significant effect sizes explicitly excludes predictors with estimated effects in a region
around zero. We prefer to avoid this zero assumption and instead use a two-groups prior.

1.2. Structured sparsity. One assumption of the generic Bayesian regression model is that the
predictors are uncorrelated. In practical applications, this assumption is frequently violated (Breiman,
2001). The problem of correlated or structured predictors has been studied extensively in the classic
statistical literature (Jacob et al., 2009; Liu et al., 2008; Chen et al., 2012; Jenatton et al., 2011a;
Kim and Xing, 2009), and a number of methods that explicitly represent structure in the predic-
tors have been introduced for regression. Group Lasso (Yuan and Lin, 2005) uses a given disjoint
group structure and jointly penalizes the predictors group-wise using a Euclidean norm. This model
induces sparsity at the group level: the penalty will either remove all features within a group or
impose an `2 penalty uniformly across features within a group. This creates a dense-within-groups
structure, as groups of predictors included in the model will not be encouraged to have zero coeffi-
cients. The sparse group Lasso (Friedman et al., 2010) extended this idea by including an `1 penalty
on the included groups’ coefficients, creating a sparse-within-groups structure. A Bayesian group
Lasso model has also been developed (Kyung et al., 2010), where sparsity is encouraged with a
normal-gamma prior on the regression coefficients, and the group structure is encouraged by shar-
ing the gamma-distributed variance parameter of the sparsity-inducing prior within a group. This
prior will also have a dense-within-groups structure, as all included coefficients within a group will
have a normal-gamma prior with shared parameters, which will not induce zeros within included
groups.

Structured sparsity has proven to be useful in a wide variety of practical applications such as
image denoising, topic modeling, and energy disaggregation (Kolter et al., 2010; Jenatton et al.,
2011b). Despite its utility in applied statistics, few proposals have been made for Bayesian struc-
tured sparsity models; exceptions include Kyung et al. (2010) and Bottolo et al. (2011). This area
of research is ripe for innovation, as the Bayesian paradigm allows us to incorporate structure natu-
rally for heterogeneous data in a hierarchical model to improve task performance. Applied Bayesian
statisticians in particular may find that a Bayesian structured sparse framework needs little tailor-
ing to be customized to a specific application other than a careful definition of the domain-specific
structure on the predictors, in contrast to the practical realities in the broader literature (Kim and
Xing, 2009; Jenatton et al., 2011b).

In a Bayesian context, it is natural to impose structure through the prior probability of the sparse
parameters, sharing local shrinkage priors between similar predictors (Kyung et al., 2010). Such
hierarchical models are straightforward to describe, and the Bayesian formalism allows flexibility
in the semantics of the structural representation. For example, a common theme among many
structured sparsity methods, including group Lasso, Bayesian group Lasso, and tree Lasso (Kim,
2009), is that the structure among the predictors is defined as a discrete partition of feature space.
This disjoint encoding of structure is not always possible, however, and many applications require
a more general notion of similarity between predictors. A flexible Bayesian approach would enable
application-driven “soft” measures of inclusion-relevant similarity. This representational flexibility
comes at a computational cost, however, and such structured sparsity models must be designed
with considerations for the trade-off between the complexity of the representation and inferential
tractability.

In this paper, we describe a flexible Bayesian model for relaxed two-groups sparse regression
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(a) SNP not associated with trait (b) SNP associated with trait

Fig 1: Examples of an SNP-trait pair with no evidence of association, and a SNP-trait
pair with evidence of association. For both, x-axis is a single SNP; y-axis is a single quantitative
trait.

that includes a positive definite matrix representing an arbitrary, continuous measure of similarity
between all pairs of predictors. Despite considerable work on structured sparse models in the clas-
sical framework, we are not aware of substantial prior work on Bayesian structured sparse methods
beyond those mentioned above. We ground our modeling approach with a specific motivating do-
main: the problem of associating genetic variants with quantitative traits, which we describe in the
proceeding section. In addition to our general-purpose model, we describe a Markov chain Monte
Carlo sampler for parameter estimation that enables the model to be applied to large numbers of
predictors by exploiting the structure of the predictors to improve mixing. We examine the empiri-
cal performance of our approach by applying our model to simulated data based on the motivating
example of identifying genetic variants associated with a quantitative trait. Finally, we describe the
application of our model to identify genetic variants that regulate gene expression levels across 40
million genetic variants and more than 17, 000 genes, and we compare results from our model to
results from a univariate approach to association mapping.

2. Motivating application: associating genetic variants with quantitative traits. Bayesian
structured sparsity for linear regression is well-motivated by the challenge of identifying genetic
variants that are associated with a quantitative trait, such as expression levels of a gene. For this
problem, y ∈ Rn represents the quantitative trait measurement across n samples, and the predic-
tors are single nucleotide polymorphisms (SNPs). We assume that each individual has two copies
of each nucleotide and that there are exactly two possible alleles, or variants, for each SNP. SNPs
are encoded as Xi,j ∈ {0, 1, 2}, which represent the number of copies of the minor (or less frequent)
allele for individual i ∈ 1, . . . , n at one SNP j = 1, . . . , p. The Bayesian testing problem is then to
determine which of the SNPs are associated with a given continuous response, or quantitative trait;
in other words, we wish to identify each SNP j where the true effect size on the trait, parameterized
through the βj coefficients, is non-zero (Figure 1).

The de facto approach to identifying genetic associations (called association mapping) is to
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regress trait on SNPs for n individuals, and then examine the magnitude of the estimated linear
coefficient β̂ (Kendziorski et al., 2006). Testing for association is performed by computing p-values
or Bayes factors that compare the likelihood given β = 0 (null hypothesis, no effect) versus β 6= 0
(alternative hypothesis, effect) (Stephens and Balding, 2009). Modeling and testing is often per-
formed in a univariate way, i.e., for a single trait and p distinct SNPs, we will have p linear models
and p separate tests, one for each SNP. Typically, the number of individuals, n, is in the range of
100 – 10, 000, and the number of SNPs, p, is in the range 10, 000 – 40, 000, 000. The additional caveat
is, in current studies, there are often a large number of quantitative traits, as in our application
below.

A few approaches have combined these univariate models into a single multivariate regression
model, multi-SNP association mapping, by including all p SNPs as the predictors. Then a sparsity-
inducing prior may be placed on the coefficient vector β in order to regularize appropriately in
this p� n regression with more predictors (SNPs) than samples. A sparse prior also matches our
belief that a small subset of SNPs will have a measurable regulatory effect on a quantitative trait.
Indeed, multi-SNP association mapping is an elegant example of an application of sparse models
where the underlying signal is thought to be truly sparse, as opposed to the data being collected
in such a way as to produce sparse signals (Tibshirani, 2014).

Sparse multivariate regression controls the combinatorial explosion of univariate approaches
by assuming additive effects across SNPs. When nonadditive interactions among the SNPs are
present—called epistatic effects—these additive models are useful approximations (Storey et al.,
2005), as current methods to detect epistatic effects are infeasible due to a lack of statistical power.
Many multi-SNP association studies use greedy approaches to sparse regression. Forward stepwise
regression (FSR) (Brown et al., 2013; Stranger et al., 2012) is one greedy approach, with stopping
criteria defined by model scores such as AIC or BIC (Schwarz, 1978). The model starts with zero
included SNPs, and a SNP is included in the model if the model selection score improves maxi-
mally with respect all other excluded SNPs; the algorithm iterates, including a single SNP on each
iteration, until none of the excluded SNPs improves the current score. Conditional analyses have
been proposed (Lango Allen et al., 2010; Yang et al., 2012, 2010) that identify the most significant
QTL association, and search for additional single or pairwise associations conditional on the associ-
ations identified thus far. Penalized regression, specifically Lasso, has also been used for multi-SNP
association mapping (Hoggart et al., 2008; Wu et al., 2009).

Other model-based methods for detecting genetic associations in the additive setting have used a
combination of sparse regression and model averaging (Brown et al., 2002). Model averaging protects
against the substantial type I and type II errors that result from a non-robust point estimate of
the independently associated SNPs. For example, if two SNPs are perfectly correlated, or in perfect
LD, and only one is a causal SNP, a sparse method applied to the sample may select either one
of these SNPs with similar frequency. In this case, there is insufficient information from which to
determine the causal variant, and model averaging protects us from making the wrong choice. A
recent approach used the Lasso, or `1 penalized regression, along with model averaging (Valdar
et al., 2012) based on ideas from stability selection (Meinshausen and Peter, 2010). Bayesian model
averaging has not often been applied to this problem for a number of reasons, one of which is
that the LD structure of the SNPs slows down the mixing rate of sampling methods considerably.
Exceptions include the MISA model (Wilson et al., 2010), which uses Bayesian model averaging to
address the correlation in SNPs and also tests for association directly on the posterior probability
of inclusion. A recent Bayesian multivariate approach not only included p SNPs but also q traits,
developing a multi-trait regression model with a matrix response (Bottolo et al., 2011). This model
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Fig 2: Recombination and linkage disequilibrium in the human genome. (A) A single chro-
mosome from each grandparent recombines in the parents; neighboring loci in the child chromosome
will have identical grandparent of origin, except across sites of recombination. (B) Heatmap of the
absolute value Pearson’s correlation among a thousand SNPs in a chromosomal region showing the
block-like LD-structure in the genome.

used a sparse hierarchical prior on the coefficients and clever methods for parameter estimation
in this high-dimensional space. Other Bayesian methods have used approximations to the spike-
and-slab prior (Guan and Stephens, 2011), but not included structure on the predictors or model
selection.

In this application there is substantial structure among the predictors. Linkage disequilibrium
(LD) refers to the non-random assortment of genetic variants. When offspring inherit one complete
set of chromosomes from each of their parents, each pair of chromosomes that a parent inherited
from his parents recombines in a handful of positions, so that a child receives a combination of her
grandparents’ chromosomes for autosomal, or non sex-linked, chromosomes (Figure 2). But because
of the relative infrequency of a recombination event, neighboring sites on a child’s chromosome are
likely to be inherited together from the same grandparent (Figure 2) (Fledel-Alon et al., 2011).
Local, or background, LD tends to result in block-like correlation structure among SNPs on a
chromosome (Figure 2) (Gabriel et al., 2002). The correlated groups of SNPs are neither well-defined
nor mutually exclusive, and these correlations may exist across long genomic distances (Consortium
et al., 2005).

In order to be useful in generating hypotheses for downstream experimental validation and for
use in clinical research, the goal of association mapping—and fine mapping in particular—is to
identify the causal SNP for a given trait, or the SNP that, if modified, would affect a change in
that trait through biological machinery. The correlation structure between SNPs, however, means
that the identity of the causal SNP is uncertain within the set of well correlated SNPs with a
similar association significance. Current practice with univariate and hierarchical approaches select
the SNP with the greatest significance, but the assumption of exactly zero or one associated SNPs
does not match our understanding of genomic regulation (Stranger et al., 2012; Wood et al., 2011).
This assumption dramatically oversimplifies the solution to the point of not producing robust,
interpretable results (Maranville et al., 2011; Guan and Stephens, 2011; Mangravite et al., 2013).
The biological scenario where multiple genetic loci affect a trait through independent mechanisms
is called allelic heterogeneity (Wood et al., 2011). We take a sparse multivariate approach to test
for all independently associated SNPs.

A further difficulty of this application is that, because we observe a subset of SNPs in our data,
the causal SNP may be missing. Tag SNPs are correlated with a causal SNP and may confound
the results: if there are multiple tag SNPs for an unobserved causal QTL, it is possible that they
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split the effect of the causal QTL, appearing independently associated with the trait and acting as
surrogate predictors in the association model.

3. A model for Bayesian structured sparsity. We now describe our prior for two-group
sparse regression using a Gaussian field. We assume the data are n samples with p predictors {xi, yi}ni=1,
xi ∈ Rp, and yi ∈ R. We will encode this response as an n-vector y ∈ Rn and the predictors as a
matrix X ∈ Rn×p. The response variables are conditionally independent, given the predictors and
three parameters:

y |X,β, β0, ν ∼ N (β01n +Xβ, ν−1In),(2)

where we have separated out the offset β0 ∈ R, 1n is a length-n column vector of ones, β ∈ Rp is
the vector of weights, and ν > 0 is the residual precision. We place a (conjugate) gamma prior on
the residual precision:

ν ∼ Gam(aν , bν).(3)

For concreteness, we assume the following parameterization of the gamma distribution:

p(x | a, b) =
ba

Γ(a)
xa−1 exp{−bx}.(4)

We place a zero-mean Gaussian prior on the offset:

β0 ∼ N (0, (λν)−1) .(5)

It is useful to recall that the Dirac delta function can be interpreted as the limit of a zero-mean
Gaussian distribution as the variance goes to zero. With this in mind, when conditioning on the
latent spike-and-slab inclusion variables zj (where zj = 0 indicates exclusion through a “spike”
and βj = 0, and zj = 1 indicates inclusion, and the associated βj is drawn from the “slab”), we
form a degenerate diagonal covariance matrix Γ, where Γj,j = zj , and write a single p-dimensional
Gaussian prior that captures both included and excluded predictors:

β | ν, λ,Γ ∼ N (0, (νλ)−1Γ) .(6)

Here λ is an inverse squared global scale parameter for the regression weights, on which we place
a gamma prior:

λ ∼ Gam(aλ, bλ) .(7)

We follow Jeffreys (Jeffreys, 1998; Polson and Scott, 2010) and scale the global shrinkage parameter
λ by the residual precision ν.

3.1. Structure from a Gaussian field. We introduce structure into the sparsity pattern of β by
replacing independent zj—which in Eq. 1 would be Bernoulli with P (zj = 0) = ω—with a probit
link (Bliss, 1935; Albert and Chib, 1993) driven by a latent Gaussian field

γ ∼ N (0,Σ) .(8)

The diagonal Γj,j is then determined by whether γj exceeds a threshold γ0, i.e., Γj,j = 1(γj > γ0).
We assume that the positive definite covariance matrix Σ is known; this matrix is used to specify
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the dependence structure for inclusion. We complete the hierarchical model by placing a Gaussian
prior on the probit threshold γ0:

γ0 ∼ N (µγ , vγ) .(9)

The marginal prior probability of inclusion of predictor j is computed directly via

P (βj 6= 0) = 1− Φ

(
γ0

Σj,j

)
,(10)

where Φ(·) is the cumulative distribution function of the standard normal. Under the often reason-
able restriction that Σ be a correlation matrix with ones on the diagonal, the expected number of
included predictors is is p · (1− Φ(γ0)). Conditioned on data, the posterior probability of Γj,j is the
posterior probability of inclusion (PPI) for the jth predictor.

In Equation (8), the covariance matrix Σ may be the identity matrix, in which case this reduces
to an unstructured Bayesian model of sparse regression of Eq. 1, with ω = Φ(γ0). This formulation
also encompasses Bayesian (disjoint) group sparse regression when Σ has a block diagonal structure
with constant non-negative values within each block. However, the advantage of this construction
is the ability to include structure in the sparsity-inducing prior, and so Σ can be an arbitrary
positive definite matrix. Of particular interest is the case where the matrix Σ captures the pairwise
similarity between the predictors, i.e., the Gram matrix of a Mercer kernel. As with structured
sparse regression models in the group Lasso and related literature, predictors that are similar will
have correlated priors on the model exclusion parameters through the covariance matrix. This has
the effect of smoothing the γj parameters for similar predictors using a Gaussian process (GP). GP
structure has been considered before for probit regression models (Girolami and Rogers, 2006), but
neither appear to have been used to induce (structured) sparsity.

3.2. Example: Structured Matrices for SNPs. The choice of kernel function requires some thought
for any application. For the problem of association mapping, we considered a number of possible
Mercer kernels that reflect the similarity between SNPs, including:

• covariance: Σcov = XTX

• absolute value Pearson’s correlation: Σcor
j,k =

∣∣∣∣ (Xj−X̄)T (Xk−X̄)√
(Xj−X̄)T (Xj−X̄)

√
(Xk−X̄)T (Xk−X̄)

∣∣∣∣, where X̄ is

the empirical mean of each feature Xj across n samples.
• mutual information: Σmi, a positive definite kernel based on a generalization of a Fisher

Kernel (Seeger, 2000).
• centimorgan: ΣcM , a quantification of genetic linkage between two SNPs (empirically derived,

e.g., (Durbin et al., 2010)).

We found that the choice of kernel within this set made minimal difference in the simulation
results, and for simplicity we chose the absolute value Pearson’s correlation kernel for our results.
In practice, we ensure that each of these matrices are positive definite by including a small regu-
larization term on the diagonal.

Kernel functions are application specific; an arbitrary Mercer kernel may be designed for other
applications. While our choice of kernel in this application is effective, it is a semantic approximation
to our true definition of “similar” in the setting of association mapping. In particular, using this
kernel it is difficult to discriminate independently functional, but correlated, SNPs from similarly
functional, but correlated, SNPs. In other words, when two SNPs are well correlated, and we find
that they both are associated with a gene via a univariate model, then two scenarios are possible: i)
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conditioning on one of the SNPs in the same univariate model, the other SNP is no longer correlated
with the gene (the SNPs are similarly functional), or ii) in this conditional framework, the other
SNP remains associated with the gene levels (the SNPs are independently functional). Ideally, our
kernel would indicate high similarity for correlated and similarly functional SNP pairs, but low
similarity for correlated and independently functional SNP pairs. Current work is focused on using
additional biological information, such as co-localized cis-regulatory elements (Brown et al., 2013)
and evolutionary signatures (Rasmussen et al., 2014), to achieve this quantification of similarity
and improve association mapping. This framework would also allow us to invert the problem to
investigate, in an iterative way, evolutionary and genomic signatures of functional SNPs through
evaluation of specific kernels in discovering these truly causal SNPs. Our Bayesian framework
enables data-driven inference of the relevant similarity between predictors, referred to as adaptive
basis functions, in which the kernel function is parameterized and those parameters are estimated
via the inference process. While we did not estimate covariance parameters here, we expect this
will be useful as the biological semantics of the kernels become more complex.

Another comment about the kernel function focuses on the possible concern that the data are used
twice: once to estimate the Gram matrix and again during inference to estimate model parameters.
Given copious available genomes, we suggest that the Gram matrix for this application be estimated
using reference genomic data, ideally from the same population as the study data. Using reference
data to estimate the Gram matrix is well motivated because, in general, we expect QTLs to replicate
across studies (Brown et al., 2013). Thus, although there are caveats, a causal SNP in the study
sample is likely to be causal in the reference sample, and, by this reasoning, similarities between
SNPs should be meaningfully transferable.

4. Parameter estimation with MCMC. In many applications, the central quantities of
interest are the marginal PPIs. In the context of genetic association studies, PPIs allow us to test
for association of the SNP with a trait, which is the essential parameter for finding biologically
functional genetic variants. These can be estimated via Markov chain Monte Carlo (MCMC) using
posterior samples of γ and γ0. Of particular interest is the estimation of the posterior inclusion while
marginalizing out the effect size captured by β. The degenerate Gaussian form of Eq. 6 makes it
possible to perform this marginalization in closed form and view the posterior on γ and γ0 through
a regression marginal likelihood:

p(y |X,γ, γ0, ν, λ) =

∫ ∫
N (y |β01n +Xβ, ν−1In)N (β |0, (νλ)−1Γ)N (β0 | 0, (νλ)−1) dβ dβ0

=

∫
N (y |β01n, ν

−1(λ−1XΓXT + In))N (β0 | 0, (νλ)−1) dβ0

= N (y |0, ν−1(λ−1(1n1
T
n +XΓXT) + In))(11)

In the Markov chain simulation, we update each of the parameters γ, γ0, λ, and ν in turn (Bottolo
et al., 2011).

Updating γ. We use elliptical slice sampling (ESS), a rejection-free Markov chain Monte Carlo
(MCMC), for defining and simulating transition operators on γ (Murray et al., 2010). ESS sam-
ples efficiently and robustly from latent Gaussian models when significant covariance structure is
imposed by the prior, as in Gaussian processes and the present structured sparsity model. The
conditional density on γ is the product of the likelihood in Eq. 11 and prior in Eq. 8. ESS generates
random elliptical loci using the Gaussian prior and then searches along these loci to find acceptable
points for slice sampling. When the data are weakly informative and the prior is strong, as is the
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case here, the elliptical loci effectively capture the dependence between the variables and enable
faster mixing. Here, using ESS for γ enables us to avoid directly sampling over the large discrete
space of sparsity patterns that makes unstructured spike-and-slab computationally challenging. We
also note that elliptical slice sampling requires no tuning parameters, unlike alternative procedures
such as Metropolis–Hastings or Hamiltonian Monte Carlo, which may mix faster but are often
difficult to tune and make robust.

Updating γ0 and λ. The scalar γ0 specifies the probit threshold and, conditioned on γ, it de-
termines which entries on the diagonal of Γ are zero and which are one. The scalar parameter λ
determines the scale of the “slab” portion of the weight prior. Neither of these conditional densities
has a simple closed form, but they can each be efficiently sampled using the exponential-expansion
slice sampling algorithm described in (Neal, 2003).

Updating ν. The scalar ν determines the precision of the residual Gaussian noise of the response
variables. With the choice of a conjugate gamma prior distribution, the conditional posterior is also
gamma:

p(ν |y,X,Γ, λ) ∝ N (y |0, ν−1(λ−1(1n1
T
n +XΓXT) + In)) Gam(ν | aν , bν)(12)

= Gam(ν | a(n)
ν , b(n)

ν )(13)

a(n)
ν = aν +

N

2
(14)

b(n)
ν = bν +

1

2
yT(λ−1(1n1

T
n +XΓXT) + In)−1y .(15)

5. Results. To evaluate our model, we first used simulated trait data with existing SNP data
to compare methods where the complexity of the predictor relationships was real, but the truth
was known. We compared our model against a number of other methods for association map-
ping using precision-recall curves. Then, using these same SNP data, we performed genome-wide
association mapping with 16, 424 quantitative traits, and compared the results from our method
with results from univariate Bayesian association mapping. The genomic data, from the HapMap
phase 3 project (Consortium et al., 2010), include 608 individuals that we imputed to give us 40
million SNPs per individual; a complete description of these data, including quality control and
pre-processing performed, can be found in Stranger et al. (2012) and Brown et al. (2013).

5.1. Simulation Results. Using simulations, we evaluated the performance of our model in an-
alyzing realistically complex genetic relationships, but with known ground truth. We simulated
association data based on quantitative traits sampled from a linear model with real SNP data as
the predictors. In particular, given publicly available SNP data, we first generated effect sizes for a
small subset of randomly chosen SNPs. Next we generated a quantitative trait based on weighted
linear combinations of those included SNPs.

Simulating data.. From the HapMap data, we selected 200 SNPs at random from all SNPs in one
genetic locus, where loci were chosen from regions where we expect SNPs to be functional (see
below). We then selected at random q ∈ [2, 6] QTLs per trait chosen from these 200 SNPs Q. We
generated weights β, representing the effect size, from a βj ∼ Be(0.1, 0.1) distribution, and we
rescaled βj to lie between (−1, 1). The rationale behind this simulation was to allow for effect sizes
that were closer to 1 or -1 than to zero; this scenario will favor the methods that make the zero
assumption over ours. After generating a quantitative trait from yi ∼ N (Qiβ, 1), we projected each
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trait to the quantiles of a standard normal (i.e., quantile normalized them). We repeated this for
696 arbitrarily chosen genetic loci. We call these data Sim1.

A second simulation, SimTag, considers the possibility that a causal QTL may not be included
in the set of SNPs, as may be the case with genotyping data. In this simulation, we quantified how
often the methods incorrectly identify a tag SNP, or a SNP that is correlated with the causal SNP,
when the causal SNP is missing. In order to generate these data, we used an identical procedure
as for generating quantitative traits in Sim1, except we selected between 2 and 8 eQTLs (s) and
chose some subset of those r to remove from the matrix Q from a set of 200 + r randomly chosen
cis-SNPs, where s− r > 0. The subsequent steps—generating a trait using s eQTLs and quantile
normalizing the trait across individuals—are identical to the steps in Sim1.

Methods for comparison. Our evaluations compared results from a number of different methods,
some of which have been used for association mapping and others which are common methods for
model selection. We ran Lasso regression fitted using Least Angle Regression (LARS), and identified
the penalty term by selecting the point in the LARS path with the smallest Bayesian information
criterion (BIC) score (Hoggart et al., 2008; Efron and Hastie, 2004; Schwarz, 1978). We ran forward
stepwise regression (FSR), using the BIC score to determine when to stop adding predictors to the
model (Brown et al., 2013). We ran Bayesian sparse regression with an ARD prior on the weights
(ARD) (Tipping, 2001). We applied our model of Bayesian sparse regression with Σ = Ip (identity
matrix for the covariance of the Gaussian field) to study our scale mixture representation of spike-
and-slab regression without structure on the predictors (BSR). We used 500 iterations of burn-in
for ESS and 1000 iterations for collection. We also ran our model of Bayesian structured sparse
regression with Σcor to model the correlation structure of the predictors (BSSR) with the same
number of ESS iterations as BSR. For BSSR, we also report results without model averaging by
selecting the configuration of the inclusion parameters with the best posterior probability during
sampling (MAPS).

We evaluated the results of applying our method to these simulated data using precision-recall
(PR) curves. In our simulations, only the causal SNPs, or the SNPs selected in the simulation
with a non-zero effect, were considered truly alternative; nearby SNPs that were well correlated
(or perfectly correlated) with the causal SNP but had no simulated effect on the trait were con-
sidered to be truly null in order to compute the true positive rates (TPR) and false discovery
rates (FDR) (Storey and Tibshirani, 2003). Results for FSR, Lasso, and ARD are determined by
thresholding the estimated effect sizes β̂; results from BSR, BSSR, and MAPS are determined by
thresholding the estimated PPI.

Comparison on simulated data.. On Sim1, the comparative precision-recall curves show that BSSR
performs well across most levels of precision, particularly at high precision, or, equivalently, low
FDR (Figure 3). FSR appears uniformly to give the poorest performance; at a threshold of zero, the
recall of FSR remains below 0.5. In the genomics community, FSR is arguably the most common
method to perform multi-SNP analyses because of its intuitive simplicity (Stranger et al., 2012;
Brown et al., 2013). The ARD prior also performs poorly. ARD has a fairly consistent precision—
under 0.4—across a large range of recall values; this model does not have as much sparsity in the
results as the other methods. Lasso performs better than FSR and ARD across all levels of recall.
MAPS is a single point, because all PPI are either 0 or 1, so all thresholds between these points
have the same PR; the recall is high, although the precision is lower than for BSR at that same level
of recall. For biological feasibility, we consider the best comparison of the methods to be at a low
FDR, as an FDR of 50% indicates that there are equal numbers of true positive and false positive
biological hypotheses, decreasing their utility for expensive downstream analysis or experimental
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validation.
Three observations about the relative performance of these methods highlight the promise of our

Bayesian approach to structured sparsity. First, these simulations show the advantage of performing
association testing on the posterior probability of inclusion rather than the absolute values of the
regression coefficients themselves: all of our Bayesian sparse models perform better in the PR curves
than any of the coefficient-based models (FSR, Lasso, ARD) at low FDR. The subtle but important
distinction is that the coefficient-based models make the Zero Assumption (ZA) (Efron, 2008),
which is that the z-scores of the estimated effect sizes near zero come from null associations, or,
equivalently, that p-values near one represent null associations. Indeed, this is a central assumption
in the q-value procedure to calculate FDR (Storey and Tibshirani, 2003). Practically, by selecting
a global threshold for the βj variables, all associations with effect sizes of smaller magnitude than
the threshold are removed regardless of evidence for association.

PPI-based methods, however, do not make the ZA (Efron, 2008); in our two-groups model we have
an explicit unimodal, zero-centered distribution on the effect size of the included predictors. Other
dense-within-groups formulations have been proposed, including modeling the included predictors
as a mixture ofK � p zero-mean Gaussians or uniform distributions with their start or end points at
zero (Matthew Stephens, personal communication). We later suggest inducing sparse-within-groups
behavior by modeling the variance of each of these Gaussian distributions separately. This is the
benefit of using indicator variables in the global-local framework: each coefficient βj is regularized
globally (by parameter λ) but included or excluded locally (by coefficient-specific parameters γj),
forcing weak signals to the null group, but rescuing low effect size predictors through structure.
A drawback to our approach is that, for a similar FDR, the number of included variables in the
model is typically much higher than for methods that make the ZA (Gelman et al., 2012).

Second, there is evidence that adding structure to the covariates improves the ability to perform
association mapping: the precision recall curve for BSSR (structure) shows distinct improvement
over BSR (no structure) except in a short region around 0.5 recall. Previous work (Guan and
Stephens, 2011) has suggested that there is “no good reason to believe that the correlation struc-
ture of causal effects will follow that of the SNPs.” Our simulation results show that, while SNP
correlation is a gross proxy for the correlation structure of independent causal effects, explicitly
modeling SNP correlation does improve our ability to perform association mapping.

Third, model averaging appears to also confer an advantage over the MAP configuration, which
we observe when comparing the PRCs of MAPS and BSSR results. It appears that model aver-
aging protects against type I errors and the non-robust point estimates of MAP configurations,
recapitulating previous work (Valdar et al., 2012; Wilson et al., 2010).

The comparative results for SimTag reflects qualitatively similar performance, although the scale
of the precision is on half of the PRC figure for Sim1 (Figure 3). Interestingly, the performance of
MAPS did not decrease proportionally as much as the other methods.

While precision-recall curves present aggregate results on these simulated data, it is also in-
structive to study results from individual simulations. We considered the results of six different
methods applied to three simulated traits with 200 SNPs included in Sim1 (Figure 4). FSR appears
to predict the truly alternative predictors well across the three examples, but the number of FP
associations, and the substantial estimated effect size of those FP associations, hurt the precision
of the results. Echoing PR curve findings, ARD results are dense, with many more non-zero effects
relative to results from other methods. Lasso appears to have a high rate of false negatives, as
reflected in its low sensitivity: Lasso finds no associations in the third example. Furthermore, for
Lasso the FP predictors have estimates of the effect size equivalent to the effect size predicted for
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Fig 3: Precision-recall curves comparing five methods of association mapping using
sparse regression methods on simulated data. Precision-recall curves comparing the different
methods along recall (true positive rate; x-axis) versus precision (1 - FDR; y-axis). The legend shows
which curves correspond to which method. (A) Precision-recall curves for Sim1. (B) Precision-recall
curves for SimTag.

the TP predictors (e.g., first and second examples). BSR appears to identify the true positive val-
ues much of the time in these three examples, but appears to be confounded by correlation among
the predictors, increasing the PPI of correlated predictors, but often not to the level of the true
positives. BSSR has similar behavior because of its dense-within-groups behavior, and both show
greater sensitivity than other methods in these examples: BSSR has two FNs with a conservative
PPI threshold of 0.6, and BSR has three FNs. MAPS, the MAP configuration found during MCMC
with BSSR estimates each predictor inclusion as either 0 or 1; as a result, there are more FPs than
BSR and BSSR at similar sensitivity, but, in these examples, only three FNs.

5.2. Whole-genome cis-eQTLs. To validate that our Bayesian structured sparse regression model
could be applied to whole-genome association mapping studies, we ran our method with the Σcor

matrix on 16, 242 genes with gene expression levels quantified using microarray data on the same
608 HapMap phase 3 individuals sampled from 14 distinct worldwide regions (Stranger et al.,
2012). We compared the set of identified eQTLs in these data with the eQTLs we identified using
a univariate analysis for Bayesian association mapping, SNPTEST (Marchini et al., 2007).

Studies of expression quantitative trait loci (eQTLs) often limit the number of tests for association
by four orders of magnitude by restricting the set of SNPs tested for any gene to the SNPs in cis with
that gene, or local to that gene. Many studies have suggested that, given our current limitations
on sample size and the small effects of each eQTL on gene expression levels, we should restrict
ourselves to identification of cis-eQTLs because local effects tend to be larger and there are many
fewer tests, resulting in greater statistical power (Mangravite et al., 2013; Stranger et al., 2012,
2007; Morley et al., 2004). In this work, we restricted the SNPs tested for a given gene to those
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Fig 4: Three examples of results from six methods on simulated quantitative trait data.
x-axis represents the SNP predictors, ordered along the chromosome; x-axis represents the estimated
effect size (ARD, FSR, LAS) or the PPI (BSR, MAPS, BSSR). Truly alternative associations
are shaded with the height of the shading representing their effect size; negative effect sizes are
mirrored on the positive axis to highlight corresponding PPIs. Colors and shapes represent one of
six methods shown in the legend; Red circles: Automatic relevance determination (ARD); Yellow
triangles: Bayesian sparse regression (BSR); Green dots: Bayesian structured sparse regression
(BSSR); Aqua X: Forward stepwise regression (FSR); Blue diamonds: Lasso regression (LAS);
Pink triangles: MAP configuration for BSSR.

that are located within 200 Kb (or two hundred thousand bases) of the transcription start site
(TSS) or transcription end site (TES) of a gene; thus, the size of the SNP window is 400 Kb plus
the size of the gene. For each gene, there is an average of 6, 152 cis-SNPs that were tested, for a
total of 100, 039, 937 univariate gene-SNP tests.

We computed the FDR of a given threshold on the PPI from BSSR and on the log10 Bayes factors
(BF) from SNPTEST using a single complete permutation of the data. Specifically, we permuted
the sample labels on the gene expression data matrix, and compute the inclusion probabilities and
log10BF s for every gene against every set of cis-SNPs, under the assumption that these BFs will
represent the same number of tests under the null hypothesis of no association. Then, across possible
inclusion probabilities and log10BF thresholds, we computed FDR using the real and permuted

15



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Posterior probability of inclusion

FD
R

/
P

ro
p 

of
 g

en
es

 w
ith

 e
Q

TL

1e+01

1e+03

1e+05

1e+07

0.00 0.25 0.50 0.75 1.00
Posterior probability of inclusion

N
um

be
r o

f S
N

P
-g

en
e 

pa
irs

real

null

FDR Proportion of genes with eQTL

PPI cuto� at FDR < 0.05

Fig 5: Application of BSSR to real and permuted data. The top histogram compares the
number of SNP-gene pairs (y-axis; log10 scale) at each PPI (x-axis) for an identical number of tests
in the real data versus the permuted (null) data; the bottom figure shows the estimated FDR from
these tests, with the red dashed line indicating an FDR= 0.05 and the green dotted line indicating
the proportion of genes (out of the 2,589 total genes with eQTLs identified using BSSR) with one
or more eQTLs at each PPI threshold.

results by:

F̂DRinc(cppi) =

∑G
g=1

∑p
j=1 1(p(Γj,j,g) > cppi)∑G

g=1

∑p
j=1 1(p(Γpermj,j,g ) > cppi)

F̂DRbf (cbf ) =

∑G
g=1

∑p
j=1 1(log10BFj,g > cbf )∑G

g=1

∑p
j=1 1(log10BF

perm
j,g > cbf )

,

where cppi and cbf are the PPI threshold the log10BF threshold, respectively, and p(Γg,j,j), log10BFg,j,j
are the PPIs and the log10BF of the gth gene and the jth SNP, respectively, for g = {1, . . . , G}
genes. The superscript perm indicates that these metrics were evaluated on the permuted data. We
compared the number of SNPs with log10BF with the observed and permuted data and observed
clear enrichment of large values (Figure 5A). We selected the PPI threshold to be cppi = 0.072 for
FDR ≥ 5%.

We identified 2, 940, 533 cis-eQTLs using our multi-SNP association mapping (FDR ≤ 5%, PPI
≥ 0.073), as compared to 169, 460 cis-eQTLs found using the univariate association mapping method
(FDR ≤ 5%, log10BF ≥ 1.092). There were 2, 589 out of 16, 242 genes with at least one eQTL for
BSSR versus 5, 065 genes with at least one eQTL for the univariate association mapping method; of
these, 1, 463 genes had significant eQTLs for both approaches (FDR≤ 5%). This order-of-magnitude
increase in the number of cis-eQTLs is not unexpected given that our approach explicitly removes
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Fig 6: Comparison of eQTLs identified by univariate and BSSR approaches by gene.
Each point represents a single gene for which at least one eQTL was identified using one of the two
methods. X-axis (log10 scale) is the difference in the number of eQTLs per gene by the univariate
approach and the BSSR approach. Triangles represent genes for which the approach with fewer
eQTLs identified zero eQTLs for that gene; circles represent genes for which the approach with
fewer eQTLs identified at least one eQTL for that gene. (A) y-axis is the largest PPI for an eQTL
within that gene. (B) y-axis is the largest log10BF for an eQTL within that gene.

the zero assumption (Gelman et al., 2012); but, accompanied with a decrease in the total number
of genes with at least one eQTL, suggests that our method improves the precision of this approach
when viewed in a gene-by-gene way (Figure 5B). These results suggest that the null hypothesis
of no association may be incorrect in a multi-SNP setting: the PPI of a truly null predictor has
less shrinkage toward zero when it is correlated with a truly alternative predictor, increasing the
average PPI of the truly null predictors that are correlated with a truly alternative predictor. For
genes with no causal SNPs, this null hypothesis was appropriate. We suggest presenting results
for this model in rank order by gene to experimental biologists, indicating our confidence with the
cis-eQTLs with largest PPIs for follow up experimental validation.

It is instructive to compare the results from BSSR to those from the univariate approach on a
gene-by-gene basis. When we consider those genes for which the univariate approach found more
eQTLs than the BSSR approach (Figure 6, right hand side) we notice that, for all of the genes where
BSSR identified zero eQTLs, the univariate approach did not find any eQTLs with a log10BF ≥ 5,
indicating possible false positives that are systematically eliminated using our model. In particular,
there are 3, 602 genes with zero BSSR-identified eQTLs, which only have a few univariate-derived
eQTLs each, all with low log10BF s; these non-replicating associations across genes are candidates
for false positive associations. Genes with univariate-derived eQTLs with the greatest statistical
significance have at least one significant BSSR-derived eQTL; fewer BSSR-derived eQTLs for that
gene may indicate weaker LD in this region. Conversely, we also considered the set of genes for
which there were more BSSR-derived eQTLs than univariate-derived eQTLs (Figure 6, left-hand
side). While there are many fewer genes with zero univariate-derived eQTLs in this set (1, 126
genes), these genes often include SNPs with large PPI. Echoing results from the simulations, this
suggests that BSSR approaches are able to identify eQTLs with smaller effect sizes by exploiting
small effect sizes across structured SNPs, resulting in high recall. On the other hand, there also
appears to be inflation of eQTL signals in BSSR results, suggesting a sparse-within-groups model
may have improved precision on a SNP-by-SNP basis.
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Fig 7: Results from BSSR and univariate approaches on two genes: ASF1A and ERAP2.
The x-axis is the chromosomal position of each of the SNPs; the y-axis is the PPI (BSSR) or the
log10BF (univariate regression) of the SNP. Black circles represent statistically significant eQTLs
(FDR≤ 5%), red triangles represent the top 31 eQTLs for this gene from the two approaches.
Horizontal lines denote the transcription start and end site of the gene.

We considered results from two specific genes (Figure 7). For ASF1A, we find that there are
many more significant BSSR-identified eQTLs than univariate-identified eQTLs. We suspect that
most of the eQTLs below 0.4 are included because they are well correlated with a causal SNP. In the
case that the SNP is truly null, these eQTLs will be removed by a sparse-within-groups model; in
the case that multiple causal SNPs are correlated, the sparse signal is effectively split between
well correlated SNP, reducing the marginal PPIs. From the perspective of generating testable
hypotheses, we highlight the 31 most significant SNPs, and find their range almost identical to
the 31 most significant SNPs in the univariate regression analysis. Results from a second gene,
ERAP2, show the opposite: the 31 most significant SNPs from the univariate analysis do not
appear in the BSSR analysis, and the BSSR analysis highlights SNPs across a much larger range
of the genome. On the far right, BSSR identifies clear signal that is poorly ranked in the univariate
analysis because of small effect size. SNPs with similar PPI and log10BF in both the BSSR and
the univariate analysis (identifiable as lines of points looking vaguely horizontal) illustrate signal
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splitting tendencies (in the case of BSSR) and the difficulties of finding the causal SNP amongst
highly correlated predictors (in the case of the univariate analysis).

6. Discussion. In this manuscript, we introduced a general Bayesian structured sparse prior,
encoding structure in the predictions via a Gaussian field, using an arbitrary positive definite
matrix. We described its application in the context of regression to identify associations between
genetic variants and quantitative traits where there is substantial structure in the genetic variants.
We found that our prior robustly identifies directly associated predictors, and includes a natural
statistical test for association. For recovering quantitative trait associations, we found many more
associations per trait, but, across multivariate regression models, we found a smaller number of
responses with one or more associated predictors across all tests.

In the original paper on group sparsity, the method encourages dense within groups sparsity,
where either every member of the group was shrunk to zero or had minimal regularization (Yuan
and Lin, 2005). However, there are good arguments in favor of sparse within groups sparsity, which
shrinks groups to zero together, but also encourages individual sparsity (Friedman et al., 2010).
In practice this decision is tailored to the application and the interpretation of the variables. The
latter is certainly more natural in the framework of correlated coefficients, because we would like to
select the smallest number of covariates that explain the variation in the data rather than a dense
set with redundancies. However, from the Bayesian perspective, the sparse-within-groups model
does not have a posterior mode that is robust to sample bias, and, instead, Bayesian statisticians
find the dense-within-groups model more interpretable and generalizable (Valdar et al., 2012). Our
formulation of Bayesian structured sparsity is dense-within-groups; however there are straightfor-
ward ways to tailor the model to achieve explicit sparse-within-groups performance, in particular,
to modify the scalar global regularization term λ to be local p-vector predictor specific regulariza-
tion. Because we are working within a multivariate regression framework, if two predictors have
a similar effect on the response, the model will tend to select one for inclusion, and the posterior
probability of inclusion for the two predictors will split the effect. This is where model averaging is
helpful in encouraging the choice of included predictors to be robust.

A number of other extensions are interesting to consider in light of the application of these
models to high-dimensional data. First, while our sampler is efficient and produces an estimate of
the marginal PPI for each predictor, we would like to scale this to perform analytical association
mapping for genome-scale data sets, which currently include approximately 40 million SNPs and
thousands or tens of thousands of individuals (Jallow et al., 2009). One option is to window the
entire genome into blocks of 10, 000 SNPs, and perform association mapping within each of these
windows in parallel. While this is easy to do, it is somewhat unsatisfying. It is desirable to consider
other approaches, including multiscale methods and robust adaptations of stochastic variational
methods for p� n applications. Second, the additive assumptions implicit in this model are, with
a few exceptions, made across this field of research (Storey et al., 2005), but ideally we would
identify epistatic effects, or non-additive interacting effects, between predictors.

While we have presented this structured sparse framework based on GP probit regression, there
are a large number of alternatives to this specific choice of prior that may be explored while
maintaining tractability and expressiveness of this framework.

7. Conclusions. We present a general formulation for Bayesian structured sparsity that in-
cludes information about covariate structure in a positive definite matrix. Shrinkage is shared across
inclusion variables for similar covariates via a Gaussian field. Applying this approach to regression
models for association mapping for quantitative traits, we find that this method has a number of
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statistical and computational advantages over current approaches. Furthermore, the arbitrary pos-
itive definite matrix allows the model to be tailored to arbitrary applications using domain-specific
measures of similarity between predictors and that the pairwise similarity may be arbitrarily com-
plex. Computationally, these methods are tractable for large studies and will be useful for many
applications of structured sparsity and model selection. Accompanying Python code is available at
https://github.com/HIPS/BayesianStructuredSparsity.
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