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Abstract

Suppose a learner is faced with a domain of prob-
lems about which it knows nearly nothing. It does
not know the distribution of problems, the space
of solutions is not smooth, and the reward signal
is uninformative, providing perhaps a few bits of
information but not enough to steer the learner ef-
fectively. How can such a learner ever get off the
ground? A common intuition is that if the solu-
tions to these problems share a common structure,
and the learner can solve some simple problems by
brute force, it should be able to extract useful com-
ponents from these solutions and, by composing
them, explore the solution space more efficiently.
Here, we formalize this intuition, where the so-
lution space is that of typed functional programs
and the gained information is stored as a stochastic
grammar over programs. We propose an iterative
procedure for exploring such spaces: in the first
step of each iteration, the learner explores a finite
subset of the domain, guided by a stochastic gram-
mar; in the second step, the learner compresses the
successful solutions from the first step to estimate a
new stochastic grammar. We test this procedure on
symbolic regression and Boolean circuit learning
and show that the learner discovers modular con-
cepts for these domains. Whereas the learner is able
to solve almost none of the posed problems in the
procedure’s first iteration, it rapidly becomes able
to solve a large number by gaining abstract knowl-
edge of the structure of the solution space.

1 Introduction
Imagine that you know nothing about electronics but are sup-
plied with a collection of circuit elements and asked to build
a number of useful digital devices, such as an adder, a flip-
flop, a counter, a multiplexer, and so on. Your initial attempts
will probably be uniformly ineffective. If your only feedback
is based on success or failure, you may have trouble learning
anything. If, on the other hand, you already know the basics
of circuit design, you are far more likely to generate some de-
vices that are at least somewhat successful. In this case, you

get feedback that helps you improve your designs and your
design skills.

This example illustrates the central “bootstrapping” chal-
lenge for attempts to create intelligent agents without building
in vast amounts of pre-specied domain knowledge. Learn-
ing from experience is typically most effective in a system
that already knows much of what it needs to know, because
that is when mistakes are most informative. In a system that
knows almost nothing, where most problem solving attempts
entirely miss their mark, failures are unlikely to shed light on
what will work and what will not. Uninformative solutions
vastly outnumber the rest, and an uninformed agent has no
way to know which solutions will be informative and which
will not. If it is harder to learn the less an agent knows, how
can a learner who knows almost nothing about a domain ever
get off the ground?

Here we propose an answer to this challenge, based on an
approach to discovering new and increasingly sophisticated
concepts that build modularly on previously learned, sim-
pler concepts. Like many problems in AI, the bootstrapping
challenge and its solution can be cast in terms of search. In
our circuit-building scenario, the goal is to find circuit wiring
procedures that maximize certain criteria. Search algorithms
typically aim to exploit local or topological structure in the
search space – here the space of all circuit-wiring procedures.
For example, local search algorithms move from one candi-
date solution to a neighboring one. Heuristic search tech-
niques take advantage of topological structure to prune off
large parts of the search space. This structure derives from
domain-specic knowledge. In local search, domain knowl-
edge provides the similarity metric between solutions; in
heuristic search it provides the heuristic. Here we ask how
to bootstrap domain-specic knowledge by extracting search
structure from the space of possible solutions by attempting
to solve multiple related problems in a given domain at once.

Our approach is motivated by the observation that many
interesting problems - such as discovering scientic theories,
designing new technologies, learning a skill such as playing
an instrument or cooking - have solutions that are naturally
specied as programs. Our proposed solution is inspired by
the programmer who, having found various subroutines that
can be reused to solve similar simple tasks, creates a function
library to help manage the complexity of larger projects. The
E.C. algorithm, which we introduce here, builds a library of



reusable program components and places a distribution over
these, effectively learning from simple tasks a search space
structure that enables it to solve more complex tasks.

In this work, we try to see how far this idea of reusable
function definition can get us. We ask the following question:
can an AI system discover the structure latent in the solutions
to multiple related problems and thereby bootstrap effective
exploration of the search space? Can discovering modular
program components transform a problem from one in which
search is intractable into a problem in which it becomes in-
creasingly feasible with experience?

Concretely, the E.C. algorithm works as follows. It begins
with a small library of program primitives and a distribution
over programs synthesized from this library. In each itera-
tion, it generates programs in order of highest probability ac-
cording to the library learned in the previous iteration. From
the discovered solutions, it finds new reusable functions that
compress these solutions, and it re-estimates the distribution
over programs by weighting these new functions according
to their frequencies. In using compression as a guide to the
choice of representation, we instantiate the idea that good rep-
resentations are those which minimize the description length
of typical elements in the domain.

We show that this iterative approach allows us to achieve
very high performance in tasks where just searching accord-
ing to the initial distribution over program primitives clearly
fails.

2 Related Work
The idea of discovering and using reusable subcomponents
is part of an old tradition in AI. For instance, it is one of
the central themes in Herb Simon’s “The Sciences of the Ar-
tificial” [1996]. Rendell’s “Substantial Constructive Induc-
tion Using Layered Information Compression: Tractable Fea-
ture Formation in Search” presented within a classical search
paradigm the idea that compression provides a heuristic for
constructing good representations [1985]. Within the Induc-
tive Logic Programming (ILP) literature, researchers have ex-
plored “Constructive Induction,” generating new and reusable
logic programming terms [Muggleton, 1987]. Later, predi-
cate invention was also applied in the multitask setting [Khan
et al., 1998]. We apply these ideas to learning functional pro-
grams and believe that the modularity and compositionality
afforded by this representation is necessary for these ideas to
be successful.

Genetic programming (GP) [Koza, 1992; Koza et al., 1996]
has tackled the problem of program learning and has explored
the notion that reusable functions are helpful. This work re-
lies, however, on stochastic local search over the space of pro-
grams, and automatically discovering useful subroutines is
seen as a helpful heuristic. More recently, Liang et al. [2010]
used a stochastic grammar over combinatory logic to induce
shared structure in multi-task program induction problems.
We find this latter representation compelling and use it here,
but we see both this and genetic programming as tackling the
question of how to benefit from shared structure in situations
where local search might be successful on its own. Such prob-
lems rely on domain knowledge – whether in the form of a

fitness function or a likelihood function – to provide local
structure to the search space.

But, as mentioned before, our question is how to solve
these problems when we lack knowledge of this kind of built
in structure.

The remainder of this paper will include two major sec-
tions. In the first, we describe in detail the E.C. algorithm
and design choices we make in implementing it. We will then
present results from two experiments in the domains of sym-
bolic regression and Boolean function learning.

3 Extracting Concepts from Programs
Our goal is to solve the following multi-task program in-
duction problem: suppose we are given a set of tasks T =
{tk}Kk=1 where each task is a function tk : L → {0, 1} and
where L is the set of expressions in our language. We say
that expression e ∈ L solves tk if tk(e) = 1. Our goal is to
solve as many of the tasks in T as we can.

We propose the E.C. algorithm, an iterative procedure to
solve this problem. It will be useful in presenting the algo-
rithm to define the following terminology: a frontier is the
finite set of expressions that the algorithm considers in any
one iteration. The frontier size N is the pre-specified num-
ber of elements in the frontier. We will say that a task is hit by
the frontier if there is a expression in the frontier that solves
it.

The E.C. algorithm maintains a distributionD over expres-
sions in L. At each iteration, it

1. explores the frontier – enumerating theN most probable
expressions from the current distribution D – and

2. compresses the hit tasks in the frontier to estimate a new
distribution.

3.1 Representing Typed Functional Programs as
Binary Trees

Following [Liang et al., 2010] and [Briggs and O’Neill,
2006], we use a simply typed combinatory logic – a variable-
free subset of the polymorphic simply-typed lambda calcu-
lus [Pierce, 2002] – as our program representation language.
In short, the combinatory logic introduces a basis of several
primitive combinators such that any function can be written
as applications of the basis combinators. Some common basis
combinators are defined as follows:

I x→ x (identity) (1)
S f g x → (f x) (g x) (2)
C f g x → (f x) g (3)
B f g x → f (g x) (composition) (4)

The basis combinators are theoretically enough to express
any Turing computable function, but we will assume that our
language has a variety of primitives and, together with the
basis combinators, we call these the primitive combinators.
Note that by default we consider all primitives to be in their
“curried” form (e.g. a function like “+” adds two numbers x
and y by being first applied to x, returning the function (+ x)
and then being applied to y, returning (+x y) ).



R

(R → R) →
R→ R

S : (t2 → t1 → t0) →
(t2 → t1)→
t2 → t0

∗ : R→ R→ R

R→ R

I : t0 → t0 → t0

(a)

f1 . . . fn

f1 . . .fn

...
...

...
...

f1 . . . fn

(b)

Figure 1: (a) The typed combinator S ∗ I (f(x) = x2 over real
values (R)) represented as a binary tree. (b) The space of all typed
combinators represented as an infinitely deep AND/OR tree.

The basis combinators can themselves be expressed in the
lambda calculus (with definitions following directly from the
equations above). The lambda calculus has two basic oper-
ations – application and abstraction – but in using the com-
binatory logic we sequester uses of the abstraction operation
inside the combinators. In doing so, we have replaced the
variable binding of the λ operator with the variable routing
of these basis combinators. Our representation thus becomes
variable-free. See [Liang et al., 2010] for a more detailed
discussion of this routing interpretation.

Using combinatory logic is very convenient for program
synthesis [Briggs and O’Neill, 2006]: since every expres-
sion is the application of one expression to another – with
this recursion bottoming out at the primitive combinators –
each program is a binary tree. Most importantly, any subtree
is itself a well-formed expression; this is not the case in the
lambda calculus, since abstraction introduces long range de-
pendencies between the λ operator and the variables to which
that operator refers. In the lambda calculus, then, a subtree
might have free variables, not bound to any enclosing λ.

As a simple example of our representation, consider the
squaring function λx. ∗x x. Using two of the basis combina-
tors above, we can write the squaring function in combinatory
logic as S ∗ I (taking ∗ as a primitive), where application
associates to the left, so we drop the parentheses. When we
apply this combinator to a value x, the action of the combi-
nator is defined as S ∗ I x → (∗ x) (I x) → ∗ x x.

We can extend this representation with a simple polymor-
phic type system [Pierce, 2002]. In this representation, a type
is either a type primitive (e.g. reals, integers, Booleans, etc.),
a type variable (e.g. σ), or a function type τ1 → τ2 of func-
tions from source type τ1 to target type τ2. Any combinator
can be represented as a binary tree (Figure 1a) whose leaves
are typed primitive combinators and whose interior nodes
represent typed applications of combinators (we annotate in-
terior nodes with their types).

3.2 A Stochastic Grammar over Programs
We specify a distribution D over expressions in L as a
stochastic grammar [Feldman et al., 1969]. Many stochas-
tic grammars have the desirable property that the probability
of an expression is the product of the probabilities of its sub-
components. The distribution we specify will be a simple
version of this, in which the probability of an expression is
the product of the probability of its leaves.

Let C = c1, . . . , cN be the primitive combinators in L.
D = p1, . . . , pN will associate with each primitive combina-
tor ci a prior probability pi, 0 ≤ pi ≤ 1,

∑
i pi = 1. The

probability of a leaf with primitive combinator ci will depend
on which other primitive combinators could have been cho-
sen in its place. This set will depend on the type that was
requested by the parent of this leaf when the leaf’s primitive
was chosen; we call this type the requesting type of the leaf.
For example, suppose that we have the primitive (+1) of type
Int→ Int and the primitive NOT of type Bool→ Bool. If
the requesting type is σ → Int, then we can only use (+1),
but if the requesting type is σ → σ then we could use either
(+1) or NOT . We define Cτ for any type τ to be the set of
primitive combinators in C that are consistent with τ , that is,
whose types unify with τ (we use unification according to the
standard type theory presentation [Pierce, 2002]).

Let Ce be the set of primitive combinators in the leaves
of expressions e. We define the probability of an expression
e ∈ L to be p(e) =

∏
c∈Ce p(c|τ(c)) where p(c|τ(c)) is the

probability of using primitive c when the requesting type is
τ(c). In turn, we define the conditional probability for each
combinator cn to be p(cn|τ(cn)) ∝ pn∑

cj∈Cτ(cn)
pj

. That is,

p(cn|τ(cn) is proportional to the probability of sampling cn
from the multinomial distribution defined by the pn’s, con-
ditioned on the requesting type, with the constant of propor-
tionality chosen to ensure that the sum over the probabilities
of all expressions converges to a finite value (so that the dis-
tribution over expressions is proper). For binary trees, this is
true whenever the constant of proportionality is less than 1

4
1.

Now suppose that we have a set of expressions E , and we
wish to estimate the maximum likelihood values of the pn’s.
If the choice of primitive at each leaf were not conditioned
on the requesting type, we could just count all occurrences
of each primitive in our expression set, and this would be
proportional to the maximum likelihood estimate. This is
the ML estimator for a multinomial distribution. However,
the fact that we condition on the requesting type makes this
a considerably more difficult optimization task. One of the
simplest approximations we can make is to calculate the fre-
quency with which each primitive combinator appears in E
when the requesting type is such that it could have been cho-
sen. This is a straightforward calculation, and we use it for its
convenience, finding that our empirical results justify its use.
Future inquiry will be needed to determine to what extent a
more accurate estimator can improve these results.

1The probability mass Md of all expressions of depth less than or
equal to d can be written with the recurrence relation Md ≤M2

d−1+

M1. This has an asymptotic fixed point, as d→∞ if x = x2 +M1

has a solution, which is true if M1 ≤ 1/4.



3.3 Best-first Enumeration of Programs
In order to explore the frontier of most promising programs,
we need a procedure that enumerates the N most probable
expressions. There has been recent interest in this problem,
most of it focused on enumerating the shortest program sat-
isfying some criterion [Katayama, 2005; Yakushev and Jeur-
ing, 2009]. Our approach is to formulate the problem as a
best-first exploration of an AND/OR tree (Figure 1b) [Nils-
son, 1982; Hall, 1973]. In words, the enumeration procedure
is best described by the following recursion: every program
is either a primitive combinator OR it is a left child program
applied to a right child program (that is, a left child AND a
right child).

This can framed as the following AND/OR tree G. Sup-
pose we want a program of type τ . The root of G is an OR
node of type τ . Its children are elements in Cτ (defined in
the previous section) and one AND node of type τ with two
children. Each child of an AND node has the same structure
as the root node, with modified types: the type of its left child
is σ → τ (where σ is a fresh type variable). Since the type of
the right child is constrained by the subtree rooted at the left
child, we always expand the left child first. Once we have a
complete left child program, we can use its target type as the
type of the right child.

Recall that a valid partial solutionH is a subtree of G satis-
fying the following properties: the root of H is the root of G
and any OR node inH has at most one child. H is a complete
solution (and thus a complete expression) if it is a partial so-
lution whose leaves are leaves of G, if each OR node inH has
exactly one child, and if each AND node inH is connected to
all of that node’s children in G.

The value of a partial solutionH is calculated by summing
the value of its leaves, where each such value is the log of
the probability assigned to that leaf in Section 3.2. If a leaf
of H is a leaf of G then either it is an AND node, to which
we assign a value of 0, or it corresponds to some primitive
combinator cn in the library and is the child of some typed
OR node with type τ . We assign it a value of log p(cn|τ). If
a leaf v of H is an OR node, then the value of any extension
of it to a complete solution is at most log(1/4). Thus, we
have defined a value for partial solutions that upper bounds
the value of any of its extensions.

Our best-first policy is to expand the next partial solution
with the highest value. If a partial solution has multiple leaves
that are not primitive combinators, we expand the left most
one first, since it is the choice of left combinator that defines
the type of its right combinator in an application pair. That
is, the parent node applies its constraint on valid solutions via
the left child, not the right child. We want to apply constraints
as early as possible, so we expand the left child first.

3.4 Finding the Most Compressive Set of Solutions
Having enumerated the frontier, we want to assign solutions
to hit tasks such that this set is maximally compressible. This
will promote reusable modular subtrees.

A natural metric for the compressibility of a set of binary
trees is the number of unique subtrees (counting leaves) that
this set contains. As an example of this, suppose we have six

tasks whose solutions are integers 42, 52, 62, 72, and 82, and
suppose our frontier contains the 10 expressions:

4
4*

5
5*

6
6*

7
7*

8
8*

4
I

*S

(16)

5
I

*S

(25)

6
I

*S

(36)

7
I

*S

(49)

8
I

*S

(64)

The top row consists of one type of representation of an inte-
ger squared, namely, the integer times itself. The bottom row
contains another type of representation in which the function
f(x) = x2, represented in combinatory logic as S ∗ I , is
applied to the integer. The top and bottom row of each ex-
pression evaluate to the same integer. If we consider only the
first column, the top tree has 4 unique subtrees and the bottom
has 7. But each column adds 3 unique subtrees to the top row
and only 2 to the bottom. So by the fifth column the top row
has more unique subtrees than the bottom row. The increased
compressibility of the bottom row is due to the fact that the
squaring operation has been factored out as an abstraction.
This is an example of how this compressibility metric favors
abstraction when multiple expressions are being considered
at once.

More sophisticated metrics than the one proposed here ex-
ist; we could use the negative logarithm of the probability of
the solutions under a suitable probability distribution [Barron
et al., 1998]. Future work will explore whether this sophis-
tication is worthwhile and which prior on grammars makes
sense. For our purposes here, penalizing according to the
number of unique subtrees appropriately and sufficiently re-
wards reuse of useful subtrees.

We want to choose a solution for each hit task such that
the complete set of such solutions for all solved tasks is as
compressible as possible. That is, let ti be a task in the set of
hit tasks, and let {eki } be the expressions in the frontier that
solve it. Then our goal is to find

{e∗i } = argmin
{eki }

| ∪i eki |,

where | · | denotes the number of unique trees in a set of ex-
pressions.

However, an exact optimization of this problem requires
examining O(MK) assignments, where M is the maximum
number of solutions for any one task, and K is the number
of tasks. Since this is prohibitive, we relax the compress-
ibility metric as follows: we define the cost of adding each
new solution sn to a partial set of solutions s1, . . . , sn−1 to
be the number of additional unique subtrees in sn that are not
present in sn−1. That is, the penalty of adding a new expres-
sion to the set of expressions depends only on the last ex-
pression we added. Our solution thus becomes approximate,
and that approximation is order-dependent, but a depth-first
search on the defined search space goes from exponential in
the solution degree to quadratic (O(KM2)).

However, when the number of solutions in the fron-
tier grows, this quadratic computation becomes prohibitive.



Therefore, in practice, we bound the number of potential ex-
pressions we are willing to consider at any one iteration to
any one task to a small number. We find that a setting of this
bound to 2 is computationally feasible and large enough to
guide subcomponent discovery in a reliable way. It may be
necessary to increase this bound as we scale this algorithm to
larger problems.

3.5 Re-estimating the Stochastic Grammar
Given a set of chosen solution expressions, which we will
call the solution set, want to re-estimate our stochastic gram-
mar. Our inspiration for doing this is the Nevill-Manning
algorithm for grammar-based compression [Nevill-Manning
and Witten, 1997]. The idea of that compression algorithm is
to compress any string by creating a grammar for that string
such that a) no two symbols appear more than once in the
grammar and b) every rule is used more than once. From a
set of expressions, we generate a grammar according to these
criteria.

This procedure generates a parse of the solution set with a
new set of primitives, and we keep count of how many times
each primitive occurred in the solutions set. To estimate the
probabilities associated with each node production, we again
traverse the solution set, but this time for each node we count
which other primitive elements from the new grammar could
have been used. In accordance with Section 3.2, we estimate
the terminal production weight to be the ratio of the number
of times that node was used in the first traversal divided by
the number of times it was used in the second traversal.

4 Experiments.
4.1 Symbolic regression.
We first illustrate the performance of our learning algorithm
on a symbolic regression problem. For each task in this prob-
lem, we want to find an algebraic function, symbolically spec-
ified, that maps a set of input values to output values. We
choose this problem because it has a long history in AI, par-
ticularly in the genetic programming literature [Koza, 1993].

In the formulation we consider, each task t corresponds to
a polynomial f , and an expression e solves t if it returns the
same value when applied to i ∈ 0, . . . , 9 that f does. In the
experiment shown here, the set of problems corresponds to
the set of all polynomials with degree less than or equal to 2.
In the initial library, we include the basic combinators I, S, B,
C and four arithmetic primitives 1, 0, ∗, and +. The choice
of initial weights on these primitives can make a difference,
as it determines the relative ordering of combinators in the
enumeration step. To get a general sense of the algorithm’s
performance, we set the initial weights to be slightly different
on each run, perturbing them around a uniform weighting.

In Figure 2, we show performance results as we vary the
frontier size. Changing the frontier size changes the number
of tasks the algorithm identifies correctly over the course of
15 algorithm iterations (all experiments in this work were run
for 15 iterations). As a baseline, we enumerated 10000∗15 =
150000 expressions from the initial grammar. This is the total
number of expressions that a run of the algorithm sees if it has
a frontier size of 10000 and runs for 15 iterations. Thus, if the
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Figure 2: Learning curves as a function of frontier size. As frontier
size is increased, curves plateau closer to 100% performance. A
baseline search over 150000 expressions only hits 3% of the tasks
(dashed pink line).
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Figure 3: How do different task sets affect learning curves? Learn-
ing curves at a frontier size of 10000 for different task sets.

benefit accruing to the runs with larger frontier sizes is simply
due to an increase in the number of expressions seen, rather
than increased learning, we should see similarly good perfor-
mance from this baseline run. In fact, however, the baseline
run only hits 27 of the 1000 tasks (3%), whereas our algo-
rithm nears 100% for a frontier of 10000.

What does the E.C. algorithm learn in this task? Inspecting
the top weighted primitives of the final grammars, we find
many incrementers (e.g. (+1), (+2), etc.), several versions
of expressions that translate to functions like x ∗ f(x) and
f(x ∗ f(x)), and combinations of these, like x ∗ (x+ 3) + 3
and x ∗ (x + 2). Informally, we see expressions that apply
functions to themselves, building up complex functions with
relatively few unique primitives.

To what degree is “conceptual bootstrapping” responsible
for the improved performance. That is, to what extent does
the presence of simple problems account for the ability to
learn complex functions? One hypothesis is that to succeed
on a set of tasks, the set must contain a “learnable” curricu-
lum, a set of tasks that serve as stepping stones from an im-
poverished representation to a rich one. We can test this hy-
pothesis by varying the set of tasks to which the E.C. algo-
rithm is exposed. If it is true, then we should see a nonlinear
response to reducing the number of easy tasks, as the curricu-
lum changes from being learnable to being unlearnable.

In Figure 3, we present learning curves (frontier



size 10000) corresponding to various versions of our origi-
nal symbolic regression task set. Recall that the original set
consisted of all polynomials of degree two or less and with
coefficients between 0 and 9. In the “no constant” task set,
we remove the 9 constant functions in this set. In the “no
linear” task set, we remove 90 linear functions from the set.
We observe that performance on those task sets does not de-
crease. However, when we remove both the linear functions
and the constant function (“only quadratics”), we see a sharp
drop in the algorithm’s performance. When we further restrict
the task set to only “complex” quadratics (which we define as
quadratics whose coefficients are greater than zero), we ob-
serve another comparable drop in performance. When we go
one step further and restrict the task set to quadratics with co-
efficients greater than 1, performance drops to 0 because no
task is hit in the initial frontier.

This data has in it the nonlinearity that we predicted – that
a minimal curriculum of simple tasks is sufficient to achieve
high performance – but also suggests that, at least in this
domain, this is not an all-or-none effect. Though the per-
formance drops significantly once no linear functions are in-
cluded in the task set, learning does still occur, and the learn-
ing curves still have the same basic shape.

4.2 Boolean Function Learning
As another demonstration of our approach, we investigate the
E.C. algorithm’s ability to learn Boolean functions using only
the logical primitive NAND and the basic combinators. It is
well known that a Boolean circuit can be constructed for any
Boolean function given only the NAND gate. Here, the basic
combinators take the place of the wiring normally found in a
circuit.

We constructed two task sets. The first of these was con-
structed explicitly to contain familiar modular structure. In
this set of tasks, we sampled 1000 Boolean circuits using
AND, OR, and NOT gates. To accomplish this, we first sam-
pled either 1, 2 or 3 inputs, then between 1 and 5 gates, ran-
domly wiring the inputs of each new gate to the output of one
of the existing gates in the circuit. We continued this sam-
pling procedure until we had 1000 “connected” circuits, i.e.,
circuits all of whose outputs are wired to an input except for
the last one (the output gate). This resulted in 1000 tasks con-
sisting of 82 unique Boolean functions, with a distribution of
tasks as shown in Figure 5a. In Figure 6a, we present learn-
ing curves for frontier sizes 100, 500 and 10000, using the
same procedure as in Section 4.1. In Figure 5, we show that
the distribution over Boolean functions enumerated from the
grammar over expressions is much more similar to the true
function distribution after learning than before.

This problem is particularly suitable for inspecting the con-
stituents of the induced grammar G. We might hope that our
algorithm recovers the constituent logic gates that were used
to build up the tasks. Table 4 shows a few of the top ranked
expressions in the library. These include the basic logic gates;
we also include two higher-order expression E1 and E2, to
stress that the representation the E.C. algorithm is using al-
lows it to build concepts that are more expressive that just
sub-circuits.

In a second experiment, we include all 272 Boolean truth

func. CL expression schematic

(a)

NOT (S NAND I) x ≡

AND (C B NAND) (B (S NAND I))
→ (C B NAND) (B NOT)

y

x

OR

((B (C (B (S NAND)
NAND)))
(S NAND I)
→ ((B (C (B (S NAND)
NAND))) NOT

y

x

(b)

E1 S B (S NAND)
x f(·)

f(·)

E2 (B (C B NAND) S) x

f(·)

g(·)

(c)

TRUE (S NAND) (S NAND I)
→ (S NAND) NOT x

FALSE (S B (S NAND)) (S NAND I)
→E1 NOT

E1 ( )

= x

XOR

((S (B C ( ((B (C B NAND))
S) ( ((B (C B NAND)) S) (B C
((B (B NAND)) NAND))))))
I)
→ ((S (B C ( E2 ( E2 (B C
((B (B NAND)) NAND))))))
I)

y

x

Figure 4: Some learned primitives from the circuit based Boolean
function learning experiment. We highlight compression using
NOT , E1 and E2. (a) The three elementary gates used to generate
the task set. (b) Two higher-order primitives in the induced gram-
mar. Note how E1 can be used to define FALSE by taking the NOT
function as an argument. (c) Additional common Boolean functions
found in the learned grammar.

tables with three or fewer inputs as tasks. This is a more diffi-
cult problem. There are two kinds of learning that the E.C. al-
gorithm might accomplish: first, many expressions in L map
to a single Boolean function, so it needs to learn primitives
that allow it to span many different functions instead of gen-
erating very simple functions redundantly. The second kind
of learning involves the distribution of the functions them-
selves. In the circuit based Boolean experiment, that struc-
ture is apparent in the distribution in Figure 5. In this second
experiment, we remove the second kind of structure. In Fig-
ure 6b, we show 10 runs of the E.C. algorithm on the second
experiment with a frontier size of 2000: note how there are
several local minima that the majority of the runs get stuck in
with performance around 50%, but several of the runs seem to
take different trajectories to more successful representations.

5 Conclusion
This work brings together ideas from various areas of re-
search – hierarchical Bayes, learning to learn, minimum de-
scription length learning, and learning programs – to provide
a proof of concept for how bootstrap learning of abstract com-
posable concepts can rapidly facilitate problem solving in the
absence of domain specific knowledge. We show that this



Figure 5: Distribution of Boolean functions among (a) the set of
1000 circuits randomly constructed from AND, OR and NOT gates
(see text); b) the first 1000 expressions from the grammar over ex-
pressions before learning; c) the first 1000 expressions from the
grammar over expressions after learning. Gray levels indicate per-
cent of instances (circuits/expressions) which evaluate to that func-
tion. Functions increase in domain size from left to right; each func-
tion can be represented as a binary string corresponding to the output
column of the truth table, and functions are ordered with respect to
these strings.

approach can learn successfully even in domains for which
the solution space is not smooth and the error signal is all or
none, where the only sense of locality to guide learning is the
modular and compositional structure of the solutions that the
algorithm itself builds.

The problem presented here was chosen to highlight the
vastness of the search space confronting an agent with mini-
mal background knowledge: the reward function is binary, it
is deterministic, and it cannot provide feedback about partial
solutions. In ongoing work, we are exploring a more prob-
abilistic version of the algorithm that can take into account
continuous rewards, noisy data and partial solutions.

Our specific implementation of this approach involved a
number of choices which should be explored further in future
work. Our claim here is not that the E.C. algorithm is optimal,
but that it captures key features of how people solve the prob-
lem of learning new systems of concepts in acquiring deep
domain expertise. Much like a human researcher investigat-
ing a new area of study, our algorithm tries different models,
watches them fail or succeed, and abstracts out the model el-
ements that capture relevant differences. It recombines and
reuses successful patterns of reasoning that span many prob-
lems in a domain.

At their best, human processes of discovery clearly go be-
yond what our algorithm is capable of. The algorithm can
get stuck in plateaus after a rapid initial increase in perfor-
mance, due to its circular nature: it only inspects the re-
gion of the solution space that is typical of solutions already
found. Humans can become stuck in similar ways, but at least
sometimes they realize that they are stuck and attempt to find
another class of concepts for the remaining unsolved tasks.
Our algorithm requires, as human learners do, a sufficiently
graded “curriculum,” or spectrum of problems to solve – sim-
ple problems provide necessary stepping stones to building
complex representations. Also like humans, our algorithm
can adaptively “self-pace” its ways through the curriculum,
figuring out which problems it is ready to tackle when, which
problems are appropriately difficult given what it currently
knows. Yet people can sometimes more intelligently compose
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Figure 6: Learning curves from Boolean function learning experi-
ments. (a) Learning curves for various frontier sizes on task set of
circuit based Boolean functions. (b) 10 learning curves for frontier
size of 2000 on a task set consisting of all Boolean functions of car-
dinality 3 or smaller. Note how most of the trajectories get stuck in
a local minimum around 50%.

and modify the set of problems under consideration, design-
ing their own stepping stones to expand the set of problems
they can solve. Making bootstrap learning systems smarter
in these more human-like ways is a prime target for future
research.
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