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Abstract

Stationarity is often an unrealistic prior as-
sumption for Gaussian process regression.
One solution is to predefine an explicit non-
stationary covariance function, but such co-
variance functions can be difficult to spec-
ify and require detailed prior knowledge of
the nonstationarity. We propose the Gaus-
sian process product model (GPPM) which
models data as the pointwise product of two
latent Gaussian processes to nonparametri-
cally infer nonstationary variations of ampli-
tude. This approach differs from other non-
parametric approaches to covariance function
inference in that it operates on the outputs
rather than the inputs, resulting in a signifi-
cant reduction in computational cost and re-
quired data for inference. We present an ap-
proximate inference scheme using Expecta-
tion Propagation. This variational approx-
imation yields convenient GP hyperparame-
ter selection and compact approximate pre-
dictive distributions.

1. Introduction

The Gaussian process (Rasmussen & Williams, 2006)
is a useful and popular prior for nonlinear regression.
It can be used to construct a distribution over scalar
functions via a prior on smoothness. This prior is spec-
ified through a positive-definite kernel, which deter-
mines the covariance between two outputs as a func-
tion of their corresponding inputs. Often, this covari-
ance function is taken to be stationary, i.e., a function
only of the distance between the input points. Sta-
tionary covariance functions are appealing due to their
intuitive interpretation and their relative ease of con-
struction via Bochner’s Theorem (Gibbs, 1997).
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Unfortunately, stationarity is often an unrealistic
assumption. We expect many problems of interest
to have nontrivial nonstationarity in the form of
input-dependent noise, length scale or amplitude.
While input-dependent noise and length-scale have
been well-studied in the literature, nonstationarity in
the form of varying amplitude has received relatively
little attention.

One approach to modeling such data is to directly
specify a covariance function with nonstationary prop-
erties (Gibbs, 1997; Higdon et al., 1999). In machine
learning, however, we find it undesirable to need to
specify the covariance nonstationarity a priori ; rather
we wish to infer it. Moreover, as the objective with
Gaussian process regression is to perform nonparamet-
ric inference, we would prefer a representation of the
nonstationarity which is also nonparametric.

Several approaches have been proposed to solve the
problem of learning a length scale that varies across
the input space. One of the first techniques was
that of Sampson and Guttorp (1992), who model a
spline-based mapping to a latent input space in which
the data are stationary. This approach was given a
nonparametric Bayesian treatment by Schmidt and
O’Hagan (2003). Recently, Paciorek and Schervish
(2004) extended the work of Higdon et al. (1999) to
learn nonparametric variation of the covariance ker-
nel. Other approaches involve Gaussian process mix-
tures (Rasmussen, 2000), augmentation of the input
space (Pfingsten et al., 2006), and weighted sums of
locally-stationary processes (Nott & Dunsmuir, 2002).

A related problem is input-dependent observation
noise in the Gaussian process, addressed by Goldberg
et al. (1998), who model a log-noise term in the co-
variance function with another Gaussian process, and
by Le et al. (2005) who model nonstationary noise by
performing regression in the natural parameter space
of the exponential family. Snelson and Ghahramani
(2006) achieve nonstationary noise as a side effect of
the combination of input dimensionality reduction and
a sparse approximation using pseudo-data.
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In this paper, we propose the Gaussian process
product model (GPPM) to address smooth input-
dependent changes in amplitude. The GPPM models
the data as the pointwise product of two latent sta-
tionary Gaussian processes. This approach has the
notable computational advantage over remappings of
the input space in that high dimensional problems pose
no intrinsic scalability problems. Remapping the input
nonparametrically while maintaining the input dimen-
sion requires at least as many latent processes as input
dimensions. In contrast, the GPPM uses only a sin-
gle additional GP regardless of input dimension. We
develop a quadrature-based Expectation Propagation
(EP) algorithm for efficient approximate inference in
the GPPM model. The EP approach allows us to use
the estimated marginal likelihood of the model to learn
empirical settings of the Gaussian process hyperpa-
rameters. The approximate inference procedure we de-
scribe yields uncertainty in the nonstationarity, while
avoiding expensive MCMC methods that are typically
required. We additionally develop useful approxima-
tions for the predictive distribution arising from the
EP approximation, and discuss rapid learning of a
MAP estimate of the nonstationarity when observa-
tions can be considered noise free. This model is simi-
lar to that presented by Turner and Sahani (2008), who
modulate sounds with Gaussian processes, however the
GPPM is intended for the general regression problem
and our inference approach differs significantly.

2. Gaussian Process Regression

In Gaussian process regression, we find a distribution
over functions of the form f : X → R, X = R

m.
For a comprehensive introduction see Rasmussen and
Williams (2006). The data consist of N input/output
pairs D = {xn, yn}N , xn ∈ X , yn ∈ R. A vector of
output points has a Gaussian prior distribution with a
mean function µ(x), which we take to be zero, and a
positive-definite covariance function C(x,x′;θ). This
construction gives an analytic Gaussian predictive dis-
tribution for an unseen output y⋆ ∼ N (µ⋆, v⋆):

µ⋆ = kT

NC−1
N yN , v⋆ = C(x⋆,x⋆) − kT

NC−1
N kN ,

where kN = [C(x⋆,x1;θ), . . . , C(x⋆,xN ;θ)]
T
, and

CN is the covariance matrix formed from the observed
data. The log evidence, or log marginal likelihood af-
ter integrating out all possible functions is

L = −1

2
ln |CN | − 1

2
yT

NC−1
N yN − N

2
ln 2π. (1)

Stationary covariance functions only depend on a dis-
tance measure d between x and x′, for example the

σ2
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Figure 1. A graphical model describing the GPPM. The
thick lines connecting the values of f and g represent undi-
rected connections associated with the Gaussian process.
The double-lined circles around the y values represent ob-
servables. Both f(x) and g(x) have the same input space.

Mahalanobis distance d(x,x′) = (x−x′)TW (x−x′)
with positive definite W . Covariance functions that
depend only on distance are appealing due to the intu-
ition that the outputs of the function should covary in
inverse proportion to how far the inputs are from each
other. The model proposed in this paper attempts to
retain this intuition while providing a mechanism for
the relationship between distance and covariance to
vary across the input space.

3. The Gaussian Process Product Model

In the Gaussian process product model (GPPM), the
observed outputs {yn}N are modeled by a pointwise
product of two latent functions, plus independent zero-
mean Gaussian noise with variance σ2. One latent
function f : X → R, is modulated by the other func-
tion g : X → R that has been exponentiated, so that

yn ∼ N (f(xn)eg(xn), σ2). (2)

We place independent zero-mean Gaussian process
priors on f(x) and g(x), with covariance functions
Cf (x,x′;θf ) and Cg(x,x′;θg), respectively. Figure 1
shows a graphical interpretation of this model. Our
convention is that f(x) captures local near-stationary
variations in the observed function and g(x) captures
slowly-varying amplitude nonstationarity. The length-
scale hyperparameters of these covariance functions
(and their hyperpriors) should be chosen to reflect
prior beliefs about such variations. To give the fla-
vor of this model, Figure 2 shows several samples from
the GPPM.
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Figure 2. Three samples from the GPPM with different pa-
rameters. In the top plot, the length scales are lf = 0.5 and
lg = 4.0. In the middle plot, both are shorter: lf = 0.25
and lg = 2.0. In the bottom plot, lf = 0.5 and lg = 2.0,
but f(x) also has additive noise.

Note that the pointwise product of a Gaussian process
prior with any known function a(x) results in a covari-
ance function given by C ′(x,x′) = a(x)C(x,x′)a(x′)
and that this function is guaranteed to be positive def-
inite. In the GPPM we use an exponentiated form
a(x) = exp{g(x)} in order to reduce the multimodal-
ity of the posterior on the latent functions, but this
is not critical for the validity of the covariance func-
tion. Without restricting the sign of one of the func-
tions, there would be at least 2N posterior modes, as
each observation could be explained by the same latent
function values with flipped signs.

4. Factor Inference in the GPPM

The basic GPPM inference task is to determine
the posterior distribution over the values of the la-
tent functions f(x) and g(x) at the input loca-
tions {xn}N . These latent function values will be de-
noted fn = f(xn) and gn = g(xn) for brevity.
Additionally we will write the vectors of these la-
tent values in bold type: f = [f1, . . . , fN ]

T
and

g = [g1, . . . , gN ]
T
. With this notation and with Cf

and Cg representing the GP-derived covariance matri-
ces on f(x) and g(x) respectively, the posterior distri-
bution of the latent functions is

p(f , g | D,θ) ∝ N (f ; 0,Cf )N (g; 0,Cg)

×
N∏

n=1

N (yn; fnegn , σ2). (3)

4.1. Approximate Inference

Approximate inference via variational methods is ap-
pealing due to its determinism and potential computa-
tional savings. In the GPPM, several properties affect
our choice of approximation. First, we expect that the
posterior will be approximately Gaussian, as we have
strong Gaussian process priors and a near-Gaussian
likelihood. Second, the likelihood factorizes to N inde-
pendent terms, each involving one point from the two
latent functions. Third, these likelihood factors intro-
duce nontrivial dependencies between f and g so that
a factorized approximation is inappropriate. We ad-
dress these properties using Expectation Propagation.

4.1.1. Expectation Propagation

Expectation Propagation (Minka, 2001) makes succes-
sive local approximations of factors in a joint den-
sity, typically using exponential-family distributions,
to yield a global approximation that is optimal under
a divergence measure. EP is particularly well-suited
for approximation of Bayesian posterior distributions
with i.i.d. data as in Equation 3, as each factor only
involves a few of the unknown parameters.

Our construction of the EP approximation is similar
to that used by Rasmussen and Williams (2006) for
binary Gaussian process classification. The prior on
f and g is Gaussian with zero mean and a block co-
variance matrix arising from the independent Gaus-
sian process priors. For notational convenience, we
will write φ to be the concatenation of f and g so
that φ = [f1, . . . , fN , g1, . . . , gN ]T, and φn to be the
nth pair [fn gn]T. The prior can now be written

p(φ) = N (0,ΣGP), ΣGP =

[
Cf 0
0 Cg

]

.

The aim of EP is to approximate the exact posterior
distribution of Equation 3 with a tractable alternative

q(f , g | D,θ) ∝ N (0,ΣGP)
N∏

n=1

t̃n(fn, gn). (4)

Each of the exact likelihood terms

Ln(fn, gn) =
1

σ
√

2π
exp

{

− 1

2σ2
(fnegn − yn)

2

}

is approximated with an unnormalized bivariate Gaus-
sian on fn and gn:

t̃n(fn, gn) = Z̃n exp

{

−1

2
(φn − µ̃n)TΣ̃

−1

n (φn − µ̃n)

}

.

The product of these likelihood approximations is an
unnormalized Gaussian with a block-diagonal covari-
ance matrix.

N∏

n=1

t̃n(φn) = exp

{

−1

2
(φ − µ̃)TΣ̃

−1
(φ − µ̃)

} N∏

n=1

Z̃n
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The overall approximation is Gaussian as well, as it is
the product of these Gaussian likelihood approxima-
tions and the Gaussian process prior.

q(f , g | D,θ) = N
(

φ =

[
f

g

]

;µ,Σ

)

(5)

Σ =
(

Σ−1
GP

+ Σ̃
−1

)−1

µ = ΣΣ̃
−1

µ̃

The Expectation Propagation algorithm proceeds by
iteratively updating the parameters of the local ap-
proximations tn, leaving all other approximate factors
fixed. In this iterative procedure the update of the nth
site can be understood as the minimization of the KL
divergence between two approximating distributions:
the product of the cavity distribution times the exact
local likelihood, and the product of the cavity distri-
bution times the approximate local likelihood. The
insight of EP is that the cavity distribution “focuses”
the approximation on the most relevant area.

µ̂n, Σ̂n = argmin
µ′,Σ′

KL

[

N (µ/n,Σ/n) ×
exact factor
︷ ︸︸ ︷

Ln(fn, gn)
∣
∣
∣
∣

N (µ/n,Σ/n) × t̃n(fn, gn|µ′,Σ′)
︸ ︷︷ ︸

approximation

]

The cavity distribution for site n is the product of the
prior and all approximate sites excluding the nth. This
is Gaussian with parameters

Σ/n =
(

Σ−1
n − Σ̃

−1

n

)−1

(6)

µ/n = Σ/n

(

Σ−1
n µn − Σ̃

−1

n µ̃n

)

. (7)

As shown by Minka (2001), the minimum of an in-
clusive KL divergence is achieved when the moments
are equal. Thus to find the best-fitting Gaussian, it is
sufficient to find the first and second moments of the
product of the cavity distribution and the exact likeli-
hood. We also find the “zeroth moment,” which is the
normalization constant Ẑn. Calculation of these mo-
ments is done numerically via Gaussian quadrature,
addressed in Section 4.1.2.

Once the moments of the product have been found,
we use them to recover the optimal parameters of the
local approximation:

Σ̃n =
(

Σ̂
−1

n − Σ−1
/n

)−1

µ̃n =Σ̃n

(

Σ̂
−1

n µ̂n − Σ−1
/n µ/n

)

ln Z̃n = ln Ẑn − 1

2
ln |Σ̃n| +

1

2
ln |Σ/n| +

1

2
µ̃T

nΣ̃
−1

n µ̃n

+
1

2
µT

/nΣ−1
/n µ/n − 1

2
µ̂T

nΣ̂
−1

n µ̂n.

Taken together these equations define a fixed-point
iteration scheme for approximating the posterior in
Equation 3. We initialize the approximations so that
the initial estimate of the mean of f is y and the mean
of g is zero. We then iterate over each of the N lo-
cal approximations, and update the overall posterior
approximation using Equation 5. To facilitate conver-
gence of EP it is helpful to use damping to update
local sites, which we implement in natural parameter
space. Convergence of EP is not guaranteed, but given
sufficient damping it is found to convergence for the
problems we considered so far. Local approximations
may not necessarily be positive definite, but as long as
the overall approximation remains a valid Gaussian,
this does not present a problem. Following from the
treatment by Minka (2001) of negative variances, we
skip the update of local approximations that would
result in invalid global covariance matrices. This has
not appeared to affect the accuracy of the global ap-
proximation in practice. Figure 3(b) shows the result
of applying the EP procedure to a synthetic data set.
Marginal error bars are shown for each function and
site location.

4.1.2. Gaussian Quadrature for EP

Unfortunately, the moments that minimize the KL
divergence of Section 4.1.1 are not available analyti-
cally. To resolve this, we use the approach proposed
by Zoeter and Heskes (2005) of approximating the
moment integrals using Gaussian quadrature. When
a definite integral is the product of a nonnegative
“weighting function” w(v) and another function z(v),
it can be approximated by a sum of weighted evalua-
tions of z(v)

∫ a

b

dv w(v)z(v) ≈
K∑

k=1

wkz(vk)

where the weights {wk} and abscissae {vk} are deter-
mined by the integration interval, the weighting func-
tion w(v), and the number of evaluation points K.
This sum is exact where z(v) is a polynomial of degree
2K−1. In the case of interest here, the weighting func-
tion is the Gaussian cavity distribution, which implies
Gauss-Hermite quadrature.

One difficulty is that Gaussian quadrature is gener-
ally oriented towards univariate definite integrals and
we must solve a two-dimensional integral. When the
weighting function is factorizable, this is done straight-
forwardly by defining a lattice of abscissae and using
the Cartesian product of the weights. In the GPPM,
however, the cavity distribution has nonzero mean and
is not generally factorizable, so we must transform
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the integrand prior to to performing Gauss-Hermite
quadrature. The factorizable form can be recovered by
transforming the abscissae with the inverse Cholesky
decomposition of the cavity covariance matrix and
the cavity mean. The Gaussian parameters resulting
from these moment calculations are denoted Ẑn, µ̂n,
and Σ̂n in Section 4.1.1.

4.2. Noise-free MAP Learning

In some applications of the GPPM, it may be that the
observations can be considered noise-free. For exam-
ple, one may model the noise as coming exclusively
from the locally-varying function f(x). The appeal
of this restricted model is that proposals of the non-
stationarity can now be evaluated as O(N2) rather
than O(N3). This is particularly valuable for finding
rapid maximum a posteriori (MAP) estimates of the
latent modulating function g(x). The computational
advantage in the noise-free case comes from the deter-
ministic coupling of the latent functions, given y; we
can now consider the posterior of g alone:

p(g |θf ,θg) ∝ p(D | g,θf )p(g |θg). (8)

In this form, conditioning on g corresponds to a simple
linear transformation of the GP prior on f . Using the
notational shortcut G = diag([eg1 , eg2 , . . . , egN ]), the
log likelihood is

ln p(D | g,θf ) = −1

2
ln |GCfG|

− 1

2
yT[GCfG]−1y − N

2
ln 2π.

The log posterior over g, eliminating irrelevant terms
and using 1 to indicate a column vector of ones, is

ln p(g | D,θf ,θg) = −gT1 − 1

2
yT[GCfG]−1y

− 1

2
gTC−1

g g + const

and the gradient in terms of g is

∂

∂g
ln p(g | D,θf ,θg) = −1 + Y [GCfG]−1y − C−1

g g

where Y = diag(y). As the difficult O(N3) opera-
tions of decomposition or inversion of Cf and Cg can
be done in advance, the computational complexity of
taking a step in g space is O(N2). In practice, we
have found the MAP estimate to be best when f(x)
has additive noise and g(x) is smooth.

5. Making Predictions

As with the standard regression model, the primary
task of interest is prediction at locations where data
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Figure 3. Figure 3(a) shows synthetic data generated from
the GPPM with known settings and σ = 0.05. We applied
the Expectation Propagation algorithm to the data and
the Gaussian marginal posterior distributions over f and
g are shown in Figure 3(b), along with the true f(x) and
g(x) indicated as circles. Figure 3(c) shows the result of
applying the MAP approximation to the data, despite the
known observation noise. The true values are shown for
comparison.

have not been observed. For the GPPM we must make
predictions for both latent functions, and find the re-
sulting distribution, integrating out the posterior dis-
tribution over the latent functions, as in

p(y⋆ |x⋆,D,θf ,θg)

=

∫

f ,g

p(y⋆ |x⋆,f , g)p(f , g | D,θf ,θg).
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The EP scheme of Section 4.1 finds an approximate
Gaussian distribution over f and g, and this results in
a convenient joint Gaussian distribution on f⋆ and g⋆,
the values of the latent functions at x⋆, with parame-
ters

µ⋆=KT

(

ΣGP + Σ̃
)−1

µ̃, Σ⋆= κ−KT

(

ΣGP + Σ̃
)−1

K,

where

K =















C(x⋆,x1;θf ) 0
C(x⋆,x2;θf ) 0

...
...

C(x⋆,xN ;θf ) 0
0 C(x⋆,x1;θg)
...

...
0 C(x⋆,xN ;θg)















κ =

[
C(x⋆,x⋆;θf ) 0

0 C(x⋆,x⋆;θg)

]

.

We expect that the resulting predictive distribution on
y⋆ will be heavy-tailed and have similar properties to
the noncentral Student’s t distribution. To approxi-
mate the true distribution’s heavy tails analytically,
one approach is to generate several samples from g⋆

and use the conditional distribution on f⋆ to create a
mixture of Gaussians:

p(y⋆ |x⋆,D,θf ,θg) ≈
∑

i

N (y⋆;µ⋆
f |gi

eg⋆
i , v⋆

f |gi
e2g⋆

i ).

We have used µ⋆
f |gi

and v⋆
f |gi

to indicate the con-
ditional Gaussian parameters on f⋆ given the ith
marginal sample from g⋆.

If the heavy-tailed properties are not significant for
the application, and a single Gaussian distribution is
preferred, then a more tractable alternative is to lin-
earize the model around the mean µ⋆. This is a sim-
ilar approach to the Extended Kalman Filter (EKF)
(Haykin, 2001), which uses the first terms of the Tay-
lor series of a nonlinear function to maintain Gaussian
uncertainty in latent state estimation. The resulting
approximation is

f⋆eg⋆ ≈
µ⋆

µ⋆
feµ⋆

g +

[
eµ⋆

g

µ⋆
feµ⋆

g

]T [
f⋆ − µ⋆

f

g⋆ − µ⋆
g

]

which transforms the Gaussian on f⋆ and g⋆ into one
on y⋆ with parameters

µ⋆
y = µ⋆

feµ⋆
g v⋆

y =

[
eµ⋆

g

µ⋆
feµ⋆

g

]T

Σ⋆

[
eµ⋆

g

µ⋆
feµ⋆

g

]

+ σ2.

6. Hyperparameter Learning

When performing Gaussian process regression, we are
commonly interested in appropriate settings of the

hyperparameters controlling the covariance function.
These hyperparameters generally determine the length
scale of correlations, the output variation (or ampli-
tude) of the function, and the noise level. In the
GPPM, we wish to find appropriate hyperparame-
ter settings for both latent functions, given the data.
While the vanilla Gaussian process offers the marginal
likelihood analytically, it is not available directly in the
GPPM. Fortunately, the EP algorithm of Section 4.1
provides a convenient estimate of the marginal likeli-
hood, using the zeroth moments mentioned previously.

lnZEP =
1

2
ln |Σ| − 1

2
ln |ΣGP| −

1

2
µ̃TΣ̃

−1
µ̃

+
1

2
µTΣ−1µ +

N∑

n=1

ln Z̃n

In principle it is also possible to evaluate the gradients
of lnZEP with respect to hyperparameters following
for instance (Seeger, 2005). In practice however, the
quadrature-based moment calculation is numerically
not stable enough to provide precise gradients. We
hence reverted to gradient-free optimization methods
to determine hyper parameter settings. We suggest
setting hyperpriors to reflect the intuition described
in Section 3 of f(x) capturing local near-stationary
variations and g(x) capturing slowly varying nonsta-
tionarity on a larger lengthscale.

7. Results

We evaluated the GPPM model on three data sets.
First, we examined the motorcycle data set (Parker &
Rice, 1985), a well-studied example of a nonstationary
regression task. The data are acceleration force in g’s
on a helmet during impact, as a function of time in mil-
liseconds. Figure 4(a) in the upper plot shows the EP
approximation found for the latent g(x) function, and
in the lower plot shows the Gaussian approximation
to the predictive distribution, overlaid with the true
data. The GPPM finds a good fit in most regions ex-
cept where the g(x) function becomes quite small. In
these regions the uncertainty in the modulating func-
tion creates unrealistically large prediction error bars.
We evaluated the accuracy of predictions using a fill-in
test, where a fraction of the data are removed from the
training set and compared to the model’s predictions.
Figure 4(d) depicts the mean log probability and the
mean squared error for missing data as a function of
the fraction of missing data. The GPPM outperforms
both a vanilla GP and the sparse pseudo-input pro-
cess (SPGP) (Snelson & Ghahramani, 2006) using ei-
ther of the performance measures. We chose the SPGP
for comparison to the GPPM, as it is one of the few



Gaussian Process Product Models

−1

−0.5

0

0.5

1

1.5
EP Posterior g(x)

5 10 15 20 25 30 35 40 45 50 55
−150

−100

−50

0

50

100

150
EP Posterior f(x)*exp(g(x))

(a) Motorcycle Predictions

−1.5

−1

−0.5

0

0.5

1
EP Posterior g(x)

Jan07 Feb07 Apr07 Jun07 Jul07 Sep07 Nov07 Dec07
−4

−2

0

2

4
EP Posterior f(x)*exp(g(x))

(b) S&P 500 Predictions

1

1.2

1.4

1.6

1.8

2
EP Posterior g(x)

0 200 400 600 800 1000
−100

−50

0

50

100
EP Posterior f(x)*exp(g(x))

(c) Heart Rate Predictions

−5.5

−5

−4.5

−4
MLPMLP

0.1 0.2 0.3 0.4 0.5 0.6
10

15

20

25

30

35

Fraction of missing Data

MSEMSE

vanilla GP SPGP GPPM

(d) Motorcycle Fill–in Performance

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3
MLPMLP

0.1 0.2 0.3 0.4 0.5 0.6
0.8

1

1.2

1.4

1.6

Fraction of missing Data

MSEMSE

vanilla GP SPGP GPPM

(e) S&P Fill–in Performance

−7

−6

−5

−4

−3
MLPMLP

0.1 0.2 0.3 0.4 0.5 0.6
6

8

10

12

14

Fraction of missing Data

MSEMSE

vanilla GP SPGP GPPM

(f) Heart Rate Fill–in Performance

Figure 4. Top panel: Predictive distribution of GPPM for three different data sets. The upper plot shows the EP
approximation to the posterior of the log-modulating function g(x) with 2σ error bars. The lower plot shows the raw data,
along with the 2σ approximate predictive distribution. Lower panel: Fill-in test for corresponding data sets comparing
three models. The upper plot shows the mean log probability of the missing data as a function of the fill-in rate. The
lower plot shows the root mean squared error for these data. Both plots show mean values and 2σ error bars, calculated
from four training/test splits.

methods capable of representing nonstationarity with-
out requiring MCMC. Hyperparameters for the SPGP
and the vanilla GP were set via ML-II optimization
(Rasmussen & Williams, 2006). To set hyperparame-
ters in the GPPM, a grid search was used, centered on
the settings for the vanilla GP.

We also examined the performance of the GPPM for
daily log returns of the S&P 500 stock index during
2007. We expect that these data will be well-modeled
by a latent f(x) comprised primarily of noise. The log
modulating function g(x) can be interpreted roughly
as the log “volatility” of the stochastic process and
is shown in the upper plot of Figure 4(b). The cor-
responding expected envelope is shown against the
true data in the lower plot. Performance measures
against the standard Gaussian process and the SPGP
are shown in Figure 4(e). In this example mean predic-
tions are equally good for three all models, but GPPM
yields nonstationary uncertainty which results in an
improved mean log probability.

As a last application we applied the GPPM to 23
hours of heart rate data, sampled at 5 minute intervals.
Based on the physiological properties of heart rates,

we expect correlations on a short time scale to be cap-
tured by f(x). These local correlations will be mod-
ulated by an activity profile over a daily time scale.
Figure 4(c) illustrates that these amplitude modula-
tions are picked up by the latent g(x) leading to im-
proved predictive performance compared to the vanilla
GP and SPGP, as shown in Figure 4(f).

8. Discussion

We have introduced the Gaussian process product
model for modeling nonstationary amplitude in re-
gression. We have presented an approximate infer-
ence algorithm using Expectation Propagation to infer
the latent functions in this model and have exploited
this approximation to make tractable predictions and
enable hyperparameter learning. When examined on
real-world data, the GPPM has yielded promising re-
sults, outperforming the vanilla Gaussian process. It
has also outperformed an alternative approach to non-
stationary regression in the SPGP, although it should
be noted that the SPGP’s focus is purely on efficient
regression and not on modeling nonstationarity per se.
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Computationally, the model we have presented, com-
bined with the EP implementation has two appealing
properties. First, as we expect the number of EP itera-
tions to be independent of the number of data (Minka,
2001), and each local calculation is a O(N2) rank-one
update of the inverse, the overall algorithm is O(N3).
The GPPM is therefore only a constant multiple more
expensive than performing standard Gaussian process
regression. Second, in contrast to methods of model-
ing nonstationarity on the input side, the GPPM does
not introduce additional latent spaces if the input di-
mensionality increases. The additional computational
complexity of using the GPPM is essentially indepen-
dent of input dimension.

In future work, a more comprehensive examination of
inference of hyperparameters is warranted. We also
expect that the basic idea of this model can be used to
perform vector regression with correlation that varies
across the input space.
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