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Abstract

We introduce a convolutional neural network that operates directly on graphs.
These networks allow end-to-end learning of prediction pipelines whose inputs
are graphs of arbitrary size and shape. The architecture we present generalizes
standard molecular feature extraction methods based on circular fingerprints. We
show that these data-driven features are more interpretable, and have better pre-
dictive performance on a variety of tasks.

1 Introduction

Recent work in materials design used neural networks to predict the properties of novel molecules
by generalizing from examples. One difficulty with this task is that the input to the predictor, a
molecule, can be of arbitrary size and shape. Currently, most machine learning pipelines can only
handle inputs of a fixed size. The current state of the art is to use off-the-shelf fingerprint software
to compute fixed-dimensional feature vectors, and use those features as inputs to a fully-connected
deep neural network or other standard machine learning method. This formula was followed by
[28, 3, 19]. During training, the molecular fingerprint vectors were treated as fixed.

In this paper, we replace the bottom layer of this stack – the function that computes molecular
fingerprint vectors – with a differentiable neural network whose input is a graph representing the
original molecule. In this graph, vertices represent individual atoms and edges represent bonds. The
lower layers of this network is convolutional in the sense that the same local filter is applied to each
atom and its neighborhood. After several such layers, a global pooling step combines features from
all the atoms in the molecule.

These neural graph fingerprints offer several advantages over fixed fingerprints:

• Predictive performance. By using data adapting to the task at hand, machine-optimized
fingerprints can provide substantially better predictive performance than fixed fingerprints.
We show that neural graph fingerprints match or beat the predictive performance of stan-
dard fingerprints on solubility, drug efficacy, and organic photovoltaic efficiency datasets.

• Parsimony. Fixed fingerprints must be extremely large to encode all possible substructures
without overlap. For example, [28] used a fingerprint vector of size 43,000, after having
removed rarely-occurring features. Differentiable fingerprints can be optimized to encode
only relevant features, reducing downstream computation and regularization requirements.

• Interpretability. Standard fingerprints encode each possible fragment completely dis-
tinctly, with no notion of similarity between fragments. In contrast, each feature of a neural
graph fingerprint can be activated by similar but distinct molecular fragments, making the
feature representation more meaningful.

†Equal contribution.
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Figure 1: Left: A visual representation of the computational graph of both standard circular fin-
gerprints and neural graph fingerprints. First, a graph is constructed matching the topology of the
molecule being fingerprinted, in which nodes represent atoms, and edges represent bonds. At each
layer, information flows between neighbors in the graph. Finally, each node in the graph turns on
one bit in the fixed-length fingerprint vector. Right: A more detailed sketch including the bond
information used in each operation.

2 Circular fingerprints
The state of the art in molecular fingerprints are extended-connectivity circular fingerprints
(ECFP) [21]. Circular fingerprints [6] are a refinement of the Morgan algorithm [17], designed
to encode which substructures are present in a molecule in a way that is invariant to atom-relabeling.

Circular fingerprints generate each layer’s features by applying a fixed hash function to the concate-
nated features of the neighborhood in the previous layer. The results of these hashes are then treated
as integer indices, where a 1 is written to the fingerprint vector at the index given by the feature
vector at each node in the graph. Figure 1(left) shows a sketch of this computational architecture.
Ignoring collisions, each index of the fingerprint denotes the presence of a particular substructure.
The size of the substructures represented by each index depends on the depth of the network. Thus
the number of layers is referred to as the ‘radius’ of the fingerprints.

Circular fingerprints are analogous to convolutional networks in that they apply the same operation
locally everywhere, and combine information in a global pooling step.

3 Creating a differentiable fingerprint
The space of possible network architectures is large. In the spirit of starting from a known-good con-
figuration, we designed a differentiable generalization of circular fingerprints. This section describes
our replacement of each discrete operation in circular fingerprints with a differentiable analog.

Hashing The purpose of the hash functions applied at each layer of circular fingerprints is to
combine information about each atom and its neighboring substructures. This ensures that any
change in a fragment, no matter how small, will lead to a different fingerprint index being activated.
We replace the hash operation with a single layer of a neural network. Using a smooth function
allows the activations to be similar when the local molecular structure varies in unimportant ways.

Indexing Circular fingerprints use an indexing operation to combine all the nodes’ feature vectors
into a single fingerprint of the whole molecule. Each node sets a single bit of the fingerprint to one,
at an index determined by the hash of its feature vector. This pooling-like operation converts an
arbitrary-sized graph into a fixed-sized vector. For small molecules and a large fingerprint length,
the fingerprints are always sparse. We use the softmax operation as a differentiable analog of
indexing. In essence, each atom is asked to classify itself as belonging to a single category. The sum
of all these classification label vectors produces the final fingerprint. This operation is analogous to
the pooling operation in standard convolutional neural networks.
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Algorithm 1 Circular fingerprints
1: Input: molecule, radius R, fingerprint

length S
2: Initialize: fingerprint vector f ← 0S

3: for each atom a in molecule
4: ra ← g(a) . lookup atom features
5: for L = 1 to R . for each layer
6: for each atom a in molecule
7: r1 . . . rN = neighbors(a)
8: v← [ra, r1, . . . , rN ] . concatenate
9: ra ← hash(v) . hash function

10: i← mod(ra, S) . convert to index
11: fi ← 1 . Write 1 at index
12: Return: binary vector f

Algorithm 2 Neural graph fingerprints
1: Input: molecule, radius R, hidden weights
H1

1 . . . H
5
R, output weights W1 . . .WR

2: Initialize: fingerprint vector f ← 0S

3: for each atom a in molecule
4: ra ← g(a) . lookup atom features
5: for L = 1 to R . for each layer
6: for each atom a in molecule
7: r1 . . . rN = neighbors(a)
8: v← ra +

∑
N

i=1 ri . sum
9: ra ← σ(vHN

L ) . smooth function
10: i← softmax(raWL) . sparsify
11: f ← f + i . add to fingerprint
12: Return: real-valued vector f

Figure 2: Pseudocode of circular fingerprints (left) and neural graph fingerprints (right). Differences
are highlighted in blue. Every non-differentiable operation is replaced with a differentiable analog.

Canonicalization Circular fingerprints are identical regardless of the ordering of atoms in each
neighborhood. This invariance is achieved by sorting the neighboring atoms according to their
features, and bond features. We experimented with this sorting scheme, and also with applying the
local feature transform on all possible permutations of the local neighborhood. An alternative to
canonicalization is to apply a permutation-invariant function, such as summation. In the interests of
simplicity and scalability, we chose summation.

Circular fingerprints can be interpreted as a special case of neural graph fingerprints having large
random weights. This is because, in the limit of large input weights, tanh nonlinearities approach
step functions, which when concatenated form a simple hash function. Also, in the limit of large
input weights, the softmax operator approaches a one-hot-coded argmax operator, which is anal-
ogous to an indexing operation.

Algorithms 1 and 2 summarize these two algorithms and highlight their differences. Given a finger-
print length L, and F features at each layer, the parameters of neural graph fingerprints consist of
a separate output weight matrix of size F × L for each layer, as well as a set of hidden-to-hidden
weight matrices of size F × F at each layer, one for each possible number of bonds an atom can
have (up to 5 in organic molecules).

4 Experiments

We ran two experiments to demonstrate that neural fingerprints with large random weights behave
similarly to circular fingerprints. First, we examined whether distances between circular fingerprints
were similar to distances between neural fingerprint-based distances. Figure 3 (left) shows a scat-
terplot of pairwise distances between circular vs. neural fingerprints. Fingerprints had length 2048,
and were calculated on pairs of molecules from the solubility dataset [4]. Distance was measured
using a continuous generalization of the Tanimoto (a.k.a. Jaccard) similarity measure, given by

distance(x,y) = 1−
∑

min(xi, yi)
/∑

max(xi, yi) (1)

There is a correlation of r = 0.823 between the distances. The line of points on the right of the plot
shows that for some pairs of molecules, binary ECFP fingerprints have exactly zero overlap.

Second, we examined the predictive performance of neural fingerprints with large random weights
vs. that of circular fingerprints. Figure 3 (right) shows average predictive performance on the sol-
ubility dataset, using linear regression on top of fingerprints. The performances of both methods
follow similar curves. In contrast, the performance of neural fingerprints with small random weights
follows a different curve, and is substantially better. This suggests that even with random weights,
the relatively smooth activation of neural fingerprints helps generalization performance.

3



0.5 0.6 0.7 0.8 0.9 1.0
Circular fingerprint distances

0.5

0.6

0.7

0.8

0.9

1.0

N
e
u

ra
l 

fi
n

g
e
rp

ri
n

t 
d

is
ta

n
ce

s

Neural vs Circular distances, r=0:823

0 1 2 3 4 5 6
Fingerprint radius

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
M

S
E

 (
lo

g
 M

o
l/

L
)

Circular fingerprints

Random conv with large parameters

Random conv with small parameters

Figure 3: Left: Comparison of pairwise distances between molecules, measured using circular fin-
gerprints and neural graph fingerprints with large random weights. Right: Predictive performance
of circular fingerprints (red), neural graph fingerprints with fixed large random weights (green) and
neural graph fingerprints with fixed small random weights (blue). The performance of neural graph
fingerprints with large random weights closely matches the performance of circular fingerprints.

4.1 Examining learned features

To demonstrate that neural graph fingerprints are interpretable, we show substructures which most
activate individual features in a fingerprint vector. Each feature of a circular fingerprint vector can
each only be activated by a single fragment of a single radius, except for accidental collisions.
In contrast, neural graph fingerprint features can be activated by variations of the same structure,
making them more interpretable, and allowing shorter feature vectors.

Solubility features Figure 4 shows the fragments that maximally activate the most predictive fea-
tures of a fingerprint. The fingerprint network was trained as inputs to a linear model predicting
solubility, as measured in [4]. The feature shown in the top row has a positive predictive relationship
with solubility, and is most activated by fragments containing a hydrophilic R-OH group, a standard
indicator of solubility. The feature shown in the bottom row, strongly predictive of insolubility, is
activated by non-polar repeated ring structures.

Fragments most
activated by

pro-solubility
feature

O
OH

O

NH

O

OH

OH

Fragments most
activated by

anti-solubility
feature

Figure 4: Examining fingerprints optimized for predicting solubility. Shown here are representative
examples of molecular fragments (highlighted in blue) which most activate different features of the
fingerprint. Top row: The feature most predictive of solubility. Bottom row: The feature most
predictive of insolubility.
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Toxicity features We trained the same model architecture to predict toxicity, as measured in two
different datasets in [26]. Figure 5 shows fragments which maximally activate the feature most
predictive of toxicity, in two separate datasets.

Fragments most
activated by

toxicity feature
on SR-MMP

dataset

Fragments most
activated by

toxicity feature
on NR-AHR

dataset

Figure 5: Visualizing fingerprints optimized for predicting toxicity. Shown here are representative
samples of molecular fragments (highlighted in red) which most activate the feature most predictive
of toxicity. Top row: the most predictive feature identifies groups containing a sulphur atom attached
to an aromatic ring. Bottom row: the most predictive feature identifies fused aromatic rings, also
known as polycyclic aromatic hydrocarbons, a well-known carcinogen.

[27] constructed similar visualizations, but in a semi-manual way: to determine which toxic frag-
ments activated a given neuron, they searched over a hand-made list of toxic substructures and chose
the one most correlated with a given neuron. In contrast, our visualizations are generated automati-
cally, without the need to restrict the range of possible answers beforehand.

4.2 Predictive Performance

We ran several experiments to compare the predictive performance of neural graph fingerprints to
that of the standard state-of-the-art setup: circular fingerprints fed into a fully-connected neural
network.

Experimental setup Our pipeline takes as input the SMILES [30] string encoding of each
molecule, which is then converted into a graph using RDKit [20]. We also used RDKit to produce
the extended circular fingerprints used in the baseline. Hydrogen atoms were treated implicitly.

In our convolutional networks, the initial atom and bond features were chosen to be similar to those
used by ECFP: Initial atom features concatenated a one-hot encoding of the atom’s element, its
degree, the number of attached hydrogen atoms, and the implicit valence, and an aromaticity indi-
cator. The bond features were a concatenation of whether the bond type was single, double, triple,
or aromatic, whether the bond was conjugated, and whether the bond was part of a ring.

Training and Architecture Training used batch normalization [11]. We also experimented with
tanh vs relu activation functions for both the neural fingerprint network layers and the fully-
connected network layers. relu had a slight but consistent performance advantage on the valida-
tion set. We also experimented with dropconnect [29], a variant of dropout in which weights are
randomly set to zero instead of hidden units, but found that it led to worse validation error in gen-
eral. Each experiment optimized for 10000 minibatches of size 100 using the Adam algorithm [13],
a variant of RMSprop that includes momentum.

Hyperparameter Optimization To optimize hyperparameters, we used random search. The hy-
perparameters of all methods were optimized using 50 trials for each cross-validation fold. The
following hyperparameters were optimized: log learning rate, log of the initial weight scale, the log
L2 penalty, fingerprint length, fingerprint depth (up to 6), and the size of the hidden layer in the
fully-connected network. Additionally, the size of the hidden feature vector in the convolutional
neural fingerprint networks was optimized.
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Dataset Solubility [4] Drug efficacy [5] Photovoltaic efficiency [8]
Units log Mol/L EC50 in nM percent

Predict mean 4.29 ± 0.40 1.47 ± 0.07 6.40 ± 0.09
Circular FPs + linear layer 1.71 ± 0.13 1.13 ± 0.03 2.63 ± 0.09

Circular FPs + neural net 1.40 ± 0.13 1.36 ± 0.10 2.00 ± 0.09
Neural FPs + linear layer 0.77 ± 0.11 1.15 ± 0.02 2.58 ± 0.18

Neural FPs + neural net 0.52 ± 0.07 1.16 ± 0.03 1.43 ± 0.09

Table 1: Mean predictive accuracy of neural fingerprints compared to standard circular fingerprints.

Datasets We compared the performance of standard circular fingerprints against neural graph fin-
gerprints on a variety of domains:

• Solubility: The aqueous solubility of 1144 molecules as measured by [4].

• Drug efficacy: The half-maximal effective concentration (EC50) in vitro of 10,000
molecules against a sulfide-resistant strain of P. falciparum, the parasite that causes malaria,
as measured by [5].

• Organic photovoltaic efficiency: The Harvard Clean Energy Project [8] uses expensive
DFT simulations to estimate the photovoltaic efficiency of organic molecules. We used a
subset of 20,000 molecules from this dataset.

Predictive accuracy We compared the performance of circular fingerprints and neural graph fin-
gerprints under two conditions: In the first condition, predictions were made by a linear layer using
the fingerprints as input. In the second condition, predictions were made by a one-hidden-layer
neural network using the fingerprints as input. In all settings, all differentiable parameters in the
composed models were optimized simultaneously. Results are summarized in Table 4.2.

In all experiments, the neural graph fingerprints matched or beat the accuracy of circular fingerprints,
and the methods with a neural network on top of the fingerprints typically outperformed the linear
layers.

Software Automatic differentiation (AD) software packages such as Theano [1] significantly
speed up development time by providing gradients automatically, but can only handle limited control
structures and indexing. Since we required relatively complex control flow and indexing in order
to implement variants of Algorithm 2, we used a more flexible automatic differentiation package
for Python called Autograd (github.com/HIPS/autograd). This package handles standard
Numpy [18] code, and can differentiate code containing while loops, branches, and indexing.

Code for computing neural fingerprints and producing visualizations is available at
github.com/HIPS/neural-fingerprint.

5 Limitations

Computational cost Neural fingerprints have the same asymptotic complexity in the number of
atoms and the depth of the network as circular fingerprints, but have additional terms due to the
matrix multiplies necessary to transform the feature vector at each step. To be precise, computing
the neural fingerprint of depthR, fingerprint length L of a molecule withN atoms using a molecular
convolutional net having F features at each layer costs O(RNFL + RNF 2). In practice, training
neural networks on top of circular fingerprints usually took several minutes, while training both the
fingerprints and the network on top took on the order of an hour on the larger datasets.

Limited computation at each layer How complicated should we make the function that goes
from one layer of the network to the next? In this paper we chose the simplest feasible architecture:
a single layer of a neural network. However, it may be fruitful to apply multiple layers of nonlinear-
ities between each message-passing step (as in [22]), or to make information preservation easier by
adapting the Long Short-Term Memory [10] architecture to pass information upwards.
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Limited information propagation across the graph The local message-passing architecture de-
veloped in this paper scales well in the size of the graph (due to the low degree of organic molecules),
but its ability to propagate information across the graph is limited by the depth of the network. This
may be appropriate for small graphs such as those representing the small organic molecules used in
this paper. However, in the worst case, it can take a depth N

2 network to distinguish between graphs
of size N . To avoid this problem, [2] proposed a hierarchical clustering of graph substructures. A
tree-structured network could examine the structure of the entire graph using only log(N) layers,
but would require learning to parse molecules. Techniques from natural language processing [25]
might be fruitfully adapted to this domain.

Inability to distinguish stereoisomers Special bookkeeping is required to distinguish between
stereoisomers, including enantomers (mirror images of molecules) and cis/trans isomers (rotation
around double bonds). Most circular fingerprint implementations have the option to make these
distinctions. Neural fingerprints could be extended to be sensitive to stereoisomers, but this remains
a task for future work.

6 Related work

This work is similar in spirit to the neural Turing machine [7], in the sense that we take an existing
discrete computational architecture, and make each part differentiable in order to do gradient-based
optimization.

Neural nets for quantitative structure-activity relationship (QSAR) The modern standard for
predicting properties of novel molecules is to compose circular fingerprints with fully-connected
neural networks or other regression methods. [3] used circular fingerprints as inputs to an ensemble
of neural networks, Gaussian processes, and random forests. [19] used circular fingerprints (of depth
2) as inputs to a multitask neural network, showing that multiple tasks helped performance.

Neural graph fingerprints The most closely related work is [15], who build a neural network
having graph-valued inputs. Their approach is to remove all cycles and build the graph into a tree
structure, choosing one atom to be the root. A recursive neural network [23, 24] is then run from
the leaves to the root to produce a fixed-size representation. Because a graph having N nodes
has N possible roots, all N possible graphs are constructed. The final descriptor is a sum of the
representations computed by all distinct graphs. There are as many distinct graphs as there are
atoms in the network. The computational cost of this method thus grows as O(F 2N2), where F
is the size of the feature vector and N is the number of atoms, making it less suitable for large
molecules.

Convolutional neural networks Convolutional neural networks have been used to model images,
speech, and time series [14]. However, standard convolutional architectures use a fixed computa-
tional graph, making them difficult to apply to objects of varying size or structure, such as molecules.
More recently, [12] and others have developed a convolutional neural network architecture for mod-
eling sentences of varying length.

Neural networks on fixed graphs [2] introduce convolutional networks on graphs in the regime
where the graph structure is fixed, and each training example differs only in having different features
at the vertices of the same graph. In contrast, our networks address the situation where each training
input is a different graph.

Neural networks on input-dependent graphs [22] propose a neural network model for graphs
having an interesting training procedure. The forward pass consists of running a message-passing
scheme to equilibrium, a fact which allows the reverse-mode gradient to be computed without storing
the entire forward computation. They apply their network to predicting mutagenesis of molecular
compounds as well as web page rankings. [16] also propose a neural network model for graphs
with a learning scheme whose inner loop optimizes not the training loss, but rather the correlation
between each newly-proposed vector and the training error residual. They apply their model to a
dataset of boiling points of 150 molecular compounds. Our paper builds on these ideas, with the
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following differences: Our method replaces their complex training algorithms with simple gradient-
based optimization, generalizes existing circular fingerprint computations, and applies these net-
works in the context of modern QSAR pipelines which use neural networks on top of the fingerprints
to increase model capacity.

Unrolled inference algorithms [9] and others have noted that iterative inference procedures
sometimes resemble the feedforward computation of a recurrent neural network. One natural exten-
sion of these ideas is to parameterize each inference step, and train a neural network to approximately
match the output of exact inference using only a small number of iterations. The neural fingerprint,
when viewed in this light, resembles an unrolled message-passing algorithm on the original graph.

7 Conclusion

We generalized existing hand-crafted molecular features to allow their optimization for diverse tasks.
By making each operation in the feature pipeline differentiable, we can use standard neural-network
training methods to scalably optimize the parameters of these neural molecular fingerprints end-to-
end. We demonstrated the interpretability and predictive performance of these new fingerprints.

Data-driven features have already replaced hand-crafted features in speech recognition, machine
vision, and natural-language processing. Carrying out the same task for virtual screening, drug
design, and materials design is a natural next step.
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[28] Thomas Unterthiner, Andreas Mayr, G ünter Klambauer, Marvin Steijaert, Jörg Wenger, Hugo
Ceulemans, and Sepp Hochreiter. Deep learning as an opportunity in virtual screening. In
Advances in Neural Information Processing Systems, 2014.

[29] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In International Conference on Machine Learning, 2013.

[30] David Weininger. SMILES, a chemical language and information system. Journal of chemical
information and computer sciences, 28(1):31–36, 1988.

9

www.rdkit.org
http://tripod.nih.gov/tox21/challenge
http://tripod.nih.gov/tox21/challenge

	Introduction
	Circular fingerprints
	Creating a differentiable fingerprint
	Experiments
	Examining learned features
	Predictive Performance

	Limitations
	Related work
	Conclusion

