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Abstract Generative models of images should take into account transformations
of geometry and reflectance. Then, they can provide explanations of images that are
factorized into intrinsic properties that are useful for subsequent tasks, such as object
classification. It was previously shown how images and objects within images could
be described as compositions of regions called structural elements or ‘stels’. In this
way, transformations of the reflectance and illumination of object parts could be
accounted for using a hidden variable that is used to ‘paint’ the same stel differently
in different images. For example, the stel corresponding to the petals of a flower
can be red in one image and yellow in another. Previous stel models have used a
fixed number of stels per image and per image class. Here, we introduce a Bayesian
stel model, the colour-invariant admixture (CIA) model, which can infer different
numbers of stels for different object types, as appropriate. Results on Caltech101
images show that this method is capable of automatically selecting a number of
stels that reflects the complexity of the object class and that these stels are useful for
object recognition.

1 Introduction

Vision can be thought of as inference in a learnt model of the relationships between
spatial patterns at different levels of abstraction. Marr [20] described three levels
of visual patterns: the primal sketch, corresponding to what an artist would draw
to represent parts of objects in a scene; the 2.5D sketch, which overlays the primal
sketch with textures, colours and shading; and the 3D model, which relates primal
and 2.5D sketches derived from different viewpoints and 3D manipulations. Two
extreme approaches to developing visual learning algorithms include using highly
flexible, unstructured neural networks [5, 10, 11, 27], and using highly structured
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Fig. 1 Factorizing image explanations into intrinsic transformations. (a) A model is used to
generate a description of the appearance of a motorbike, which is then modified by transformations
of geometry and reflectance to produce an instance. (b) This process can be formalized by thinking
of the observed image x as a random variable. It is assumed to have been generated by applying
an image-specific transformation T to a latent image z so as to change various object properties,
including reflectance and geometry. The parameter θ describes the distribution over normalized la-
tent images, z. (c) A dataset of M images x1, . . . ,xM is generated using corresponding latent images
and transformations. Here, plate notation is used, where variables within the box are replicated M
times corresponding to the M images.

techniques that hard-wire sensible rules for pattern generation [9,21,31]. In the case
of neural network approaches, the hope is that Marr’s different levels of patterns will
emerge after learning in a deep neural network, because they are the most efficient
way to model the statistics of images [10, 11]. In the case of methods using hard-
wired pattern rules, the hope is that a reasonably simple set of rules can be combined
with a straightforward inference algorithm to accurately describe the huge variation
seen in natural images [21].

We take an approach that combines the best aspects of the neural network and
pattern rule approaches, by exploring highly flexible statistical models that incor-
porate sensible pattern rules. The best known example of this approach is the con-
volutional neural network [17], which takes an image as input, propagates signals
through multiple layers of hidden variables, and then predicts the class of the ob-
ject in the image. The layers of variables are arranged according to the topology of
the input image, and each hidden variable receives input only from nearby variables
in the previous layer. This method achieves state-of-the-art performance on several
standard classification tasks [17]. In our approach, we recognize that in general the
number of labels that are available for training is exponentially smaller than the
number of possible pattern combinations. Therefore, we use statistical models of
the image data itself and train these models in an unsupervised fashion.

Fig. 1 illustrates our approach, which was first described in [6, 7, 13, 14]. Varia-
tions due to object location, orientation, scale, reflectance and illumination are fac-
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Fig. 2 Attempting to detect object parts using image gradients. Two Caltech101 images (a)
were processed using a Canny edge detector with stringent (b) and liberal (c) thresholds. Object
parts are either not delineated or are delineated but accompanied by spurious irrelevant edges.

tored out and represented in a transformation variable T , and unsupervised learn-
ing methods are used to model the normalized, latent image z. From a generative
point of view, each image in the dataset is assumed to have been produced by
generating a latent image from the model p(z |θ), randomly selecting a transfor-
mation T from p(T ), and then applying the transformation to obtain the observed
image according to the rendering model p(x |T,z). When an object is most naturally
described as a composition of articulating, deformable parts, the transformation T
should be factorized into a field of transformations where each sub-transformation
transforms an object part.

Here we attend to the vision problem of accounting for variability in reflectance
properties and illumination across object instances, so we will assume that all in-
stances of an object have similar geometry. Fig. 2(a) shows two motorbike images
from the Caltech101 dataset [18]. The motorbikes and the parts comprising them
have similar geometry, but quite different reflectance and illumination properties.
For example, a prominent difference between the two images is the colour of the
pipework; whereas the first motorbike has black pipework, the second motorbike
has light chrome pipework.

A popular standard approach to reducing sensitivity to variations in reflectance
and illumination is to pre-whiten images so as to emphasize edges [23]. Absolute
pixel intensities are discarded and instead only information about edges [2] or ori-
ented intensity gradients, such as those encoded by SIFT features [19], are used.
This approach produced state-of-the-art results on image classification problems in
the first decade of this century [16]. However, it is sensitive to parameters such as
the edge detector sensitivity, the patch size used to define SIFT features, thresholds
on minimum gradients, the degree of contrast normalization, and so on. Figs. 2(b)
and 2(c) illustrate the difficulty in selecting thresholds for a Canny edge detector [2].
The more stringent threshold used in Fig. 2(b) leads to important edges being lost
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in regions of low contrast, such as the gas tank in the top image and the pipework
in the bottom image. The more liberal threshold used in Fig. 2(c) leads to a large
number of spurious edges. The essential problem here is that it is not possible to
define beforehand an edge detection threshold that will differentiate all object parts
without also erroneously detecting edges due to noise.

A quite different approach to building robustness against variation in reflectance
and illumination was proposed in [14, 15]. They defined a ‘structure element’ (stel)
as a class-specific region in the image plane that can have different texture, shad-
ing and colour in different examples, but whose spatial structure is similar across
images. Stels correspond to regions in Marr’s primal sketch, which can be rendered
differently in different 2.5D sketches. Stels are identified by indices, so that the la-
tent image z in Fig. 1 is an image of stel indices. The latent image model p(z |θ)
provides a distribution over index maps. For the current image, T is a colour model
that specifies a distribution over colours for each stel index. Given the current index
map and colour model, a distribution over colours is specified for every pixel.

Stel models account for appearance in a way that factorizes out instance-specific
reflectance and illumination properties. Given a training set of images, the learnt
stel model segments images from an object class into different regions (stels) in a
colour-invariant way by modelling the co-occurrence of colours within an image and
spatial relationships across images within the object class. Pixels that are typically
the same colour and can be grouped into similar shapes across images are put into
a single stel, which loosely corresponds to an object part. Grouping pixels in this
way provides a class-specific bias for parts-based segmentation of training and test
images. In the context of object recognition, stel models provide a means to model
spatial relationships between oriented gradient features [15, 24].

Using the expectation-maximization (EM) algorithm described in [15], a single-
class model with nine stels was learnt from the five Caltech101 translation- and
scale-normalized images shown in Fig. 3(a). The image sizes were 75×132 and
they were converted to greyscale for analysis. Fig. 3(b) shows the nine stels, where
for each stel an image of probabilities that pixels belong to the stel are shown, with
white corresponding to a probability of one and black corresponding to a probability
of zero. Some stels, such as the stel in the middle row on the left, account for large
portions of pixels. Other stels, such as the one in the middle that accounts for the
front wheel disk, account for small portions of pixels. The three dominant stels are
shown in the left column.

Since stels are defined in a way that is similar to Marr’s definition of the pri-
mal sketch, an interesting question is whether the learnt stels can be used as a pri-
mal sketch. Recall that the problem with the image-derived edge maps shown in
Figs. 2(b) and 2(c) is that it is not possible to pick a threshold that yields an edge
map that clearly delineates objects and parts, while at the same time not introduc-
ing many erroneous edges. Since stels are required to be consistent across images,
can they be used to make primal sketches that account for object parts? To an-
swer this question, the three dominant stels were smoothed using a Gaussian filter
with σ = 1.5 and the MATLAB Canny edge detector was applied using default set-
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Fig. 3 The structure elements (stels) of motorbike images. Five images from the Caltech101
database (a) were used to learn nine stels (b). For each stel, an image of probabilities that pixels
belong to the stel is shown. The first stel accounts for the pipework, gas tank and rear fender.

Fig. 4 Primal sketches derived from stels. These three edge maps were obtained from smoothed
versions of the three dominant stels shown in the left column of Fig. 3(b). They correspond to
‘primal sketches’ of the motorbike outline, the wheels and seat, and the pipework and gas tank.

tings. The resulting edge maps are shown in Fig. 4 and correspond to the overall
outline of the motorbike, the wheels and seat, and the pipework and gas tank.

Since stel segmentations capture interesting spatial relationships within an object
class, they can be used in an object recognition framework by using the segmenta-
tions to encode the spatial configuration of local image features. It has been previ-
ously shown that recognition performance can be improved by incorporation of the
spatial relationships between features [24], in contrast to models based on bags of
visual words derived from, e.g., SIFT features.



6 Jeroen C. Chua, Inmar E. Givoni, Ryan P. Adams, Brendan J. Frey

A major drawback of current approaches to modelling with stels is that they
require the number of stels — the number of object parts for an object class — to
be fixed in advance. As it is difficult to determine a class-appropriate number of
stels a priori, this is an undesirable requirement. Using too few stels may result in
segmentations that are too coarse, while using an excessive number of stels may
lead to overfitting. Furthermore, differing poses and lighting conditions may call for
a different number of stels even within a single object class. This important free
parameter has typically been set by hand or by using computationally-expensive
cross-validation.

Here, we propose a Bayesian stel model that uses a prior distribution over the
assignment of pixels to stels to regularize the complexity of the stel segmentation.
After learning, the posterior distribution captures information about the appropriate
distribution over stels for a given set of data. We develop a framework for stels that
models images as an admixture, complementing other approaches, such as latent
Dirichlet allocation [1, 3, 28, 29].

2 The Colour-Invariant Admixture Model

One powerful approach to modelling data is to use an admixture, which captures
the idea that a given datum (e.g., an image) may be a combination of several la-
tent components. This idea has found wide use in the modelling of natural language
documents, where latent Dirichlet allocation (LDA) [1] provides a particularly con-
venient and elegant generative probabilistic model for exchangeable text data. When
considering the problem of vision from a modelling point of view, Marr’s notion of
a primal sketch maps well onto the admixture concept. Considering again the stel-
derived edge maps in Fig. 4, we can imagine that these sketches are blended together
to produce the observed image. Note that this is in contrast to a simple mixture
model, where images would result from precisely one of these three sketches.

In this section we develop a generative Bayesian variant of the stel model, which
we call the colour-invariant admixture (CIA) model. This model extends the stan-
dard approach to stel modelling to enable representation of the full posterior dis-
tribution over the stels. By combining the powerful ability to learn spatial relation-
ships using stels, with the flexible invariance properties of a fully-probabilistic latent
colour model, CIA is able to learn image-specific properties of colour that enable
richer feature extraction for supervised learning tasks. Inference is straightforward,
using Markov chain Monte Carlo.

2.1 The Standard Stel Model

We first formally describe the standard stel model, as outlined in [15]. We assume
that there are M images, each with N pixels. We denote the nth pixel in the mth
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Fig. 5 Graphical model for the standard stel model

image by xn,m, taking values in a colour space C , which we will take without loss of
generality to be R

D. We denote the collection of all pixel values across all images
by X = {{xn,m}N

n=1}M
m=1.

The standard stel approach associates with each pixel measurement xn,m a dis-
crete variable sn,m ∈ {1,2, . . . ,S}, which indicates the stel to which that pixel be-
longs. We denote this set of indices as Ξ = {{sn,m}N

n=1}M
m=1. A stel can be loosely

thought of as either a background model, or an object part. For instance, for the
motorcycle class, one stel may represent the wheels, another stel may represent the
pipework, and another stel may represent the background.

The main assumption of the stel model is that pixels belonging to the same stel
have high probability under a tight distribution defined on C . That is, the stel identity
of a pixel is highly informative about colour. The key insight is to allow these dis-
tributions to vary across images, i.e., in image m, stel s has unique parameters φs,m.
If the observation model p(x |φ) is a Gaussian distribution on C , for example,
then φs,m would be mean and covariance parameters that are specific to the com-
bination of s and m. We denote the aggregate set of colour-distribution parameters
for the training images as Φ = {{φs,m}S

s=1}M
m=1.

The statistical sharing across images occurs through the per-pixel multino-
mial distribution over the stel assignments, parameterized by θn, where θs,n ≥ 0
and ∑s θs,n = 1. We denote the aggregate set of index distributions as Θ = {θn}N

n=1.
The standard stel graphical model is shown in Fig. 5.

Note that since each image can have unique colour distributions, the same object
part can have different colours in different images. Therefore, the inferred assign-
ments of stels will be invariant to colour in the sense that what matters is not the
specific colour, but colour co-occurrence. It is not necessary for object parts to be
of the same colour in all training images; all that is required is that object parts reg-
ularly co-occur in colour across images. Note, however, that the training set must
be normalized in position, orientation, and scale, since inference of stel assignments
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Fig. 6 Graphical model for CIA, where s indexes stels, n indexes pixels and m indexes images.

is on a per-pixel basis, and the probability distributions θn are shared across all
images. It is possible to add in deformation variables to deal with, e.g., translation
and rotation. However, even without such deformation variables, the stel model is
capable of handling small amounts of deformation via soft stel assignments [24].

Learning of the parameters Θ and Φ can be performed via maximum likelihood
using the expectation maximization (EM) algorithm as in [15]. As the pixel-wise
stel distributions θ n are shared across the entire training set and are invariant to
colour, the stel model can provide a robust prior distribution over segmentation for
a given object class. Given a test image, the posterior stel segmentation can be ef-
ficiently inferred, and this segmentation can be used for other tasks such as object
recognition.

2.2 The Stel Model as a Generative Admixture

In practice, the performance of the stel model is very sensitive to the regularization
on Θ . Using too strong of a regularization results in coarse, uninformative image
segmentations, but allowing too much flexibility results in overfitting. To handle
this difficulty, we propose a Bayesian approach that is capable of maintaining a full
posterior distribution over Θ . This helps to relieve overfitting, but still results in a
flexible model. At test time, the uncertainty in the stel parameters can be taken into
account when performing segmentation and object recognition. Additionally, this
approach enables CIA to be used as a module in larger hierarchical models with
little modification.
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As before, sn,m ∈ {1,2, . . . ,S} is the stel assignment of pixel n in image m, and θn

specifies the multinomial distribution over stel indices for pixel n. We will assume
that the pixel observation model is a Gaussian distribution with unknown mean and
covariance, i.e., φs,m = {μs,m, Λs,m}. We place a Dirichlet prior on the θ n with base
measure γ . We place normal-inverse-Wishart (NIW) priors on the φs,m, with param-
eters α = {μ0,κ0,ν0,Λ0}. This leads to the following generative model:

θ n |γ ∼ Dirichlet(γ) (1)

sn,m |θ n ∼ Multinomial(θ n,1) (2)

φs,m |α ∼ NIW(μ0,κ0,ν0,Λ0) (3)

xn,m |sn,m,{φs,m}S
s=1 ∼ Norm(μsn,m,m, Λsn,m,m). (4)

The graphical model for this generative procedure is provided in Fig. 6. In this paper
we will use parameterization of the normal-inverse-Wishart given by [22]:

NIW(μ ,Σ |μ0,κ0,ν0,Λ0) =
|Λ0|ν0/2

2Dν0/2ΓD(ν0/2)(2π/κ0)D/2
|Σ |−(ν0+D)/2−1

× exp

{
−1

2
tr

(
Λ0Σ−1)− κ0

2
(μ −μ0)TΣ−1(μ −μ0)

}
,

where ΓD(·) is the generalized gamma function given by

ΓD(z) = πD(D−1)/4
D

∏
d=1

Γ
(

1
2
(2z+1−D)

)
.

In this generative model, we are specifying a full joint distribution over the train-
ing images that possesses two different kinds of sharing across the data. In the first
case, all of the images (which are assumed to be from a single object class), share
the parameter θ n that provides the distribution over stels at the pixel level. How-
ever, each individual image can use different actual stel assignments to account for
variations in object boundaries, deformations, etc. Since the pixels within an image
are conditionally independent given Θ and Φ , multiple stels can be represented in a
single image. This is the heart of the admixture idea. The second type of sharing is
within a single image: each image has its own unique set of distributions associated
with its colours. This enables robustness to variation in reflectance and illumination,
but supports the intuitive inductive bias that all the pixels for a single stel within an
image should have similar properties.

2.3 Inference via Gibbs Sampling

Having specified a stel-based generative model, we can now examine the task of
learning, which in this case corresponds to finding the marginal posterior over the
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stel distributions, given the data and hyperparameters:

p(Θ |X,γ,α) =
∫

dΦ
∫

dΞ p(Θ ,Φ ,Ξ |X,γ,α). (5)

The integrals required to compute this marginal distribution are intractable, however.
We therefore take an approximate inference approach based on numerical integra-
tion via Markov chain Monte Carlo (MCMC). We begin by taking the generative
model specified in Eqs.(1)-(4) and constructing a joint distribution over the data and
the unknowns, given the hyperparameters γ and α:

p(X,Ξ ,Θ ,Φ |γ,α) ∝ p(Θ ,Φ ,Ξ |X,γ,α).

This distribution is proportional to the posterior distribution over all unknowns that
appears inside the integral in Eq. (5). Although we are primarily interested in Θ , by
examining the graphical model in Fig. 6, we observe that the posterior distribution
over Θ can be easily computed given Ξ and γ . Therefore, it is sufficient for our
purposes to generate samples from the posterior distribution over Ξ , marginalizing
over both Θ and Φ :

p(Ξ |X,γ,α) ∝ p(X,Ξ |γ,α) =
∫

dΦ
∫

dΘ p(X,Ξ ,Φ ,Θ |γ,α). (6)

We further observe that the distribution in Eq. (6) factorizes as

=
∫

dΦ
∫

dΘ p(X |Ξ ,Φ) p(Ξ |Θ) p(Θ |γ) p(Φ |α)

=
[∫

dΦ p(X |Ξ ,Φ) p(Φ |α)
][∫

dΘ p(Ξ |Θ) p(Θ |γ)
]
. (7)

When constructing the generative stel model, we could have used various priors
for p(Φ |α) and p(Θ |γ). However, our specific choice of NIW and Dirichlet distri-
butions, respectively, leads to analytic solutions for the two integral factors in Eq. 7.

In the first case, we have∫
dΦ p(X |Ξ ,Φ) p(Φ |α) = p(X |Ξ ,α), (8)

which we recognize as the marginal likelihood of the data (the denominator of
Bayes’ theorem), as partitioned by the stel assignments Ξ . Our objective will be
to perform a Gibbs sweep over all assignments. To do this, we can factor Eq. (8)
into

p(X |Ξ ,α) = p(xn�,m� |X/xn�,m� ,Ξ ,α) p(X/xn�,m� |Ξ ,α).

The first factor is the posterior predictive distribution given all data except for
pixel n� in image m�. The second term is a constant which does not depend on
the pixel we are currently updating. To compute the predictive distribution for the
triplet of stel s, pixel n and image m, we begin by finding the sufficient statistics
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of the data excluding pixel n in image m. Let δ (s,s′) be the Kronecker delta func-
tion, which takes value one if s and s′ are equal and zero otherwise. The sufficient
statistics are then:

Ns,n,m =
N

∑
n′ �=n

δ (s,sn′,m) (9)

x̄s,n,m =
1

Ns,n,m

N

∑
n′ �=n

δ (s,sn′,m)xn′,m (10)

X̄ s,n,m =
1

Ns,n,m

N

∑
n′ �=n

δ (s,sn′,m)
[
(xn′,m − x̄s,n,m)(xn′,m − x̄s,n,m)T

]
. (11)

Following the notation of [22], these statistics can be used to find the parameters of
the normal-inverse-Wishart posterior on the colour distribution:

κs,n,m = κ0 +Ns,n,m

μs,n,m =
κ0

κ0 +Ns,n,m
μ0 +

Ns,n,m

κ0 +Ns,n,m
x̄s,n,m

νs,n,m = ν0 +Ns,n,m

Λs,n,m = Λ0 + X̄ s,n,m +
κ0 Ns,n,m

κ0 +Ns,n,m
(x̄s,n,m −μ0)(x̄s,n,m −μ0)T.

These parameters also provide a closed form for the posterior predictive distribution,
which is a multivariate Student t-distribution:

p(xn�,m� |X/xn�,m� ,Ξ ,α) = tνs,n,m−D+1

(
μs,n,m,

Λs,n,m(κs,n,m +1)
κs,n,m(νs,n,m −D+1)

)
,

where D is the dimensionality of the colour space, e.g., D = 3 for RGB and D = 1
for greyscale. The probability density function of the Student t-distribution is given
by

tν(x |μ ,Σ) =
Γ (ν/2+D/2)

Γ (ν/2)
|Σ |−1/2

(πν)D/2

(
1+

1
ν

(x−μ)TΣ−1(x−μ)
)−(ν+D)/2

.

(12)

In the second factor of Eq.(7), we are also computing a marginal likelihood:

p(Ξ |γ) =
∫

dΘ p(Ξ |Θ) p(Θ |γ)

=
∫

dΘ
N

∏
n=1

Γ
(
∑S

s=1 γs
)

∏S
s=1 Γ (γs)

S

∏
s=1

θ γs−1
s,n

M

∏
m=1

θ δ (s,sn,m)
s,n . (13)

Introducing the sufficient statistic
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ηs,n =
M

∑
m=1

δ (s,sn,m),

we can rewrite Eq. (13) as a Dirichlet-multinomial (or Pólya) distribution:

p(Ξ |γ) =
∫

dΘ
N

∏
n=1

Γ
(
∑S

s=1 γs
)

∏S
s=1 Γ (γs)

S

∏
s=1

θ γs+ηs,n−1
s,n

=
N

∏
n=1

∫
dθ n

Γ
(
∑S

s=1 γs
)

∏S
s=1 Γ (γs)

S

∏
s=1

θ γs+ηs,n−1
s,n

=
N

∏
n=1

Γ
(
∑S

s=1 γs
)

Γ
(
∑S

s=1 γs +ηs,n
) S

∏
s=1

Γ (γs +ηs,n)
Γ (γs)

.

In order to Gibbs sample, we require the conditional distribution of a single assign-
ment sn,m given all the rest of Ξ . As in the NIW case, we can factorize the marginal
likelihood and compute the predictive sufficient statistics for each stel-image-pixel
triplet:

ηs,n,m =
M

∑
m′ �=m

δ (s,sn,m′) = ηs,n −δ (s,sn,m).

The statistic ηs,n,m is the number of images for which pixel n has been assigned to
stel s, excluding image m. This leads to the posterior predictive for sn,m given all
other assignments:

p(sn,m = s |Ξ/sn,m,γ) =
ηs,n,m + γs

∑S
s′=1 ηs′,n,m + γs′

. (14)

The overall Gibbs sampling update is then the product of the “prior” of the as-
signment induced by the Dirichlet-multinomial predictive distribution in Eq. (14)
and the “likelihood” of the pixel intensity that results from the Student t-distribution:

p(sn,m = s |Ξ/sn,m,X,γ,α)

∝
ηs,n,m + γs

∑S
s′=1 ηs′,n,m + γs′

tνs,n,m−D+1

(
μs,n,m,

Λs,n,m(κs,n,m +1)
κs,n,m(νs,n,m −D+1)

)
. (15)

Finally, given a sample of Ξ from this Markov chain, we can compute the condi-
tional distribution over the stels Θ . These have a Dirichlet posterior distribution:

p(Θ |Ξ ,γ) =
N

∏
n=1

p(θ n |{sn,m}M
m=1,γ)

=
N

∏
n=1

Γ
(
∑S

s=1 ηs,n + γs
)

∏S
s=1 Γ (ηs,n + γs)

S

∏
s=1

θ ηs,n+γs−1
s,n . (16)



Bayesian Painting by Numbers: Flexible Priors for Colour-Invariant Object Recognition 13

2.4 Estimating The Posterior Distribution over Stels

CIA is an unsupervised learning model of image statistics. For practical discrimina-
tive tasks, however, we wish to use CIA to provide informative features. We do this
by constructing an estimate of the stel assignment probabilities Θ for each of the
object classes we wish to identify.

The richest representation of the posterior distribution is achieved by construct-
ing a mixture of Dirichlet distributions, where each component in the mixture is
parameterized as in Eq. (16) and weighted equally:

p(Θ |γ,α) ≈ 1
J

J

∑
j=1

N

∏
n=1

Γ
(

∑S
s=1 η( j)

s,n + γs

)
∏S

s=1 Γ (η( j)
s,n + γs)

S

∏
s=1

θ η( j)
s,n +γs−1

s,n ,

where η( j)
s,n denotes the jth sample of the assignments in the Markov chain from the

previous section.
From the point of view of feature-extraction, however, it may be more practical

to simply use a point estimate of Θ , denoted Θ̂ . One straightforward way to form
such a point estimate is to average the predictive distributions arising from Eq. (16)
as in

θ̂s,n =
J

∑
j=1

η( j)
s,n + γs

∑S
s′=1 η( j)

s′,n + γs′
. (17)

This uses the same η( j)
s,n samples as above. This point estimator is used for the ex-

periments in this paper, although with the additional aspect that γs is set to zero for
prediction. That is, the Dirichlet prior is used for training, but the predictions are not
smoothed. This helps identify which stels are actually represented in the data.

An astute reader will notice, however, that stel indices are non-identifiable, but
Eq. (17) implicitly assumes that stel indices are in fact identifiable across samples.
However, we note that in practice, after a sufficient burn-in period, stel indices ap-
pear to not change in between samples due to the extremely slow mixing of the
Gibbs sampler, and so practically, stel indices can be treated as identifiable across
samples. A theoretically valid approach would be that of analyzing statistics of the
co-occurrence of stel membership assignments.

As we expect, some stels have a very small posterior for a given pixel. In fact,
some stels have a very small posterior across all pixels in all images. These stels can
be thought of the unused stels and their existence supports the notion that different
classes need a different number of stels.

Given the per-pixel posterior distribution, we retain only the stels that are “in
use” for the class. We define a stel to be in use if its total posterior distribution over
pixels is greater than 0.02. That is, a stel s is in use if
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N

∑
n=1

θ̂s,n > 0.02. (18)

If there are C classes of interest, indexed by c, then the posterior for each pixel n
in class c is represented as an S(c)-dimensional vector, where S(c) is the number of
stels that are in use for class c.

Overall, the parameters we extract from the inference procedure across all classes
are the collection of Θ̂ (c) distributions for every pixel in every class, where the
dimension of Θ̂ (c) depends on the number of in use stels for class c. This set of
parameters is the output of the CIA model that we will use in order to extract useful
image representations for object recognition.

3 Using Stels for Supervised Learning Tasks

Stel models are density models of images and can be used for a wide variety of
vision tasks. For image classification, stel models can be used to define class-
conditional densities which are combined using Bayes’ rule to classify test images,
or stel models can be used to construct feature vectors that are fed into a discrimina-
tive learning algorithm. In Sect. 4, we report results on image classification using the
latter approach. For this purpose, we construct feature vectors (image descriptors)
in a way that is similar to the approach described in [24].

Stel models are used to define class-specific segmentations of images and those
segmentations are used to construct feature vectors consisting of a histogram of
SIFT codewords for each stel. In particular, we extract for any image (training or
testing) a descriptor based on the Θ̂ (c) distributions described above. The descriptor
can be easily used to calculate image similarities in a variety of ways. For example,
a kernel operator that is based on the histogram intersection kernel [8] can be used
to measure image similarity and a maximum-margin method such as the SVM can
be used for classification.

We define a discrete set of K visual feature codewords k ∈ {1,2, . . . ,K}. For in-
stance, to learn the codebook we can use the standard approach of extracting dense
SIFT features and clustering them. We can then pre-process each image by comput-
ing per-pixel visual features { fn ∈ {1,2, . . . ,K}}N

n=1.
Now, given the feature index associated with each pixel n in the image, we con-

struct a per-class, per-stel count histogram of visual features:

h(c)
s (k) =

N

∑
n=1

θ̂ (c)
s,n δ ( fn,k). (19)

We can define a concatenated histogram of features as

h(c) = [h(c)
1 (1), . . . ,h(c)

1 (K),h(c)
1 (1), . . . ,h(c)

2 (K), . . . ,h(c)
S(c) (1), . . . ,h(c)

S(c) (K)], (20)
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where S(c) is the total number of stels used for object class c associated with the

image. Thus, this representation gives a vector h(c) ∈ R
S(c)×K , and we obtain a set

of C such vectors per image.
Using the histogram of features h(c), we define the class-specific similarity be-

tween two images, A and B, by the histogram intersection kernel [8]:

Ker(A,B) = min
k

[h(c)
A (k),h(c)

B (k)]. (21)

Note that using this stel kernel, one can better encode spatial relations. Rather
than collecting histograms over arbitrarily defined quadrants as in [16], we collect
histograms over stel segmentations, which provide useful spatial clues pertaining to
the identity of the object.

An orthogonal representation to the CIA representation above is that of the spatial
pyramid histogram of features [16], which is created by constructing a two-level
spatial pyramid histogram of visual features over the four image quadrants, as well
as the entire image. Note that the features can be created by a different codebook
from the one used to create the h(c) collection.

We also define a combined descriptor, that is created by appending the afore-
mentioned spatial pyramid descriptor to h(c). Thus, we obtain for every image a

collection of C feature vectors, h(c) ∈ R
S(c)×K+5K′

, where the 5K′ term comes from
the spatial pyramid descriptor. In our experiments, we do use the same codebook,
and K = K′. This representation can also be used in conjunction with the intersection
kernel above to give a per-class kernel based similarity measure.

4 Experimental Evaluation

To evaluate the usefulness of our approach, we conducted several experiments,
which we report in this section. We performed qualitative assessment by examining
whether our new method, CIA, results in stel-based representations of images with
varying levels of complexity as determined by the object class. We also performed
quantitative analyses to determine whether CIA results in features that improve per-
formance on object recognition tasks. Finally, we also are interested in how the
behavior of CIA changes when the free parameters of the prior are adjusted. We
investigated these properties using a subset of the Caltech101 image dataset.
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4.1 Experimental Setup

4.1.1 Data

We selected a subset of 28 classes from the popular Caltech101 dataset, by identi-
fying the 28 classes that had the largest number of examples per class. To balance
class sizes, we chose 30 images per class randomly. The class labels are aeroplane,
motorbike, background Google, faces easy, watch, leopard, bonsai, car side, ketch,
chandelier, hawksbill, grand piano, brain, butterfly, helicopter, menorah, kangaroo,
starfish, trilobite, buddha, ewer, sunflower, scorpion, revolver, laptop, ibis, llama and
minaret. Multiple training-testing trials were used to obtain confidence intervals. In
each trial, the 30 images in each class were randomly split into 15 training images
and 15 test images. Experimental results are reported based on averaging ten such
trials.

4.1.2 Image preprocessing

The images were resized without cropping to be 50×50, and were converted to
greyscale, with the intensities scaled to the interval [0,1]. This corresponds to D = 1
in Eq. (12). Note that images were not whitened (as is common in other vision
approaches), since the CIA approach explicitly addresses invariance to colour.

4.1.3 Model configuration

Unless otherwise specified, the maximum number of stels S was set to 12. The
experiments used hyperparameters of γ =0.8, Λ0 =0.001, μ0 =0.5, κ0 =0.05, and
ν0 =2.5. The Gibbs sampler was used to generate 1200 samples, after burning in for
1800 iterations.

4.1.4 Visual feature (SIFT) codebook

Following the approach of [16], we extracted 100,000 random SIFT features from
the training set using code obtained from [26], and learnt a codebook of K = 300
visual codewords using K-means.

4.2 Learning a Flexible Number of Stels

Our first concern is whether the additional flexibility of the CIA model actually
results in richer representations for different object classes. We gauged this by ex-
amining how many stels tend to be represented for each object class, when trained
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Fig. 7 A plot of the number of stels used by different Caltech classes. Error bars show the standard
deviation and the classes are sorted by the mean number of stels used.

using the same hyperparameters. For each class, we trained a stel model separately
and after training, the number of significant stels for each class, called ‘stel usage’,
was determined using the threshold described in Eq. 18. For every class, this proce-
dure was repeated ten times. We then examined the number of used stels per class
across the different classes, and we report results averaged across trials.

Fig. 7 shows the mean and standard deviation of stel usage for each class, where
the classes are sorted according to mean stel usage. Note that different classes use a
different number of stels and this number varies widely across classes. The models
that use the smallest number of stels on average correspond to the ibis, leopard
and starfish classes, whereas models that use the largest number of stels on average
correspond to the minaret, face and laptop classes.

Figs. 8 and 9 show stel probability maps extracted for every object class, using
one of the random trials. We examine in more detail three representative cases: the
face (Fig. 8(a)), watch (Fig. 8(b)), and motorbike (Fig. 8(c)) classes. As unused stels
(as determined by the aforementioned thresholding) are not shown, it is clear that
different objects are using different numbers of stels. One explanation for this may
be that different classes have different intrinsic complexities in the parts and colours
that comprise them. Alternatively, image classes that have many different poses,
deformations, or background clutter may require more stels. Faces appear to be an
example of this, since different stels are used to account for variations in expression,
hair style and background.

For additional insight, we also examine the per-class histograms over the number
of used stels, shown in Figs. 10 and 11. These histograms show the total number of
above-threshold stels represented by all images in the class. The histograms were
computed by aggregating all post burn-in samples from the Markov chain, across all
images in the class and for all trials. The differences between the results illuminate
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(a) Face (b) Watch

(c) Motorbike (d) Aeroplane

(e) Background (f) Bonsai

(g) Brain (h) Buddha

(i) Butterfly (j) Car Side

(k) Chandelier (l) Ewer

(m) Grand Piano (n) Hawksbill

Fig. 8 For each class, the stels learnt in a randomly selected trial are shown in order of decreasing
probability mass. Some classes, such as faces, are modelled using a larger number of stels, while
other classes, such as chandeliers, are modelled using a smaller number of stels.
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(a) Helicopter (b) Ibis

(c) Kangaroo (d) Ketch

(e) Laptop (f) Leopard

(g) Llama (h) Menorah

(i) Minaret (j) Revolver

(k) Trilobite (l) Scorpion

(m) Starfish (n) Sunflower

Fig. 9 Continuation of Fig. 8.
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the flexibility of the CIA approach. In some classes, such as watch, the images are
effectively modelled using only about four stels, while in other classes, such as face,
the images typically require about eight stels.

4.3 Object Recognition Using CIA

In this section, we investigate whether our proposed method (CIA) can be used to
extract useful representations for object recognition. For each of the 28 classes, we
calculated the training-by-training, and training-by-test Gram matrices, based on
the descriptors introduced in Sect. 3, and using the intersection kernel as defined
in Eq. (21). Since there are 420 training images, and 420 test images in total, (28
classes with 15 images per class), each of these matrices is a 420× 420 matrix.
We trained a one-versus-all SVM classifier [25] using the 28 Gram matrices. These
experiments used publicly-available code from [4, 16].

One motivation for our Bayesian method is to enable flexibility in the effective
number of stels that are learnt. We hypothesized that this flexibility could lead to
better representations and thus better performance on classification tasks. Our first
comparison is therefore against the non-Bayesian counterpart for CIA, namely the
basic non-Bayesian stel model [12]. For the basic stel model, it is necessary to set
the number of stels in advance. This was done using leave-one-out cross-validation
on the training set, allowing for between four and twelve stels. The number of stels
was determined by the configuration which produced the best likelihood on held-out
validation data.

Overall, the basic stel model with cross-validation obtained 42% classification
accuracy, while our Bayesian method obtained 68% accuracy (see Table 1). Thus,
we have strong evidence to support the conclusion that the additional flexibility
leads to representations that are better for discrimination.

Next, we augmented the descriptor extracted using the Bayesian stel model with
a standard two level spatial pyramid descriptor, to see if the combined descriptor
would give improved performance. Including the spatial pyramid descriptor yields
a modest improvement, increasing the classification accuracy to 72%. While the
significance of this improvement is questionable (the standard deviation is about
2%), it may be explained by some classes not being very well modelled using the
stel model. Some classes, such as the background Google and leopard classes, are
not well-segmented based on colour and shape co-occurrence. This prevents the stel
features from providing useful information. In this case, collecting image features
in the scheme of [16] provides the classifier with additional information that can
be used to improve performance. One way to view collecting image features over a
two-level spatial pyramid is that it augments our approach to fine-tune performance
on segmentation-unfriendly classes.

Finally, we ask whether our descriptors are comparable to the descriptors typ-
ically used for object recognition, based on spatial pyramids. We used the SIFT
descriptors over the image and image quadrants (the same representation we ap-
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(a) Face
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(b) Watch
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(c) Motorbike
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(d) Aeroplane
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(e) Background
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(f) Bonsai
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(g) Brain
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(h) Buddha
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(i) Butterfly
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(j) Car Side
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(k) Chandelier
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(l) Ewer
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(m) Grand Piano
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(n) Hawksbill

Fig. 10 Per-class histograms of the number of stels used for all images and all trials.
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(a) Helicopter
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(b) Ibis
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(c) Kangaroo

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Number of stels

F
ra

ct
io

n 
of

 ti
m

es
 u

se
d

(d) Ketch
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(e) Laptop
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(f) Leopard
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(g) Llama
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(h) Menorah
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(i) Minaret
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(j) Revolver
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(k) Trilobite
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(l) Scorpion
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(m) Starfish
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(n) Sunflower

Fig. 11 Continuation of Fig. 10.
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pended to our descriptor to obtain the augmented descriptor described above) in
conjunction with the intersection kernel. The achieved accuracy was 71%, which is
not statistically-significantly different from the result obtained using our method.

In summary, descriptors derived using our proposed method significantly im-
prove on the basic stel model. In particular, our method discovers segmentations
of object classes that are more conducive to object recognition. Additionally, our
method is competitive with standard SIFT-based spatial pyramid methods, and pro-
vides a very different approach to defining feature vectors.

Method Accuracy (sd ∼ 2%)

Bayesian stel model (CIA) 68%
Bayesian stel model with spatial pyramid 72%
Basic stel model with cross-validated numbers of stels 42%
SIFT with spatial pyramid 71%

Table 1 Classification results on a subset of 28 classes from Caltech101. The first two entries were
obtained using our proposed Bayesian method (CIA). The third entry follows the method of [15],
using a fixed number of stels per class that was chosen using cross-validation. The fourth method
is considered to be the state of the art and follows [16].

4.4 Effect of Hyperparameter Choices on Learnt Stels

An important question in the context of Bayesian inference is the sensitivity of in-
ferred models to the hyperparameter settings. While it is possible to infer or sample
them, we can obtain intuition and a better understanding of the model by considering
how the inferred model changes as a function of the hyperparameter settings.

In this section we report some of our findings when trying different parameter
settings for the greyscale version of the model. As the images are greyscale with
values in [0,1], the hyperparameter value for the mean, μ0, was not expected to be
particularly sensitive, and we set it throughout all experiments to be μ0 =0.5. How-
ever, it was expected that the other normal-inverse Wishart parameters would have
an effect on the results. In the following experiments, we centred the hyperparam-
eters at a “reasonable” configuration and then perturbed them one at a time and to
examine the effects. The centre values are Λ0 =0.001, μ0 =0.5, κ0 =0.1, ν0 =3. We
examine the results of perturbing κ0, ν0, and Λ0.

4.4.1 Variation in κ0

In this set of experiments we considered the values κ0 ∈ {0.01,0.1,1}. Results are
shown in Fig. 12. We observe that for κ0 =1, we obtain many similar stels that
tend to be below the threshold. As we lower κ0, we allow larger variations from
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(a) Face (b) (c)

(d) Watch (e) (f)

(g) Motorbike (h) (i)

(j) Aeroplane (k) (l)

(m) Car Side (n) (o)

(p) Brain (q) (r)
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Fig. 12 Inferred stels for different settings of κ0 across columns. The other NIW parameters are
set to {μ0 = 0.5,Λ0 = 0.001,ν0 = 3}

the prior mean. For represented stels with many pixels, however, the prior mean
has little effect; κ0 primarily changes the default colour distributions for below-
threshold stels. Figs. 12(s)-12(u) show contour plots for the normal-inverse Wishart
prior distribution on the mean and variance parameter of the colour model, for each
setting of κ0.
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4.4.2 Variation in ν0

This set of experiments considered the values ν0 ∈ {2,3,5}. Results are shown in
Fig. 13. Increasing ν0 increases the effect of the prior covariance Λ0. Given the prior
choice of Λ0, this results in narrower colour distributions and decreased flexibility
in what pixels each stel can explain. For example, in the faces shown in Fig. 13(c), a
single stel cannot explain both the eyes and the face. Figs. 13(s)-13(u), show contour
plots for the normal-inverse Wishart prior distribution on the mean and variance
parameters of the colour model, as ν0 is varied.

4.4.3 Variation in Λ0

These experiments considered the values Λ ∈ {0.0001,0.001,0.01,}. Results are
shown in Fig. 14. This hyperparameter corresponds to the prior on the covariance.
Although this has a large effect on the normal-inverse-Wishart prior, there is little
sensitivity evident in the learnt stels. Figs.14(s)-14(s) show contour plots for the
normal-inverse Wishart prior distribution on the mean and variance parameters of
the colour model as Λ0 is varied.

5 Summary

We have introduced a novel generative Bayesian framework, the colour-invariant
admixture model (CIA), for generalizing stel models. This rectifies a previous weak-
ness in stel-based models, in which it is difficult to regularize the distribution over
stels. Our admixture-based approach represents the full posterior distribution over
stel parameters, enabling different numbers of stels to be represented to capture vari-
ation in object complexity. We have also introduced a straightforward Gibbs sampler
for performing inference in this model. Our empirical analyses demonstrate that CIA
is capable of learning varying complexity in stels for each class. Additionally, CIA
outperforms stel modelling approaches that require cross-validation, and performs
comparably to the popular SIFT-based pyramid matching.

CIA can be used to segment images in an unsupervised fashion, and we have
shown that this segmentation provides a rich backdrop on which to perform object
recognition. It robustly captures spatial relations between features, a crucial piece
of any foundation for state-of-the-art object recognition.

Although our approach provides a way of inferring a class-specific distribution
over the stels, our approach may still be sensitive the maximum number of stels S.
For instance, allowing a large number of stels to be used may result in “noisy” stels,
in which many stels are speckly and do not appear to represent meaningful struc-
ture. This free parameter is a difficult-to-avoid side-effect of this generative model.
One future direction for resolving this difficulty is to use a Bayesian nonparametric
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Fig. 13 Inferred stels for different settings of ν0 across columns. The other NIW parameters are
set to {μ0 = 0.5,Λ0 = 0.001,κ0 = 0.1}

approach in which an unbounded number of stels are allowed by the model, using,
for example, the hierarchical Dirichlet process [30].

In addition, patch-based models, such as convolutional neural networks, have
recently become popular in the vision community. An extension to this work is to
model an image as a collection of smaller patches, all of which use the same palette
to colour the image. Here, a vocabulary of patches, similar to Gabor filters, could
be learnt, and the types of patches used in an image could be used to discriminate
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Fig. 14 Inferred stels for different settings of Λ0 across columns. The other NIW parameters are
set to {μ0 = 0.5,κ0 =,ν0 = 3}

one class from another. For example, one patch from the vocabulary may represent
the wheel of a motorbike, and so this type of patch being present twice in an image
could help distinguish between motorbikes and sunflowers, which have no wheels.
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