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Abstract

In [Kal89], Kaltofen proved the remarkable fact that multivariate polynomial factor-
ization can be done efficiently, in randomized polynomial time. Still, more than twenty
years after Kaltofen’s work, many questions remain unanswered regarding the complexity
aspects of polynomial factorization, such as the question of whether factors of polynomi-
als efficiently computed by arithmetic formulas also have small arithmetic formulas, asked
in [KSS14], and the question of bounding the depth of the circuits computing the factors
of a polynomial.

We are able to answer these questions in the affirmative for the interesting class of
polynomials of bounded individual degrees, which contains polynomials such as the deter-
minant and the permanent. We show that if P (x1, . . . , xn) is a polynomial with individual
degrees bounded by r that can be computed by a formula of size s and depth d, then any
factor f(x1, . . . , xn) of P (x1, . . . , xn) can be computed by a formula of size poly((rn)r, s)
and depth d+ 5. This partially answers the question above posed in [KSS14], who asked if
this result holds without the dependence on r. Our work generalizes the main factorization
theorem from Dvir et al. [DSY09], who proved it for the special case when the factors are
of the form f(x1, . . . , xn) ≡ xn− g(x1, . . . , xn−1). Along the way, we introduce several new
technical ideas that could be of independent interest when studying arithmetic circuits (or
formulas).
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1 Introduction

Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial over a field F. The individual
degree of f with respect to variable xi, denoted by degxi(f), is the largest power of xi appearing
in a monomial of f . Many interesting polynomials have bounded individual degree, such as
the Permanent and Determinant polynomials. Moreover, the class of polynomials of bounded
individual degree is closed under factorization, since if a polynomial f(x1, . . . , xn) has individual
degrees bounded by r, so will its factors. In this work, we study the problem of formula (circuit)
factorization of polynomials of low individual degree.

One of the basic operations on polynomials is factorization. This problem can be phrased
as follows: given a polynomial P (x1, . . . , xn), decide whether P (x1, . . . , xn) is irreducible, or
if not, output one of its factors, which we denote by f(x1, . . . , xn). From the computational
perspective, we will usually be given a device computing the polynomial P , and we will be
asked to output a similar device computing f . In the field of arithmetic complexity, the most
natural device computing polynomials is an arithmetic circuit or a formula (see Definition 1.1
below). Therefore, we will assume that we are given P as an arithmetic circuit (formula)
and output one of its factors in the same representation. We now give the definition of an
arithmetic circuit/formula:

Definition 1.1. An arithmetic circuit Γ is a directed acyclic labeled graph in which the vertices
are called ‘gates’. The gates of Γ with in-degree 0 are called inputs and are labeled by either
a variable from {x1, . . . , xn} or by field element from F. Every other gate of Γ is labeled by
either ‘×’ or ‘+’ and has in-degree 2. (If we talk about bounded depth circuits/formulas, then
we remove the restriction on the in-degree.) There is one gate with out-degree 0, which we call
the output gate. Each gate in Γ computes a polynomial in F[x1, . . . , xn] in the natural way.
An arithmetic circuit is called a formula if its underlying graph is a tree. The size of a circuit
(formula) Γ, written |Γ|, is given by the number of edges in the circuit (formula) and the depth
of Γ, written depth(Γ), is defined as the length of the longest directed path in the graph of Γ.

Polynomial factorization is one of the cornerstone problems in modern computer algebra,
and as such has been the focus of intensive research. The past three decades have seen major
advances on the development of efficient algorithms for polynomial factorization, pioneered
by the works of Lenstra et al. and Kaltofen [LLL82, Kal85, Kal89, Kal03]. In addition to
the general problem, polynomial factorization has also been studied in many other important
(and more restricted) representations. For instance, in the sparse representation, where the
input polynomial is given as a list of its coefficients and monomials, the works of Lenstra,
Kaltofen and von zur Gathen [LJ99, GK85] give efficient algorithms for sparse factorization
in the univariate and in the multivariate cases. For a more complete survey on polynomial
factorization we refer the reader to the survey [Kal03] and to the book [GG99].

In the seminal work of Kaltofen [Kal89], it is proved that if P (x1, . . . , xn) of total degree
D can be computed by an arithmetic circuit of size s, then any of its factors have arithmetic
circuits of size poly(n, s,D). Moreover, Kaltofen gives a randomized algorithm that with high
probability outputs such a factor in polynomial time. This result, besides settling an important
complexity theoretic question, has since then had a great impact in many areas of computer sci-
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ence, such as coding theory [Sud97, GS06], derandomization [KI04] and cryptography [CR88].
However, many interesting questions on the complexity of arithmetic circuits or formulas under
factorization remain unanswered. In particular, we study the following two questions, where
the first one was asked in the work of Kopparty et al. [KSS14], while the second question was
stated as an open problem in the survey [SY10, Open Problem 19]:

1. If P (x1, . . . , xn) of total degree D is computed by an arithmetic formula of size s, is it
true that any of its factors will also have formulas of size poly(n, s,D)?

2. If P (x1, . . . , xn, y) can be computed by a circuit of size s and depth d, can its factors be
computed by a circuit of size poly(s) and depth O(d)?

In this work, we answer both of these questions in the affirmative, in the case where the
input polynomial P has bounded individual degrees. In particular, we show:

Theorem 1. Let P (x1, . . . , xn) ∈ F[x1, . . . , xn]\{0} be such that degxi(P ) ≤ r, 1 ≤ i ≤ n, and
let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a factor of P , where F is a field of characteristic zero. If
there exists a formula (circuit) of size s and depth d computing P , then there exists a formula
(circuit) of depth d + 5 and size poly((nr)r, s) that computes f(x1, . . . , xn). Moreover, if we
require the in-degree of each gate to be 2, then the size remains the same and the depth becomes
d+O(r log(nr)).

Notice that our theorem has no restriction on the individual degrees of the polynomials
computed by the intermediate gates of the circuit (that is, we have no syntactic restrictions).
We only care about the individual degrees of the output polynomial, which we regard as
bounded by a constant, denoted by r, in the theorem above.

Theorem 1 provides a direct answer to the second question posed above in the case where P
has bounded individual degrees (that is, r is a constant). The connection between Theorem 1
and the first question comes from the fact that one can always balance formulas to have loga-
rithmic depth. More precisely, suppose that we are given a formula Φ (with in-degree bounded
by 2) of size s = poly(n) computing P . By Theorem 2.7 in [SY10], we can assume that Φ is of
size poly(s) and depth(Φ) = O(log s). Hence, Theorem 1 implies that there exists a formula Ψ,
with in-degree bounded by 2, of depth depth(Ψ) = depth(Φ)+O(r log(sn)) = O(log s) and size
poly((nr)r, s) = poly(s) computing any factor f(x1, . . . , xn) of P . This provides an affirmative
answer to the first question.

Before giving an overview of the proof of Theorem 1, we give some background on related
work on factorization in general and in bounded depth circuits.

The problem of factoring in bounded depth was studied previously in [DSY09], who showed
that if P (x1, . . . , xn) has a depth d circuit of size s and degxn(P ) ≤ r, then its factors of the
form xn− φ(x1, . . . , xn−1) have depth d+ 3 circuits of size poly(nr, s). This result was used to
extend the hardness-randomness tradeoffs of [KI04] to the bounded depth model. Our main
theorem generalizes their result to any factor of P , provided that P has bounded individual
degrees.

Shpilka and Volkovich in [SV10] initiated the study of factorization of multilinear polyno-
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mials, which are the most basic case of polynomials of bounded individual degrees. They relate
the problem of deterministically factoring multilinear polynomials to the problem of perform-
ing deterministic Polynomial Identity Testing (PIT). In their paper, they prove that these two
problems are roughly equivalent in the multilinear setting for most restricted multilinear cir-
cuit classes that have been studied. Since the problem of performing deterministic PIT seems
to be hard, even for the class of multilinear formulas, this shed some light on the difficulty
of obtaining deterministic factorization even for this model. This equivalence between deter-
ministic PIT and deterministic polynomial factorization was later generalized by Kopparty
et al. in [KSS14] to polynomials (of polynomial degree) computed by general circuits. Since
we prove here that, for polynomials of bounded individual degrees computed by circuits of
small depth, their factors can also be computed by circuits of small depth, one could hope for
similar connections between PIT for restricted classes of circuits – say of bounded depth and
low individual degrees – and factorization of polynomials in such classes.

1.1 Proof Overview

In this section, we give an overview of the proof of the main theorem. For simplicity of
exposition, we will only refer to arithmetic circuits in this overview, but our results hold true
for formulas as well, as the proofs and the statements in the later sections show. We begin
with a definition:

Definition 1.2 (Approximate Root). Let P (x1, . . . , xn, y) be a polynomial in F[x1, . . . , xn, y].
We say that q(x1, . . . , xn) is a root of P up to degree t if all the homogeneous parts up to degree
t of the polynomial P (x1, . . . , xn, q(x1, . . . , xn)) are zero. That is, P (x1, . . . , xn, q(x1, . . . , xn))
only has monomials of degree larger than t.

Given a polynomial P (x1, . . . , xn, y) ∈ F[x1, . . . , xn, y] with individual degree in y bounded
by r, Dvir et al. [DSY09] show that if P (0, . . . , 0, y) has no double roots, that is, P (0, . . . , 0, y)
can be factored as

P (0, . . . , 0, y) ≡ c ·
r∏
i=1

(y − µi)

where µi 6= µj for i 6= j, then for each µi, there exists an approximate root qi,t(x1, . . . , xn) of
P up to degree t such that qi,t(0, . . . , 0) = µi. Moreover, they show that if P is computed by
a circuit Γ of size s and depth d, then there exists a circuit of size poly(tr, s) and depth d+ 2
computing qi,t(x1, . . . , xn).

With this idea in mind, suppose for simplicity that

P (x1, . . . , xn, y) ≡
r∏
i=1

(y − gi(x1, . . . , xn)),

where each polynomial gi(x1, . . . , xn) has a nonzero constant term µi and µi 6= µj for i 6= j.
In this case we are in the framework of [DSY09], since

P (0, . . . , 0, y) ≡
r∏
i=1

(y − µi)
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and the roots µi are distinct. As Section 3 shows, we can guarantee distinct roots in P (0, . . . , 0, y)
by using a random shift of the variables (x1, . . . , xn). Therefore, for each µi and t ≥ 1,
we can find polynomials qi,t(x1, . . . , xn) such that qi,t(0, . . . , 0) = µi and the polynomial
P (x1, . . . , xn, qi,t(x1, . . . , xn)) only has terms of degree larger than t. Since

P (x1, . . . , xn, qi,t(x1, . . . , xn)) ≡
r∏
j=1

(qi,t(x1, . . . , xn)− gj(x1, . . . , xn)),

the minimum degree terms of P (x1, . . . , xn, qi,t(x1, . . . , xn)) must come from the product of the
minimum degree terms of each of the polynomials qi,t(x1, . . . , xn)− gj(x1, . . . , xn). Notice that
for each j 6= i the constant term of each polynomial qi,t(x1, . . . , xn)− gj(x1, . . . , xn) is equal to
µi−µj , which is nonzero. Therefore, the minimum degree terms of P (x1, . . . , xn, qi,t(x1, . . . , xn))
must come from the minimum degree terms of the polynomial qi,t(x1, . . . , xn)− gi(x1, . . . , xn).
Because P (x1, . . . , xn, qi,t(x1, . . . , xn)) only has terms of degree larger than t, the same must
happen to the polynomial qi,t(x1, . . . , xn) − gi(x1, . . . , xn). This implies that qi,t(x1, . . . , xn)
approximates the actual root gi(x1, . . . , xn) of P up to degree t. Hence, if we pick t larger than
the total degree of gi, we obtain that the lower degree terms of qi,t correspond to the root gi,
and therefore we can recover this root gi (and use them to factor P ).

There are two main issues with this approach that we need to overcome, if we are to
generalize it. The first issue is that P may not factor into linear factors in y, that is, polynomials
of the form y− gi(x1, . . . , xn). The second one is that P need not be monic in y, in which case
we will still need to recover its leading coefficient – which is a polynomial in F[x1, . . . , xn].

To deal with the first issue, let us study a toy example: assume that P is monic in y with
degy(P ) = r, that is,

P (x1, . . . , xn, y) ≡ yr +
r−1∑
i=0

Pi(x1, . . . , xn)yi,

but P does not factor into linear factors in y. Let f(x1, . . . , xn, y) be one of its factors, of
degree k in y. Since P is monic in y, we know that f must also be monic in y. Note that if
we work over the algebraic closure of F(x1, . . . , xn) (that is, the field F(x1, . . . , xn)), we can
factor P (and f) into linear factors in y. In this work, we will not describe what the algebraic
closure of F[x1, . . . , xn] is, since it is a very complex field, and it is not needed in our proof.
We only mention F(x1, . . . , xn) here to give us some intuition on how to generalize the root
finding approach described above. For simplicity, simply think of elements of the closure as
“functions” over the variables x1, . . . , xn. Since f divides P , if

P (x1, . . . , xn, y) ≡
r∏
i=1

(y − ϕi(x1, . . . , xn)),

then there will be indices (say i from 1 to k) such that

f(x1, . . . , xn, y) ≡
k∏
i=1

(y − ϕi(x1, . . . , xn)).
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However, it is worth noting that these linear factors will not be polynomials! Nevertheless, the
fact that they share some roots in the closure of F[x1, . . . , xn] gives us a hint on what to do
next. To overcome this problem, we will (in Lemma 5.1 and Corollary 5.2) approximate these
functions ϕi by polynomials gi,t, in a way that the polynomial

gt(x1, . . . , xn, y) ≡
k∏
i=1

(y − gi,t(x1, . . . , xn))

agrees with f on the terms of order smaller than t. Therefore, for large enough t, we will have
that the lower order terms of gt(x1, . . . , xn, y) will correspond to the polynomial f , which we
can then obtain by interpolation (Lemma 2.3). We can think of each polynomial gi,t as the
Taylor expansion of ϕi up to degree t.

The way we obtain these approximations to the roots (the polynomials gi,t) is by a procedure
similar in nature to Hensel lifting. Suppose that ϕi(0, . . . , 0) = µi for 1 ≤ i ≤ k, and moreover,
suppose that µi 6= µj for i 6= j. From each valuation µi, we will construct a family of
polynomials gi,t of degree t, such that gi,t(x1, . . . , xn) is a root of f up to degree t. Now, the
question is: how can we construct this family of polynomials if we do not have access to f?
The answer to this question lies on the fact that each root y − ϕi of f is also a root of P ,
and therefore we can access the valuations of ϕi’s through the circuit computing P . Hence,
we will use the fact that the ϕi’s are also roots of P in order to find the polynomials gt that
approximate f (Lemma 6.1).

To overcome the second main issue, that the polynomial P may not be monic, let us define

f(x1, . . . , xn, y) ≡
k∑
i=0

fi(x1, . . . , xn)yi and P (x1, . . . , xn, y) ≡
r∑
i=0

Pi(x1, . . . , xn)yi,

where fk(x1, . . . , xn) 6≡ 0 and Pr(x1, . . . , xn) 6≡ 0. If f divides P , then it must be the case that
the leading coefficient fk of f divides the leading coefficient Pr of P . Hence, a possible solution
to this second issue would be to find, by some kind of induction, a small circuit for fk based
on the circuit for Pr that we obtain from P . Then, we could generalize the factoring result for
monic polynomials to the case where the factors are rational functions of the form

f(x1, . . . , xn, y)

fk(x1, . . . , xn)
≡ yk +

k−1∑
i=0

fi(x1, . . . , xn)

fk(x1, . . . , xn)
yi.

With these two results, we could multiply the formulas computing fk and
f

fk
to obtain our

factor f .

More precisely, if we could find, by induction on the number of variables, a small formula
Φk for fk based on the formula Γr for Pr that we obtain from P via interpolation (Lemma 2.4),

and if we could find a small formula Υ for the rational function
f

fk
based on the formula Γ

computing P (Lemma 6.1), then the formula given by Υ×Φk would compute the polynomial
f , as we wanted.
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One problem with this approach is that, even if we can generalize the monic factoring
result to monic rational functions as above, as far as we know, the best bound on the size of
the formula Γr computing Pr is given by 3r · s (see Lemma 2.4). Therefore, if we define T (n, s)
as the maximum size of a factor of a polynomial in n variables computed by a circuit of size
s, the induction given by the procedure above would give us the following bounds on the size:

T (n+ 1, s) ≤ T (n, 3r · s) + poly((nr)r, s).

The reason for this bound is the following: P (x1, . . . , xn, y) has n+1 variables and is computed
by Γ, which has size s. Hence, the maximum size of a factor f is by definition T (n+1, s). Since
fk divides the leading coefficient Pr, which is computed by Γr of size 3rs and has n variables,
the bound we have on the size of Φk is given by T (n, 3rs), because now the input polynomial
is Pr. Assuming that the size of f/fk can be bounded by ((nr)r · s)α, for some constant α
(which we can by Lemma 6.1), we obtain the additive factor poly((nr)r, s). Since the formula
for f is given by Υ×Φk, we need to add the bounds on the sizes for Φk and Υ. However, when
we solve this equation, we obtain that

T (n+ 1, s) ≤ T (1, (3r)n · s) + poly((nr)r, (3r)n · s)

which is exponential in n, the number of variables! Therefore, this approach, as it is, cannot
work.

The main problem in the recursion above is that the bound on the circuit size of the leading
coefficient, if we only use Lemma 2.4, keeps getting worse as we reduce the number of variables
– it will become (3r)` · s if we get rid of ` variables. To get around this issue, we define the
reversal of a polynomial with respect to a specific variable and we study its properties with
regards to divisibility. If

P (x1, . . . , xn, y) ≡
r∑
i=0

Pi(x1, . . . , xn)yi

is a polynomial, with Pr(x1, . . . , xn) · P0(x1, . . . , xn) 6≡ 0, we define its reversal with respect to
y as the polynomial

P̃ (x1, . . . , xn, y) ≡
r∑
i=0

Pi(x1, . . . , xn)yr−i.

That is, P̃ is obtained from the polynomial P by “reversing” the coefficients Pi(x1, . . . , xn).
It is easy to see that f divides P iff f̃ divides P̃ . With this fact in mind, notice that we have
transformed the leading coefficient of our problem from Pr(x1, . . . , xn) to P0(x1, . . . , xn). This
has the advantage that now, the leading coefficient of our input polynomial can be computed
by the formula Γ|y=0 (that is, the formula obtained from Γ by setting y = 0), which has size
≤ s. This now allows us to recurse into the division of f0 by P0 (the new leading coefficients
after the reversal) without paying the multiplicative cost on the size of the formula. Hence
with this idea we avoid paying the exponential blowup on the formula size! On the coin side,
notice that the size of the circuit computing the polynomial P̃ is bounded by 8r2 · s, according
to Lemma 2.8. But this blow up does not hurt us, since the reversal is not cumulative.

8



More precisely, we now have the following recursion: since we want to bound the size of a
factor of P , computed by a circuit Γ of size s and on n+ 1 variables, the bound is by definition
T (n+1, s). Now, if we can find a circuit computing f/f0 from the circuit Γ̃ computing P̃ of size
bounded by ((nr)r · |Γ̃|)α ≤ ((nr)r · 8r2s)α, for some constant α (which we can by Lemma 6.1),
we are only left with the problem of finding a small formula for f0, which divides P0, which
in turn can be computed by a circuit of size bounded by s in n variables. The bound for a
formula for f0 is given in this case by T (n, s), by definition of the function T . Therefore, our
recursion becomes

T (n+ 1, s) ≤ T (n, s) + ((nr)r · 8r2 · s)α

which implies that
T (n, s) ≤ n · ((nr)r · 8r2 · s)α = poly((nr)r, s),

as we wanted!

The idea of the reversal of a polynomial is similar to the definition of reversal of a univariate
polynomial given in [GG99, §9.1]. This notion of reversal is used there to perform division with
remainder for univariate polynomials by using Newton iteration.

To generalize the monic factoring result to the case when f is monic in y with rational
coefficients, we introduce the idea of an approximation polynomial of a rational function (see
Section 4), and we use this approximation polynomial in Lemma 6.1 (instead of the rational
function) as the “factor” of the input polynomial. If f is a rational function of the form

f(x1, . . . , xn, y) ≡ 1

1− g(x1, . . . , xn)
·
k∑
i=0

fi(x1, . . . , xn)yi,

where g(x1, . . . , xn) and fi(x1, . . . , xn) are polynomials in F[x1, . . . , xn] such that g(0, . . . , 0) =
0, we define its approximation polynomial (to degree m) as the following polynomial

ψf,m(x1, . . . , xn, y) ≡ (1 + g + g2 + . . .+ gm) ·
k∑
i=0

fiy
i,

where g ≡ g(x1, . . . , xn) and fi ≡ fi(x1, . . . , xn). This polynomial “approximates” the rational
function f(x1, . . . , xn, y) in the sense that, for large enough m, the polynomial obtained by
ψf,m(x1, . . . , xn, y) · (1 − g(x1, . . . , xn)) is equal to f(x1, . . . , xn) · (1 − g(x1, . . . , xn)), up to
high order terms (see Observation 4.3), which we can get rid of by interpolation (Lemma 2.3).
By adapting the approach in [DSY09] to work with approximation polynomials, we can find
all the “roots” of the approximation polynomials, and after that combine this approximation
polynomial with the formula obtained to compute the leading term.

After we take care of finding the leading coefficient f0(x1, . . . , xn) (of the reversed polyno-
mial f̃(x1, . . . , xn, y)), and after recovering the approximation polynomial ψf,m (see Lemma 6.1),
we can multiply it by f0 to obtain the factor f (up to high order tems) which, after interpola-
tion, becomes our desired factor (see Theorem 6.3).

We conclude this proof outline with a basic roadmap of the main ideas involved in this
work:
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1. Given a circuit Γ for our polynomial P (x1, . . . , xn, y), we find a circuit Γ̃ computing the
reversal polynomial P̃ (x1, . . . , xn, y). (Lemma 2.8)

2. We use the circuit Γ̃ to find small circuits Φi,t for each approximate root of P̃ up to
degree t. (Section 5)

3. Since f̃ , divides P̃ (Lemma 2.9), any approximate root of f̃ will also be an approxi-
mate root of P̃ . By combining the circuits Φi,t computing the approximate roots of
f̃(x1, . . . , xn, y), find circuit Ψ computing the approximation polynomial (see Section 4)

of the monic rational function
f̃(x1, . . . , xn, y)

f0(x1, . . . , xn)
. (Lemma 6.1)

4. By induction, obtain the circuit Λ0 computing f0(x1, . . . , xn), through the circuit Γ|y=0

computing P0(x1, . . . , xn) ≡ P (x1, . . . , xn, 0).

5. We then prove that the lower order terms of the circuit Φ = Λ0 × Ψ compute the
polynomial f̃ . (Theorem 6.3)

6. By interpolation (Lemma 2.3) and by the Reversal Lemma (Lemma 2.8), obtain the lower
order terms from Φ computing f .

1.2 Organization

The rest of the paper is organized as follows: in Section 2 we set up notations, go over some
useful background and discuss the concept of reversal. In Section 3 we introduce the concept of
properly splitting variable restrictions. In Section 4, we formally introduce the concepts of stan-
dard forms and approximation polynomials. In Section 5, we adapt the approach of [DSY09] to
find small formulas for the roots of P (x1, . . . , xn, y). In Section 6 we prove our main technical
lemma and theorem. In Section 7, we conclude and propose some open problems.

2 Preliminaries

In this section, we establish the notation that will be used throughout the paper and some
technical background that we will need to develop the proof of our main theorem. We defer
the proofs of the lemmas in this section to the appendix (Section A).

2.1 Notations

From this point on, we will use boldface for vectors, and regular font for scalars. Thus, we will
denote the vector (x1, . . . , xn) by x. If we want to multiply the vector x by a scalar z we will
denote this product by zx.

We will denote our base field by F, and we will assume that F has characteristic zero
and that it is algebraically closed. The results in this paper also hold for non-closed fields of
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large enough characteristic, if we allow ourselves to use coefficients from field extensions. The
assumptions just made are for clarity of exposition.

Let N0 be the set of natural numbers including zero, that is, N0 = {0, 1, 2, 3, . . .}. If e ∈ Nn0
is a vector of natural numbers and x = (x1, . . . , xn) is a vector of formal variables, we define

xe =

n∏
i=1

xeii . That is, xe is the monomial corresponding to the product of the variables

n∏
i=1

xeii ,

where each variable is raised to the proper power.

We will denote F(x)[y] as the set of polynomials in the variable y whose coefficients are
rational functions on the variables x. That is, f(x, y) ∈ F(x)[y] iff it can be expressed in the

form f(x, y) ≡
k∑
i=0

fi(x)

gi(x)
yi, with fi(x), gi(x) ∈ F[x], 0 ≤ i ≤ k.

When working with a polynomial in F[x, y], we might be interested in looking at the homo-
geneous parts of a polynomial with respect to certain variables only. This will be particularly
useful when lifting the ”roots” of a polynomial f(x, y) of the form y − q(x) in order to obtain
a circuit computing f(x, y). To this end, we introduce the following definition.

Definition 2.1 (Partial Homogeneous Parts). Let P (x, y) ≡
∑
d

αd(y) ·xd be a polynomial in

F[x, y], where each αd(y) ∈ F[y]. For each m ∈ N0, we define Hx
m[P ] as the polynomial formed

by the homogeneous parts of degree m of P (x, y), when seen as a polynomial in F[y][x], that
is, when considered as a polynomial on the variables x, and regarding y as a constant. More
explicitly, Hx

m[P ] is equal to the sum of all monomials of P that have degree m in x1, . . . , xn,

without any restrictions on the degree of y. We also define Hx
≤m[P ] ≡

m∑
i=0

Hx
i [P ].

For example, if P (x, y) ≡ (x1x3x4 − x32 + x1x2)y
2 + (x21x3 − x4)y + x22x3 − x1x4, we have

that Hx
3 [P (x, y)] ≡ (x1x3x4 − x32)y2 + x21x3y + x22x3.

Notice that if P (x, y) ≡
r∑
i=0

Pi(x)yi, then the partial homogeneous parts satisfy the follow-

ing property:

Hx
m[P (x, y)] ≡

r∑
i=0

Hx
m[Pi(x)] · yi.

Therefore, this definition of partial homogeneous parts agrees with the definition of homoge-
neous parts if P (x, y) does not depend on variable y.

When talking about partial homogeneous parts of a polynomial, it is useful to have a notion
of minimum degree with respect to some variables.

Definition 2.2 (Minimum Degree). Let f(x, y) ∈ F[x, y] be a polynomial. We define mindegx(f(x, y))
to be the minimum degree of polynomial f(x, y) on the variables x. In other words, we have
mindegx(f(x, y)) = min` (Hx

` [f ] 6≡ 0) . For instance, if f(x, y) = x1x2x3y−x21x22 +x53, we have
that mindegx(f) = 3.
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2.2 Basic Operations on Circuits and Formulas

We begin with the following standard lemma on obtaining the homogeneous components of a
polynomial. The version below is from [DSY09].

Lemma 2.3 (Homogeneous Components Through interpolation). Let P (x) ∈ F[x] be a poly-
nomial with degree deg(P ) = m such that P can be computed by a formula (circuit) Γ of depth
d. Then, there exists a formula (circuit) ∆ with m+1 outputs, of size |∆| ≤ 9m2 · |Γ| and depth
depth(∆) ≤ depth(Γ) + 1 that computes Hx

0 [P ], . . . ,Hx
m[P ]. Moreover, if the topmost gate in

the formula (circuit) for P (x) is an addition gate, then we have depth(∆) = depth(Γ) = d.

The next lemma shows us how to obtain the coefficients of a polynomial through interpo-
lation.

Lemma 2.4 (Interpolation). Let P (x, y) ≡
r∑
i=0

yiPi(x) be a polynomial computed by a formula

(circuit) Γ. Then for each i ∈ {0, 1, . . . , r}, there exists a formula (circuit) Φi such that
|Φi| ≤ 3r · |Γ| and Φi computes the polynomial Pi(x).

As a corollary, we obtain the following lemma:

Lemma 2.5. Let P (x, y) ≡
r∑
i=0

yiPi(x) be a polynomial computed by a formula (circuit) Γ

with output gate being an addition gate. Then for each i ∈ {0, 1, . . . , r}, there exists a formula
(circuit) Φi such that |Φi| ≤ 9r2 · |Γ|, depth(Φi) ≤ depth(Γ) and Φi computes the polynomial
∂iP

(∂y)i
(x, y).

Given an irreducible polynomial g(x, y) and a polynomial P (x, y) that is divisible by g, it
will be useful for us to find a polynomial D(x, y) that is divisible by g and it is also square-free
with respect to g, that is, g(x, y) - ∂D∂y (x, y). The next lemma shows that we can find such a
polynomial efficiently.

Lemma 2.6. Let g(x, y) ∈ F[x, y] be an irreducible polynomial that divides a polynomial
P (x, y) ∈ F[x, y], where degy(P ) ≤ r and let Γ be a formula computing P (x, y). Then, there
exists a formula ∆ that computes a polynomial D(x, y) such that g(x, y) | D(x, y), g(x, y) -
∂D

∂y
(x, y), |∆| ≤ 9r2 · |Γ| and depth(∆) ≤ depth(Γ). Moreover, the output gate of ∆ is an

addition gate and for each variable z ∈ {x, y}, we have that degz(D) ≤ degz(P ).

The following observation will be very useful to convert small depth formulas into formulas
with fanning bounded by 2.

Observation 2.7. Any formula Φ of size s and depth d, without restrictions on the in-degree
of any of its gates, can be computed by a formula Ψ of size s and depth d · log(s), where each
gate has in-degree 2.
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To see that this observation is true, just replace each addition (multiplication) gate of
in-degree t by a balanced formula of size t made only with addition (multiplication) gates.
Since t ≤ s, and a balanced formula of size t has depth log t, we have that each gate will be
replaced by a formula of depth at most log s. The replacement by a balanced formula clearly
does not change the computation neither the size of the formula, and the depth increases by a
multiplicative factor of log s, as we wanted.

2.3 Reversal of Polynomials

In this section, we define a very useful operation for polynomials, which serves as a crucial
tool in the proof of our main theorem. This operation, which we call reversal, simply maps a
polynomial P (x, y) ≡

∑r
i=0 Pi(x)yi, with Pr(x) · P0(x) 6≡ 0, to P̃ (x) ≡

∑r
i=0 Pi(x)yr−i.

The restriction that Pr(x) · P0(x) 6≡ 0 is needed in this paper because it preserves irre-
ducibility, as we will see in Lemma 2.9 and Corollary 2.10. We begin by showing that the
reversal can be computed almost as efficiently as the original polynomial.

Lemma 2.8 (Reversal Lemma). Let P (x, y) ≡
r∑
i=0

yiPi(x) be a polynomial computed by a

formula (circuit) Γ, where Pr(x) · P0(x) 6≡ 0. Let P̃ (x, y) ≡
r∑
i=0

yr−iPi(x) be its reversal.

There exists a formula (circuit) ∆ computing P̃ such that |∆| = 8r2 · |Γ|.

We now connect the reversal operation to divisibility and irreducibility of polynomials.

Lemma 2.9 (Divisibility with Reversals). Let P (x, y) ≡
r∑
i=0

yiPi(x), with Pr(x) · P0(x) 6≡ 0

and f(x, y) ≡
k∑
i=0

yifi(x), with fk(x) ·f0(x) 6≡ 0, be two polynomials. In addition, let P̃ (x, y) ≡

r∑
i=0

yr−iPi(x) and f̃(x, y) ≡
k∑
i=0

yk−ifi(x) be their reversals. Then, we have that

f | P ⇐⇒ f̃ | P̃ .

Since divisibility is preserved by taking reversals, we have the following corollary:

Corollary 2.10 (Irreducibility of Reversals). Let P (x, y) ≡
r∑
i=0

yiPi(x), with Pr(x)·P0(x) 6≡ 0,

be an irreducible polynomial in F[x, y]. In addition, let P̃ (x, y) ≡
r∑
i=0

yr−iPi(x) be its reversal.

Then, we have that
P is irreducible ⇐⇒ P̃ is irreducible.
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Proof. From Lemma 2.9, we get that P is reducible iff P̃ is reducible. This implies the state-
ment of the corollary.

Another useful property of reversals is that if two univariate polynomials do not share a
common root, then their reversals will not share any root either. The proof of this fact is in
the following lemma:

Lemma 2.11. If f(x), g(x) ∈ F[x] do not share any common roots, then their reversals
f̃(x), g̃(x) do not share any roots either.

3 Properly Splitting Variable Restrictions

In this section, we show how to find a shift of the input polynomial so that the restriction of
x to 0 of the shifted polynomial has no repeated roots. In addition, we will be interested in
the greatest common divisor of two polynomials with respect to one of their variables. That
is, if two polynomials share a common factor involving a specific variable. For this purpose,
we define the resultant of two polynomials f(x, y) and g(x, y) with respect to variable y and
discuss some of its properties.

In addition, if two polynomials f(x, y), g(x, y) share no common factor involving variable
y we prove a lemma on restrictions of the x variables that preserve this property. We begin
with the definition of properly splitting of the restriction of some variables.

Definition 3.1 (Properly Splitting Restrictions). Let x = (x1, . . . , xn), where n ≥ 1, and
let f(x, y) ∈ F[x, y] be an irreducible polynomial such that degy(f) ≥ 1. In addition, let
g(x, y) ∈ F[x, y] be a polynomial with degy(g) ≥ 1 that is not divisible by f(x, y). We say that
c ∈ Fn properly splits f(x, y) with respect to g(x, y) if the following conditions hold:

(i) f(c, y) is a polynomial with exactly degy(f) distinct roots in F and

(ii) f(c, y) and g(c, y) share no common roots.

We now go on to define and state some useful properties of the resultant of two polynomials.
All of the definitions and propositions below are taken from the book [CLO06, Chapter 3]. We
begin by defining the Sylvester matrix of two polynomials.

Definition 3.2 (Sylvester Matrix, from [CLO06], §3.6). Let f(x, y) =
∑̀
i=0

fi(x)yi and g(x, y) =

m∑
i=0

gi(x)yi be two polynomials in F[x, y] such that `,m > 0 and f`(x) · gm(x) 6≡ 0. Then, we
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define the Sylvester Matrix of f, g with respect to y as the following (m+ `)× (m+ `) matrix:

Syl(f, g, y) =



f` gm
f`−1 f` gm−1 gm

f`−2 f`−1
. . . gm−2 gm−1

. . .
...

...
. . . f`

...
...

. . . gm
f0 f1 f`−1 g0 g1 gm−1

f0
... g0

...
. . .

. . .

f0 g0


where the first m columns have as entries the coefficients of f and the last ` columns have as
entries the coefficients of g (when seen as polynomials in F[x][y]). All other entries are zero.

We are now ready to define the resultant of two polynomials.

Definition 3.3 (Resultants, from §3.6 of [CLO06]). Given polynomials f, g ∈ F[x, y] of positive
degree in y, we define the Resultant of f and g with respect to y, written Res(f, g, y), as the
determinant of the Sylvester matrix. That is,

Res(f, g, y) ≡ det(Syl(f, g, y)).

Observation 3.4. From the definition above, we have that Res(f, g, y) is a polynomial in F[x]
with degree bounded by 2 deg(f) deg(g), since each term in the expression of the determinant
will be a product of m of the coefficients fi by ` of the coefficients gj.

A very useful property of the resultant is the following:

Proposition 3.5 (Main Property of Resultants, Proposition 1 in §3.6 of [CLO06]). Let f, g ∈
F[x, y] be polynomials with positive degree in y. Then, Res(f, g, y) ≡ 0 if, and only if, f and g
have a common factor in F[x, y] which has positive degree in y.

With the definitions and facts above, we are now ready to state and prove the main lemma
of this section. This lemma tells us that the set of restrictions that properly split an irreducible
polynomial f(x, y) with respect to a polynomial g(x, y) that is not divisible by f(x, y) is the
complement of an algebraic set. This implies that a random restriction of the variables x will
properly split f(x, y) with respect to g(x, y).

Lemma 3.6. Let x = (x1, . . . , xn), where n ≥ 1 and f(x, y) ∈ F[x, y] be an irreducible
polynomial such that degy(f) ≥ 1. In addition, let g(x, y) ∈ F[x, y] be a polynomial with
degy(g) ≥ 1 that is not divisible by f(x, y). Then, there exists a nonzero polynomial G(x) with
deg(G) ≤ 2 deg(f)2 + 2 deg(f) deg(g) for which the following holds: for any value c ∈ Fn such
that G(c) 6= 0, we have that c properly splits f(x, y) with respect to g(x, y).

Proof. Let f(x, y) =
k∑
i=0

fi(x)yi, with fk(x) 6≡ 0 and f ′(x, y) ≡ ∂f

∂y
(x, y). If degy(f) > 1, we
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have that f ′ also has positive degree in y. Now, by irreducibility of f and by proposition 3.5,
we have that p(x) ≡ Res(f, f ′, y) is a nonzero polynomial. Since f - g and f is irreducible, f
and g share no common factors, and hence we also must have that q(x) ≡ Res(f, g, y) 6≡ 0.
Therefore, we have that

fk(x)p(x)q(x) 6≡ 0,

as this is the product of nonzero polynomials. Notice that

deg(fk(x)p(x)q(x)) = deg(fk(x)) + deg(p(x)) + deg(q(x)) ≤ 2 deg(f)2 + 2 deg(f) deg(g)

Notice that for any c ∈ Fn such that fk(c)p(c)q(c) 6= 0, this implies that f(c, y) still has
degree k, that Res(f(c, y), g(c, y), y) 6= 0, and that Res(f(c, y), f ′(c, y), y) 6= 0. Thus, by
proposition 3.5 we have that f(c, y) and f ′(c, y) have no common factors in F[y], and therefore
no common roots. Thereby, f(c, y) has no repeated root, which implies that f(c, y) has exactly
k = degy(f) distinct roots. Similarly f(c, y) and g(c, y) have no common roots.

If degy(f) = 1, then degy(f) = 1 implies that any restriction of the form f(c, y) such that
f1(c) 6= 0 will yield exactly one root. And this root must be distinct from the roots of g(c, y),
for Res(f(c, y), g(c, y), y) 6= 0.

Letting G(x) ≡ fk(x)p(x)q(x) completes the proof.

4 Standard Forms and Approximation Polynomials

In this section we define the notion of standard forms in F(x)[y], that is, the ring of polynomials
on the variable y with coefficients being rational functions on the variables x. We also define
the approximation polynomial of a standard form. These concepts will be useful when factoring
a polynomial P (x, y) ∈ F[x, y], since our factorization procedure will use standard forms to
obtain the factors of P (x, y) that depend of the variable y. We begin with the following
definition:

Definition 4.1 (Standard Form and Approximation Polynomials). We say that f(x, y) ∈
F(x)[y] is in standard form if

f(x, y) ≡ 1

1− g(x)
·
k∑
i=0

fi(x)yi,

where fi(x), g(x) ∈ F[x], fk(x) 6≡ 0 and g(0) = 0. Moreover, we will say that f is in monic
standard form if fk(x) ≡ 1−g(x). For a given parameter m ∈ N, we define the approximation
polynomial of the standard form f to degree m, as the polynomial ψf,m(x, y) ∈ F[x, y] given by

ψf,m(x,y) = (1 + g(x) + . . .+ g(x)m) ·
k∑
i=0

fi(x)yi.

In order to state some useful properties of approximation polynomials, we will need to
extend the definition of reversals to standard forms.
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Definition 4.2. Let f(x, y) be a standard form as above, with the additional condition that
f0(x) 6≡ 0. We define the reversal of f(x, y) as the following standard form:

f̃(x, y) ≡ 1

1− g(x)
·
k∑
i=0

fi(x)yk−i.

The following observations about standard forms reveal much of its usefulness when fac-
toring a polynomial.

Observation 4.3. If f(x, y) ∈ F(x)[y] is in standard form as above, notice that the following
holds for all m ∈ N:

1. Hx
≤m[(1− g(x)) · ψf,m(x, y)] ≡ Hx

≤m[(1− g(x)) · f(x, y)].

2. If m ≥ deg((1− g(x)) · f(x, y)), we have:

Hx
≤m[(1− g(x)) · ψf,m(x, y)] ≡ (1− g(x)) · f(x, y).

3. Hx
≤m[ψf̃ ,m(x, y)] ≡ Hx

≤m

[
ψ̃f,m(x, y)

]
.

4. If h(x, y) ≡ f(x, y + γ), where γ ∈ F, we have that h(x, y) is also a standard form and

Hx
≤m[ψf,m(x, y + γ)] ≡ Hx

≤m[ψh,m(x, y)].

Proof. 1. Notice that

Hx
≤m [(1− g(x)) · ψf,m(x, y)] ≡ Hx

≤m

[
(1− g(x)) · (1 + g(x) + . . .+ g(x)m) ·

k∑
i=0

fi(x)yi

]

≡ Hx
≤m

[
(1− g(x)m+1) ·

k∑
i=0

fi(x)yi

]

≡ Hx
≤m

[
k∑
i=0

fi(x)yi

]
≡ Hx

≤m [(1− g(x)) · f(x, y)]

2. Given item 1 and the fact that Hx
≤m[p(x, y)] ≡ p(x, y) for all m ≥ deg(p), this part

follows from the fact that

Hx
≤m [(1− g(x)) · f(x, y)] ≡ (1− g(x)) · f(x, y).

3. This item follows from the fact that

ψf̃ ,m(x, y) ≡ (1 + g(x) + . . .+ g(x)m) ·
k∑
i=0

fi(x)yk−i ≡ ψ̃f,m(x, y)
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4. Notice that

h(x, y) ≡ f(x, y + γ) ≡ 1

1− g(x)
·
k∑
i=0

fi(x)(y + γ)i

≡ 1

1− g(x)
·
k∑
i=0

 k∑
j=i

(
j

i

)
γj−ifj(x)

 yi

≡ 1

1− g(x)
·
k∑
i=0

hi(x)yi, where hi(x) ≡
k∑
j=i

(
j

i

)
γj−ifj(x).

Since each term hi(x) is in F[x], this proves that h(x, y) is also a standard form. Moreover,
from the equalities above, we have that

ψf,m(x, y + γ) ≡ (1 + g(x) + . . .+ g(x)m) ·
k∑
i=0

fi(x)(y + γ)i

≡ (1 + g(x) + . . .+ g(x)m) ·
k∑
i=0

 k∑
j=i

(
j

i

)
γj−ifj(x)

 yi

≡ (1 + g(x) + . . .+ g(x)m) ·
k∑
i=0

hi(x)yi ≡ ψh,m(x, y).

From this equality the relation in item 4 follows.

5 Approximating the Roots of a Polynomial

In this section, we proceed in a similar way as in [DSY09] and find approximations of the
roots of a polynomial P (x, y) up to degree t. That is, as we defined in the introduction,
we find polynomials qt(x) such that Hx

≤t[P (x, qt(x))] ≡ 0. Moreover, we observe that under
certain conditions on the polynomial P (x, y) these roots are well-defined and unique given
their constant coefficient. This uniqueness condition will be useful because it will allow us to
construct any factor of P (x, y) through the lifting procedure, since a factor f(x, y) of P (x, y)
will share some of the roots of P (x, y). We begin with the approximation lemma:

Lemma 5.1 (Approximation Lemma). Let P (x, y) ∈ F[x, y], P ′(x, y) ≡ ∂P
∂y (x, y) and µ ∈ F

be such that P (0, µ) = 0 but P ′(0, µ) = ξ 6= 0. Then, for each t ≥ 0, there exists a unique
polynomial qt(x) s.t. deg(qt) ≤ t, qt(0) = µ and

Hx
≤t[P (x, qt(x))] ≡ 0.

Moreover, if P can be computed by a formula (circuit) Γ such that its output gate is an addition
gate, there is a formula (circuit) Φt for the polynomial qt(x) such that the output gate of Φt is
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an addition gate, depth(Φt) ≤ depth(Γ) + 2 and

|Φt| ≤ 200(tr)2
(
t+ r + 1

r + 1

)
· |Γ|.

If we require the in-degree of the formula (circuit) to be 2, then the size of Φt does not change,
and depth(Φt) ≤ depth(Γ) + 5r log(t).

Proof. The proof of uniqueness of qt(x) and the construction of a small formula computing

qt(x) are done by induction on t. For the rest of the proof, let P (x, y) =
r∑
i=0

Ci(x)yi, C̃i(x) =

Ci(x)− Ci(0) and z = (z0, . . . , zr).

We will conclude the inductive proof with two steps:

Step 1: existence and uniqueness of qt(x).

For t = 0, note that q0(x) ≡ µ is the only solution. Hence, step 1 is true for t = 0. Assume
now that the existence and uniqueness of qt(x) are true for t− 1, where t ≥ 1.

Firstly, notice that any polynomial qt(x) that satisfies 0 ≡ Hx
≤t[P (x, qt(x))] must satisfy

0 ≡ Hx
≤t−1[P (x, qt(x))] and therefore we must have that qt(x) ≡ g(x) + qt−1(x), where g(x) is

homogeneous of degree t (by the uniqueness of qt−1(x)).

Hence, we have

0 ≡ Hx
≤t[P (x, qt(x))] ≡ Hx

≤t[P (x, qt−1(x) + g(x))] ≡ Hx
≤t

[
r∑
i=0

Ci(x)(qt−1(x) + g(x))i

]

≡ Hx
≤t

[
r∑
i=0

Ci(x)qt−1(x)i

]
+Hx

≤t

[
r∑
i=0

iCi(x)qt−1(x)i−1g(x)

]

≡ Hx
t

[
r∑
i=0

Ci(x)qt−1(x)i

]
+

r∑
i=0

iCi(0)qt−1(0)i−1g(x) ≡ Hx
t

[
r∑
i=0

Ci(x)qt−1(x)i

]
+ ξ · g(x)

⇐⇒ g(x) ≡ −1

ξ
·Hx

t

[
r∑
i=0

Ci(x)qt−1(x)i

]

By uniqueness of qt−1(x), we obtain that g(x) is unique, and therefore, qt(x) must also be
unique. Existence of qt(x) follows from the above and from existence of qt−1(x). This completes
the induction of step 1.

Step 2: construction of a formula Φt for qt(x) based on the formula Γ computing P (x, y),

such that |Φt| ≤ 200(tr)2
(
t+ r + 1

r + 1

)
· |Γ| and depth(Φt) ≤ depth(Γ) + 2.

To construct Φt, we will first inductively construct a polynomial Qt(z) ∈ F[z] such that
degz(Qt) ≤ t and

Hx
≤t[Qt(C̃0(x), . . . , C̃r(x))] ≡ qt(x).
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For t = 0, we can set Q0(z) = µ. This way, we have that degz(Q0) = 0 and

H≤0[Q0(C̃0(x), . . . , C̃r(x))] ≡ Q0(z) = µ = q0(x).

Now, assume that the claim is true for t−1, where t ≥ 1. Therefore, we have the polynomial
Qt−1(z) with the given properties above. With this polynomial, we claim that

Qt(z) ≡ Hx
≤t

[
Qt−1(z)− 1

ξ
·

r∑
i=0

(zi + Ci(0)) ·Qt−1(z)i

]
(1)

is a polynomial such that

qt(x) ≡ Hx
≤t[Qt(C̃0(x), . . . , C̃r(x))].

Notice that

Hx
≤t−1[Qt(C̃0(x), . . . , C̃r(x))] ≡

≡ H≤t−1

[
Qt−1(C̃0(x), . . . , C̃r(x))− 1

ξ
·

r∑
i=0

Ci(x)Qt−1(C̃0(x), . . . , C̃r(x))i

]

≡ Hx
≤t−1[Qt−1(C̃0(x), . . . , C̃r(x))]− 1

ξ
·Hx
≤t−1[P (x, Qt−1(C̃0(x), . . . , C̃r(x)))]

≡ qt−1(x) + 0 ≡ qt−1(x)

Therefore, Hx
≤t

[
Qt(C̃0(x), . . . , C̃r(x))

]
≡ g(x) + qt−1(x), where g(x) is homogeneous of

degree t (if it is nonzero). Based on (1), we have that

g(x) ≡ Hx
t

[
Qt−1(C̃0(x), . . . , C̃r(x))− 1

ξ
·

r∑
i=0

Ci(x) ·Qt−1(C̃0(x), . . . , C̃r(x))i

]
(2)

Now, notice that

Hx
≤t

[
P (x, Qt(C̃0(x), . . . , C̃r(x)))

]
≡ Hx

≤t [P (x, qt−1(x) + g(x))]

≡ Hx
≤t

[
r∑
i=0

Ci(x)(qt−1(x) + g(x))i

]

≡ Hx
≤t

[
r∑
i=0

Ci(x)
(
qt−1(x)i + iqt−1(x)i−1g(x)

)]

where the last equation is true because the terms with g(x)k, where k > 1, all have degree
larger than t. Since we are only looking at parts of degree ≤ t, we can refine the equation
above even further to obtain
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Hx
≤t

[
r∑
i=0

Ci(x)
(
qt−1(x)i + iqt−1(x)i−1g(x)

)]

≡ Hx
≤t

[
r∑
i=0

Ci(x)qt−1(x)i

]
+Hx

≤t

[
r∑
i=0

iCi(x)qt−1(x)i−1g(x)

]

≡ H≤t−1

[
r∑
i=0

Ci(x)qt−1(x)i

]
+Ht

[
r∑
i=0

Ci(x)qt−1(x)i

]
+Ht

[
r∑
i=0

iCi(0)qt−1(0)i−1g(x)

]

≡ 0 +Ht

[
r∑
i=0

Ci(x)qt−1(x)i

]
+ g(x) ·

r∑
i=0

iCi(0)µi−1

≡ Ht

[
r∑
i=0

Ci(x)qt−1(x)i

]
+ g(x) · ξ (3)

where H≤t−1

[
r∑
i=0

Ci(x)qt−1(x)i

]
≡ Hx

≤t−1[P (x, qt−1(x))] ≡ 0 by our induction hypothesis and

we know that
r∑
i=0

iCi(0)µi−1 = P ′(0, µ) = ξ.

By our induction hypothesis,

qt−1(x) ≡ H≤t−1
[
Qt−1(C̃0(x), . . . , C̃r(x))

]
≡ Hx

≤t

[
Qt−1(C̃0(x), . . . , C̃r(x))

]
−Hx

t

[
Qt−1(C̃0(x), . . . , C̃r(x))

]
.

Setting A(x) ≡ Hx
≤t

[
Qt−1(C̃0(x), . . . , C̃r(x))

]
and B(x) ≡ Hx

t

[
Qt−1(C̃0(x), . . . , C̃r(x))

]
, and

substituting this expression for qt−1(x) in (3), we get:
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Ht

[
r∑
i=0

Ci(x)qt−1(x)i

]
+ g(x) · ξ

≡ Hx
t

[
r∑
i=0

Ci(x) (A(x)−B(x))i
]

+ g(x) · ξ

≡ Hx
t

[
r∑
i=0

Ci(x)A(x)i

]
−Hx

t

[
r∑
i=0

iCi(x)A(x)i−1B(x)

]
+ g(x) · ξ

≡ Hx
t

[
r∑
i=0

Ci(x)A(x)i

]
−Hx

t

[
r∑
i=0

iCi(0)A(0)i−1B(x)

]
+ g(x) · ξ

≡ Hx
t

[
r∑
i=0

Ci(x)A(x)i

]
−

(
r∑
i=0

iCi(0)µi−1

)
·B(x) + g(x) · ξ

≡ Hx
t

[
r∑
i=0

Ci(x)A(x)i

]
− ξ ·B(x) + g(x) · ξ (4)

Where in the equations above we used the facts that B(x) is a homogeneous polynomial of

degree t, that A(0) = Hx
≤t

[
Qt−1(C̃0(0), . . . , C̃r(0))

]
= qt−1(0) = µ and that

r∑
i=0

iCi(0)µi−1 =

P ′(0, µ) = ξ.

Therefore, substituting the expressions for A(x), B(x), together with the expression for
g(x) from equation (2), we have:

Hx
≤t

[
P (x, Qt(C̃0(x), . . . , C̃r(x)))

]
≡ Hx

t

[
r∑
i=0

Ci(x)A(x)i

]
− ξ ·B(x) + g(x) · ξ

≡ Hx
t

[
r∑
i=0

Ci(x)Hx
≤t

[
Qt−1(C̃0(x), . . . , C̃r(x))

]i]
− ξ ·Hx

t

[
Qt−1(C̃0(x), . . . , C̃r(x))

]
+

ξ ·Hx
t

[
Qt−1(C̃0(x), . . . , C̃r(x))− 1

ξ
·

r∑
i=0

Ci(x) ·Qt−1(C̃0(x), . . . , C̃r(x))i

]
≡ 0

As we wanted. This finishes the inductive step and shows that qt(x) ≡ Hx
≤t

[
Qt(C̃0(x), . . . , C̃r(x))

]
.

Now, we only need to construct a formula Φt computing qt(x). Since Qt(z) is a polynomial
of degree ≤ t in r + 1 variables, its sparse (depth 2) representation has ≤

(
t+r+1
r+1

)
monomials.

Hence, Qt(z) can be computed by a formula ∆t of depth 2 and size ≤ 2tr2
(
t+r+1
r+1

)
. If we require
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the formula to have in-degree 2, then Observation 2.7 implies that ∆t can be computed by a
formula of the same size and depth ≤ log(2tr2

(
t+r+1
r+1

)
) ≤ 3r log(t).

Since P (x, y) can be computed by a formula of size |Γ|, by Lemma 2.4 we have that each
Ci(x) can be computed by a formula Γi such that |Γi| ≤ 3r · |Γ|. Since C̃i(x) ≡ Ci(x)−Ci(0),
there exists a formula Γ̃i computing C̃i(x) of size |Γ̃i| ≤ 5r · |Γ|. Hence, by composing many
copies of the formulas Γ̃i with the formula ∆t, and by noticing that the polynomial Qt has
degree ≤ t, we obtain a formula Ψt of size ≤ 2t|∆t| · (5r2 · |Γ|) computing the composition
polynomial Qt(C̃0(x), . . . , C̃r(x)). Because Ψt is a composition, the depth of Ψt is given by

depth(Ψt) = depth(∆t) + max
0≤i≤r

(
depth(Γ̃i)

)
= depth(∆t) + depth(Γ) = depth(Γ) + 2.

Moreover, the topmost gate of Ψt is an addition gate.

In the case of formulas with in-degree bounded by 2, the depth of the formulas (circuits) Γ̃i
are bounded by depth(Γ)+2 log r, in which case depth(Ψt) = depth(∆t)+depth(Γ)+2 log r ≤
depth(Γ) + 4r log t.

Since qt(x) ≡ Hx
≤t

[
Qt(C̃0(x), . . . , C̃r(x))

]
and Qt(C̃0(x), . . . , C̃r(x)) can be computed by

formula Ψt of size |Ψt| ≤ 2t|∆t|·(5r2 ·|Γ|) and with a topmost addition gate, Lemma 2.3 implies
that there is a formula Φt computing qt(x) such that depth(Φt) = depth(Ψt) = depth(Γ) + 2
and

|Φt| ≤ 10t · |Ψt| ≤ 100tr2|∆t| · |Γ| ≤ 200(tr)2
(
t+ r + 1

r + 1

)
· |Γ|

as we wanted.

In the case of formulas with in-degree bounded by 2, we would have depth(Φt) = depth(Ψt)+
2 log t = depth(Γ) + 5r log t.

Now that we proved that any root of a polynomial P (x, y) of small individual degree
computed by a small formula can be approximated by a small formula, the next corollary uses
the uniqueness of the approximation of the root to show that the same is true for any factor
of P (x, y).

Corollary 5.2. Let P (x, y) and µ ∈ F be defined as in Lemma 5.1 and for each t ∈ N0, let
qt(x) be the unique polynomial obtained from Lemma 5.1. If h(x, y) ∈ F[x, y] is such that
h(0, µ) = 0, ∂h

∂y (0, µ) 6= 0 and there exist t ∈ N and Q(x, y) ∈ F[x, y] such that

Hx
≤t[P (x, y)] ≡ Hx

≤t[h(x, y) ·Q(x, y)], (5)

then the polynomial qt(x) also satisfies

Hx
≤t[h(x, qt(x))] ≡ 0, ∀t ≥ 0.

Proof. Since µ is a root of h(0, y) and ∂h
∂y (0, µ) 6= 0, Lemma 5.1 implies that there exists

a unique gt(x) such that Hx
≤t[h(x, gt(x))] ≡ 0. From equation (5), we must also have that
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Hx
≤t[P (x, gt(x))] ≡ 0, since

Hx
≤t[P (x, y)] ≡ Hx

≤t[h(x, y) ·Q(x, y)]⇒
Hx
≤t[P (x, gt(x))] ≡ Hx

≤t[h(x, gt(x)) ·Q(x, gt(x))]

≡ Hx
≤t[H

x
≤t[h(x, gt(x))] ·Q(x, gt(x))]

≡ Hx
≤t[0 ·Q(x, gt(x))] ≡ 0.

The uniqueness of Lemma 5.1 implies that gt(x) ≡ qt(x) and finishes the proof of the corollary.

6 Proof of the Main Theorem

In this section, we give the proof of our main lemma and our main theorem. In addition, we
state the consequences of the main theorem for both small formula size and depth of circuits
computing polynomials with small bounded degree.

Lemma 6.1 (Main Lemma). Let P (x, y) ∈ F[x, y] be such that degy(P ) = r, and also

degxi(P ) ≤ r, ∀i ∈ {1, . . . , n}. Let P ′(x, y) ≡ ∂P

∂y
(x, y). In addition, let f(x, y) ∈ F(x)[y]

be in monic standard form and assume it is irreducible over F(x)[y], satisfying the following
conditions:

(i) f(x, y) | P (x, y)1,

(ii) f(0, y) has exactly degy(f) distinct roots2,

(iii) P ′(0, y) and f(0, y) share no common roots.

If there exists a formula (circuit) Γ computing P with output gate being an addition gate,
|Γ| = s and depth(Γ) = d, then for every m ≥ 1, there exist formulas (circuits) Ψm and Ψ̃m

with each output gate being a multiplication gate, of size

max(|Ψm|, |Ψ̃m|) ≤ 300m2r3 ·
(
m+ r + 1

r + 1

)
· s

and depth max(depth(Ψm),depth(Ψ̃m)) ≤ d+ 3 such that

Hx
≤m[Ψm] ≡ Hx

≤m[ψf,m(x, y)] and

Hx
≤m[Ψ̃m] ≡ Hx

≤m[ψf̃ ,m(x, y)].

If we require the in-degree of the formula (circuit) to be 2, then the size of Ψm or Ψ̃m does not
change, and max(depth(Ψm),depth(Ψ̃m)) ≤ d+ 10r logm.

1Since P (x, y) ∈ F[x, y], this condition is equivalent to the existence of Q(x, y) ∈ F[x, y] such that f(x, y) ·
Q(x, y) ≡ P (x, y).

2Note that we can evaluate f(x, y) at x = 0, since f(x, y) is in standard form.
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Proof. Let

P (x, y) ≡
r∑
i=0

Ci(x)yi and

f(x, y) ≡ yk +
1

1− g(x)
·
k−1∑
i=0

fi(x)yi s.t. gcd(1− g(x), fi(x)) = 1.

Thus, if f(0, y) =
k∏
i=1

(y − µi), we have that P (0, µi) = 0 and P ′(0, µi) 6= 0 for all i ∈ [k].

Thus, Lemma 5.1 implies that for each root µi of f(0, y), there exists a unique polynomial
qi,m(x) ∈ F[x] such that qi,m(0) = µi, deg(qi,m) ≤ m and the following polynomial identities
hold, for 1 ≤ i ≤ k:

Hx
≤m[P (x, qi,m(x))] ≡ 0.

From condition (i), we have:

f(x, y) | P (x, y)⇒ (1− g(x))f(x, y) | P (x, y)

⇒ ∃R(x, y) ∈ F[x, y] s.t. P (x, y) ≡ (1− g(x))f(x, y)R(x, y)

⇒ Hx
≤m[P (x, y)] ≡ Hx

≤m [(1− g(x))f(x, y)R(x, y)]

⇒ Hx
≤m[P (x, y)] ≡ Hx

≤m [(1− g(x))ψf,m(x, y)R(x, y)] . (6)

Since g(0) = 0, we have ψf,m(0, y) ≡ f(0, y), for all m ∈ N. If, in Corollary 5.2, we let

h(x, y) ≡ ψf,m(x, y) and Q(x, y) ≡ (1− g(x))R(x, y),

the fact that ψf,m(0, y) ≡ f(0, y) and equation (6) imply that for each root µi of h(0, y) ≡
ψf,m(0, y), the polynomials qi,m(x) ∈ F[x] defined above also satisfy the following polynomial
identities:

Hx
≤m[ψf,m(x, qi,m(x))] ≡ 0.

Summarizing, the polynomials qi,m(x) satisfy the following identities:

Hx
≤m[P (x, qi,m(x))] ≡ 0 and Hx

≤m[ψf,m(x, qi,m(x))] ≡ 0. (7)

Moreover, given the above formula Γ computing P (x, y), we can construct formulas Φi

computing qi,m(x) such that

|Φi| ≤ 200(mr)2
(
m+ r + 1

r + 1

)
· s, and

depth(Φi) ≤ depth(Γ) + 2 = d+ 2.

Now that we have the formulas Φi computing each of the polynomials qi,m(x), we just need
to show how we can compute Hx

≤m[ψf,m(x, y)]. The next claim shows how to compute this
quantity.
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Claim 6.2. Let µ1, . . . , µk be the (distinct) roots of f(0, y) and let qi,m(x) be the corresponding
polynomials defined as above. Then, the following holds:

Hx
≤m[ψf,m(x, y)] ≡ Hx

≤m

[
k∏
i=1

(y − qi,m(x))

]

Proof. To prove the claim, it is enough to prove the following by induction on t: for 1 ≤ t ≤
k = degy(f), there exists polynomials Ft(x, y), Gt(x, y) ∈ F[x, y] with degy(Ft) = k − t and
mindegx(Gt(x, y)) > m such that

ψf,m(x, y) ≡ Ft(x, y) ·
t∏
i=1

(y − qi,m(x)) +Gt(x, y).

Notice that the fact above is true for t = 1, since y− q1,m(x) is monic in y and thereby we
can apply the regular univariate division algorithm (regarding the polynomials as polynomials
in F[x][y]) to obtain

ψf,m(x, y) ≡ F1(x, y) · (y − q1,m(x)) + ψf,m(x, q1,m(x)).

Where F1(x, y) ∈ F[x, y], degy(F1) = k − 1 and we have that mindegx(ψf,m(x, q1,m(x))) > m,
by equation (7).

Now, suppose that the fact above is true for t − 1, where 2 ≤ t ≤ k. Since y − qt,m(x) is
monic in y, by dividing Ft−1(x, y) by y − qt,m(x), we have:

Ft−1(x, y) ≡ Ft(x, y) · (y − qt,m(x)) + Ft−1(x, qt,m(x)).

Hence, we obtain that

ψf,m(x, y) ≡ Ft(x, y) ·
t∏
i=1

(y − qi,m(x)) + Ft−1(x, qt,m(x)) ·
t−1∏
i=1

(y − qi,m(x)) +Gt−1(x, y).

From this equation, it follows that

ψf,m(x, qt,m(x)) ≡ 0 + Ft−1(x, qt,m(x)) ·
t−1∏
i=1

(qt,m(x)− qi,m(x)) +Gt−1(x, qt,m(x))

⇐⇒ Ft−1(x, qt,m(x)) ·
t−1∏
i=1

(qt,m(x)− qi,m(x)) ≡ ψf,m(x, qt,m(x))−Gt−1(x, qt,m(x)). (8)

Since the roots µi are all distinct, we have that µi 6= µj , for all i 6= j and therefore

mindegx

(
t−1∏
i=1

(qt,m(x)− qi,m(x))

)
= 0,
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which implies

mindegx

(
Ft−1(x, qt,m(x)) ·

t−1∏
i=1

(qt,m(x)− qi,m(x))

)
= mindegx(Ft−1(x, qt,m(x))).

Therefore, we have

mindegx(Ft−1(x, qt,m(x))) = mindegx

(
Ft−1(x, qt,m(x)) ·

t−1∏
i=1

(qt,m(x)− qi,m(x))

)
(by the above equation)

= mindegx(ψf,m(x, qt,m(x))−Gt−1(x, qit,m(x))) by equation (8)

> m,

where the last inequality is true by equation (7) and induction hypothesis.

Hence, by defining

Gt(x, y) = Ft−1(x, qt,m(x)) ·
t−1∏
i=1

(y − qi,m(x)) +Gt−1(x, y)

we have

mindegx(Gt(x, y)) ≥ min (mindegx(Ft−1(x, qt,m(x))),mindegx(Gt−1(x, y))) > m.

This finishes the inductive argument.

Since

ψf,m(x, y) ≡ Fk(x, y) ·
k∏
i=1

(y − qi,m(x)) +Gk(x, y),

and Hx
≤m[ψf,m(x, y)] is a monic polynomial in y, for f(x, y) is in monic standard form, we

have that Hx
≤m

[
Fk(x, y) ·

∏k
i=1(y − qi,m(x)) +Gk(x, y)

]
is also a monic polynomial in y and

therefore

Hx
≤m

[
Fk(x, y) ·

k∏
i=1

(y − qi,m(x)) +Gk(x, y)

]
≡ Hx

≤m

[
k∏
i=1

(y − qi,m(x)) +Gk(x, y)

]
.

Hence, by the induction hypothesis on Gk(x, y), we have that

Hx
≤m[ψf,m(x, y)] ≡ Hx

≤m

[
k∏
i=1

(y − qi,m(x)) +Gk(x, y)

]
≡ Hx

≤m

[
k∏
i=1

(y − qi,m(x))

]
.
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By this last claim,

Hx
≤m[ψf,m(x, y)] ≡ Hx

≤m

[
k∏
i=1

(y − qi,m(x))

]
, (9)

which implies that
∏k
i=1(y − qi,m(x)) is a polynomial that agrees with ψf,m(x, y) on the ho-

mogeneous parts of degree ≤ m. Hence, the formula Ψm given by

Ψm =

k∏
i=1

(y − Φi)

is such that

Hx
≤m[Ψm(x, y)] ≡ Hx

≤m

[
k∏
i=1

(y − qi,m(x))

]
≡ Hx

≤m[ψf,m(x, y)].

Since each Φi is a formula such that depth(Φi) ≤ d+ 2, their output gates are addition gates
and

|Φi| ≤ 200(mr)2
(
m+ r + 1

r + 1

)
· s,

we have that

|Ψm| ≤ k ·
(

200(mr)2
(
m+ r + 1

r + 1

)
· s+ 2k

)
≤ 300m2r3 ·

(
m+ r + 1

r + 1

)
· s.

Since Ψm is the product of formulas of depth ≤ d+ 2, then we have that depth(Ψm) ≤ d+ 3.

By Observation 4.3 and equation (9),

Hx
≤m[ψf̃ ,m(x, y)] ≡ Hx

≤m

[
ψ̃f,m(x, y)

]
≡ Hx

≤m

[
k∏
i=1

(1− yqi,m(x))

]
,

which implies that
∏k
i=1(1 − yqi,m(x)) is a polynomial that agrees with ψf̃ ,m(x, y) on the

homogeneous parts of degree ≤ m. Hence, the formula Ψ̃m given by

Ψ̃m =

k∏
i=1

(1− yΦi)

is such that Hx
≤m[Ψ̃m] ≡ Hx

≤m[ψf̃ ,m(x, y)]. It is easy to see that the same size and depth

bounds for Ψm apply for the formula Ψ̃m. In addition, it is clear from the proof that if we
restrict the formulas to have in-degree bounded by 2, we obtain the desired depth.

Theorem 6.3 (Main Theorem). Let P (x) ∈ F[x] \ {0} be such that degxi(P ) ≤ r, 1 ≤ i ≤ n,
P (0) 6= 0 and let Γ be a formula (circuit) of size s and depth d computing P . Let f(x) ∈ F[x]
be a factor of P (x), and let m be a positive integer. There exists a polynomial G(x) ∈ F[x] of
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total degree deg(G) ≤ 4r3n3 such that if c ∈ Fn satisfies G(c) 6= 0 then there exists a formula
Φm whose output gate is a multiplication gate and for which

depth(Φm) ≤ d+ 43,

|Φm| ≤ 60000m2r8n ·
(
m+ r + 1

r + 1

)
s and

Hx
≤m[Φm(x)] ≡ Hx

≤m[f(x + c)].

If we require the in-degree of the formula (circuit) to be 2, then the size of Φm does not change,
and depth(Φm) ≤ d+ 20r logm.

Proof. The proof of the theorem is by induction on the number of variables. The bound is
trivial in the univariate case, since if f(x), P (x) ∈ F[x], where deg(f) = k ≤ r and f | P , then
we can write

f(x) = c ·
k∏
i=1

(x− µi),

which can be trivially computed by a formula Ψ of size ≤ 50k and depth 2. In this case, setting
G(x) to be any constant polynomial, for instance G(x) ≡ 1, and Φm = Ψ, takes care of the
base case.

Hence, let’s assume that the claim is true for polynomials P (x) ∈ F[x] = F[x1, . . . , xn] with
P (0) 6= 0, for some n ≥ 1. Now we will prove that the same bounds hold for polynomials
P (x, y) ∈ F[x, y] s.t. P (0, 0) 6= 0. Let P (x, y) ∈ F[x, y] be a polynomial computed by Γ and
f(x, y) ∈ F[x, y] be a factor of P (x, y). We can assume that f(x, y) and P (x, y) depend on y,
otherwise we can simply restrict the circuit Γ to Γ|y=0, and by the induction hypothesis the
result follows.

Let

P (x, y) ≡
r∑
i=0

Ci(x)yi and

f(x, y) ≡ q(x) ·
t∏
i=1

fi(x, y)ei , with

fi(x, y) ≡
ki∑
j=0

fij(x)yj , where fi0(x) · fiki(x) 6≡ 0, ∀1 ≤ i ≤ t.

where each fi(x, y) ∈ F[x, y] is an irreducible polynomial. Since P (0, 0) 6= 0, we have that
C0(x) ≡ P (x, 0) 6≡ 0, and moreover, that C0(0) 6= 0. Let

u(x) ≡ f(x, 0) ≡ q(x) ·
t∏
i=1

fi0(x)ei .

3If the bottom gates are addition gates, then the depth is bounded by d + 3.
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Notice that f(x, y) | P (x, y) ⇒ u(x) | C0(x). In addition, notice that C0(0) 6= 0 and C0(x)
can be computed by the formula Γ|y=0, where |Γ|y=0| ≤ |Γ| and depth(Γ|y=0) ≤ depth(Γ).
Therefore, by induction hypothesis, there exists H(x) ∈ F[x] with deg(H) ≤ 4r3n3 such that
for any a ∈ Fn for which H(a) 6= 0, there exists a formula Λm with output gate being a
multiplication gate, such that

depth(Λm) ≤ d+ 4,

|Λm| ≤ 60000m2r8n ·
(
m+ r + 1

r + 1

)
s and

Hx
≤m[Λm(x)] ≡ Hx

≤m[u(x + a)].

Now that we have an approximation to the factor u(x), which is the constant term of the
polynomial f(x, y) when seen as a polynomial in the variable y, we want to use Lemma 6.1
to find the factors of f(x, y) that contain y. For this, we will first need to find polynomials
Di(x, y) with small formulas such that fi(x, y) | Di(x, y) and each Di is square-free with respect
to fi(x, y).

Fortunately, Lemma 2.6 tells us that for each (irreducible) polynomial fi(x, y), we can find
formulas ∆i of size ≤ 9r2|Γ| computing polynomials Di(x, y) such that degxj (Di) ≤ r, 1 ≤

j ≤ n, degy(Di) ≤ r, fi(x, y) | Di(x, y) but fi(x, y) -
∂Di

∂y
(x, y). Moreover these formulas have

an addition gate as output gate.

Since fi(x, y) is irreducible with degy(fi) ≥ 1 and fi(x, y) -
∂Di

∂y
(x, y), Lemma 3.6 implies

that there exists a polynomial Gi(x) ∈ F[x] with

deg(Gi) ≤ 2 deg(fi)
2 + 2 deg(fi) deg(Di) ≤ 4r2n2

such that for any c ∈ Fn where Gi(c) 6= 0 we have that c properly splits fi(c, y) with respect

to
∂Di

∂y
(c, y).

Let

G(x, y) ≡ H(x) · C0(x) ·
t∏
i=1

Gi(x) and (c, γ) ∈ Fn+1 be s.t. G(c, γ) 6= 0.4

4At first, it may seem strange that G(x, y) does not depend on the variable y, since if we continued this
argument by induction we would arrive at the conclusion that G(x, y) is the constant polynomial. However,
notice that even though H(x) does not depend on the variable xn, the polynomial G(x, y) depends on xn, since
the polynomials C0(x) and Gi(x) depend on xn. The right way to see this dependence is the following: G(x, y)
depends on every variable except the variable used by the lifting procedure, which in this case is the variable y.
Hence, we will have that H(x) depends on all the variables except xn (if we choose to perform the lifting with
respect to xn).
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Denote

Q(x, y) ≡ P (x + c, y) ≡
r∑
i=0

Qi(x)yi,

hi(x, y) ≡ fi(x + c, y) ≡
ki∑
j=0

hij(x)yj and

h(x, y) ≡ f(x + c, y) ≡ q(x + c) ·
t∏
i=1

hi(x, y)ei .

Since hi0(x) ≡ fi0(x + c, 0) | P (x + c, 0) ≡ C0(x + c) and C0(c) 6= 0 (because G(c, γ) 6= 0),
we have that hi0(0) 6= 0, for all 1 ≤ i ≤ t. Hence, after normalization by a proper field element,
we can write each hi0 in the following form:

hi0(x) = 1− gi(x), where gi(0) ≡ 0.

In addition, notice that fiki(x) 6≡ 0⇒ hiki(x) ≡ fiki(x + c) 6≡ 0.

Moreover, notice that fi(x, y) is irreducible with fi0(x) · fiki(x) 6≡ 0 implies that hi(x, y)
is irreducible with hi0(x) · hiki(x) 6≡ 0, which implies (by Corollary 2.10) that the polynomial

h̃i(x, y) ≡
ki∑
j=0

hij(x)yki−j is irreducible in F[x, y]. Hence, we have that `i(x, y) ≡ h̃i(x, y)

hi0(x)
is a

monic irreducible standard form in F(x)[y].

Because fi(x, y) | Di(x, y) and fi(x, y) -
∂Di

∂y
(x, y), by Lemma 2.9 we obtain that

hi(x, y) | Ei(x, y) ≡ Di(x + c, y) and hi(x, y) -
∂Ei
∂y

(x, y) ≡ ∂Di

∂y
(x + c, y).

Since hi(0, y) ≡ fi(c, y), we also have that hi(0, y) has no common roots with
∂Ei
∂y

(0, y).

The following claim shows that `i(x, y) satisfies the conditions of Lemma 6.1.

Claim 6.4. For each i ∈ {1, . . . , t}, the monic irreducible standard form `i(x, y) ≡ h̃i(x, y)

hi0(x)

and the polynomial Ẽi(x, y) satisfy the conditions of Lemma 6.1.

Proof of claim. Notice that conditions (i) and (ii) from Lemma 6.1 follow from the fact that

hi(x, y) | Ei(x, y) and Lemmas 2.9 and 3.6. Condition (iii) follows from the fact that
hi(0, y)

hi0(0)
≡

hi(0, y) shares no common roots with
∂Ei
∂y

(0, y) and from Lemma 2.11.

This finishes the proof of the claim.

Now that we have rational functions in monic standard form that are, in a certain sense,
computing the reversal of each fi(x, y), we can use the main lemma to lift the factorization of
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the approximation polynomial of fi(x, y)/fi0(x).5

Since each `i(x, y) and Ẽi(x, y) satisfy the conditions of Lemma 6.1, and Ẽi(x, y) can be
computed by a formula Υi of size |Υi| ≤ 180r4 · |Γ| = 180r4s and depth depth(Υi) ≤ d + 1
(since Υi is the shift of ∆̃i), we have that there exists a formula Ψi,m having as output gate a
multiplication gate, depth(Ψi,m) ≤ depth(Υi) + 3 ≤ d+ 4 and size

|Ψi,m| ≤ 300m2r3 ·
(
m+ r + 1

r + 1

)
· 180r4 · s ≤ 60000m2r7 ·

(
m+ r + 1

r + 1

)
· s

such that
Hx
≤m[Ψi,m] ≡ Hx

≤m[ψ˜̀
i(x,y),m

(x, y)].

By Observation 4.3, we have that

Hx
≤m[hi0(x) · ψ˜̀

i(x,y),m
(x, y)] ≡ Hx

≤m[˜̀i(x, y) · hi0(x)] ≡ Hx
≤m[hi(x, y)], and also

Hx
≤m[hi0(x) · ψ˜̀

i(x,y),m
(x, y + γ)] ≡ Hx

≤m[hi(x, y + γ)].

In addition, from the formulas Ψi,m and from the fact that
∑t

i=1 ei ≤ r, we have that the
formula given by Ψm =

∏t
i=1 Ψei

i,m is of size

|Ψm| ≤
t∑
i=1

ei · |Ψi,m| ≤ r · max
1≤i≤t

(|Ψi,m|) ≤ 60000m2r8 ·
(
m+ r + 1

r + 1

)
· s

and computes the following polynomial:

Hx
≤m[Ψm(x, y)] ≡ Hx

≤m

[
t∏
i=1

ψ˜̀
i(x,y),m

(x, y + γ)ei

]
.

Now that we found a formula computing the approximation polynomials ψ˜̀
i(x,y),m

(x, y+γ),

we can multiply them by hi0(x, y) and via Observation 4.3 obtain the polynomials hi(x, y),
which are the shifts of fi(x, y). Since Ψm computes all of the approximation polynomials,
and Λm computes all of the leading coefficients, by combining them we can recover the factor
f(x, y). This is what we do next.

Multiplying Ψm by Λm, we have that the formula Φm = Λm ·Ψm is such that

|Φm| ≤ |Λm|+ |Ψm| ≤ 60000m2r8(n+ 1) ·
(
m+ r + 1

r + 1

)
· s

5In actuality, we are performing a lift of a shift of fi(x, y).

32



and

Hx
≤m[Φm(x, y)] ≡ Hx

≤m[Λm ·Ψm]

≡ Hx
≤m

[
u(x + c) ·

t∏
i=1

ψhi(x,y)

hi0(x)
,m

(x, y + γ)ei

]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

fi0(x + c)ei ·
t∏
i=1

ψhi(x,y)

hi0(x)
,m

(x, y + γ)ei

]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

(
hi0(x) · ψhi(x,y)

hi0(x)
,m

(x, y + γ)

)ei]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

hi(x, y + γ)ei

]

≡ Hx
≤m

[
q(x + c) ·

t∏
i=1

fi(x + c, y + γ)ei

]
≡ Hx

≤m[f(x + c, y + γ)].

Since

deg(G(x, y)) ≤ deg(H) + deg(C0) +
t∑
i=1

deg(Gi) ≤ 4r3n3 + rn+ r · 4r2n2 ≤ 4r3(n+ 1)3,

this finishes the induction, and therefore the proof of the theorem. It is clear from the proof,
via Observation 2.7, that if we restrict the in-degree to 2, we obtain the desired bound on the
depth.

As a corollary of the main theorem, we obtain:

Corollary 6.5 (Small Formula – Restatement of Theorem 1). Let P (x) ∈ F[x] \ {0} be such
that degxi(P ) ≤ r, 1 ≤ i ≤ n, and let f(x) ∈ F[x] be a factor of P . If there exists a formula
Γ of size s and depth d computing P , then there exists a formula Φ of depth depth(Φ) ≤ d+ 5
and size

|Φ| = O

(
n3r12 ·

(
nr + r + 1

r + 1

)
s

)
= poly((nr)r, s)

such that
Φ(x) ≡ f(x).

If we require the in-degree of the formula (circuit) to be 2, then the size of Φ does not change,
and depth(Φ) ≤ d+ 30r log(nr).

Proof. Let c ∈ Fn be such that P (c) 6= 0, such a c exists since P (x) is nonzero. This implies
that Q(x) ≡ P (x + c) is computed by the formula ∆(x) = Γ(x + c), of size ≤ 2|Γ| = 2s, depth
depth(∆) ≤ d + 1 and is such that Q(0) = P (c) 6= 0. Hence, by Theorem 6.3, we have that
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there exists polynomial G(x) ∈ F[x] of degree deg(G) ≤ 4r3n3 such that for any a ∈ Fn for
which G(a) 6= 0, there is a formula Φnr whose output gate is a multiplication gate for which
depth(Φnr) ≤ depth(∆) + 3 ≤ d+ 4, of size

|Φnr| ≤ 120000(nr)2r8n ·
(
nr + r + 1

r + 1

)
s and such that

Hx
≤nr[Φnr(x)] ≡ Hx

≤nr[f(x + c + a)] ≡ f(x + c + a), since nr ≥ deg(f).

By the interpolation Lemma 2.4, we obtain that there exists a formula Φ′ of size

|Φ′| ≤ 9r2 · |Φnr|

and depth depth(Φ′) ≤ d + 5 such that Φ′(x) ≡ f(x + c + a). By shifting the inputs of the
formula Φ′ by −(a + c), we have that the new formula just obtained, call it Φ, computes the
polynomial f(x), as we wanted. It is easy to see that Φ has the desired upper bound on its
size. It is also clear from the proof that if we restrict the in-degree of the formulas (circuits)
to be 2, we obtain the desired bounds on the depth. This finishes the proof.

7 Conclusion

Besides solving a question posed by Kopparty et al. [KSS14] and Open Problem 19 in [SY10] for
the class of polynomials of bounded individual degree, notice that Lemma 6.1 and Theorem 6.3
also provide a framework to obtain formulas (circuits) for the approximate roots of a polynomial
into actual formulas (circuits) for factors of the same polynomial. Since Lemma 6.1, and
therefore Theorem 6.3, uses the Approximation Lemma (Lemma 5.1) as a black-box, any
improvements on Lemma 5.1 would lead to better bounds on the size of the formulas for the
factors of the input polynomial. Hence, if one can remove the exponential dependence on the
parameter r (the bound on the individual degrees) in the Approximation Lemma, one can fully
solve the questions above. This is the main open question left by this work.
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A Proof of Lemmas From Section 2

Proof of Lemma 2.4. Let a0, a1, . . . , ar be r+1 distinct elements of F. For each i ∈ {0, 1, . . . , r},
let

Γi(x) = Γ(x, ai)

be the restriction of the circuit Γ(x, y) when y = ai. It is clear that |Γi| ≤ |Γ|. Since
1 a0 a20 . . . ar0
1 a1 a21 . . . ar1
1 a2 a22 . . . ar2
...

...
...

...
...

1 ar a2r . . . arr

 ·

P0(x)
P1(x)
P2(x)

...
Pr(x)

 =


P (x, a0)
P (x, a1)
P (x, a2)

...
P (x, ar)


and the matrix on the left side is a Vandermonde matrix, which is known to be invertible,

by left-multiplying by its inverse we obtain:


1 a0 a20 . . . ar0
1 a1 a21 . . . ar1
1 a2 a22 . . . ar2
...

...
...

...
...

1 ar a2r . . . arr


−1

·


P (x, a0)
P (x, a1)
P (x, a2)

...
P (x, ar)

 =


P0(x)
P1(x)
P2(x)

...
Pr(x)

 (10)

Let M be the matrix in equation (10), where the (i, j)th entry of M is denoted by mij ,
where the indices of M range from 0 to r. Since circuit Γi computes the polynomial P (x, ai),
by equation (10) we have that

Pi(x) =

r∑
j=0

mij · Γj(x) (11)

Which implies that Pi(x) can be computed by a circuit Φi of size ≤ r · (|Γ| + 2), for each Γj
can be computed by a circuit of size ≤ |Γ| and it takes ≤ 2r gates to compute the expression
in equation (11).

Since we did not reuse any of the restrictions Γj neither the gates used to compute expres-
sion (11), we have that if Γ is a formula then so will Φi be a formula.

Proof of Lemma 2.6. If the topmost gate of Γ is an addition gate, then for each 1 ≤ i ≤ t,

let d ≥ 0 be the first integer such that g(x, y) | ∂
dP

(∂y)d
(x, y) and g(x, y) -

∂d+1P

(∂y)d+1
(x, y). In

this case, let D(x, y) ≡ ∂dP

(∂y)d
(x, y). Lemma 2.5 tells us that there exists a formula ∆ that

computes D(x, y) and has the required properties.

If the topmost gate of Γ is a product gate, we have that Γ =
∏̀
j=1

Γj , where each Γj is a

formula with an output gate being an addition gate, depth(Γj) ≤ depth(Γ)− 1 and |Γj | < |Γ|.
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Let Pj be the polynomial computed by formula Γj . In this case, let k ∈ {1, . . . , `} be such

that g(x, y) | Pk(x, y) and d ≥ 0 be the first integer such that g(x, y) | ∂
dPk

(∂y)d
(x, y) and

g(x, y) -
∂d+1Pk
(∂y)d+1

(x, y). In this case, let D(x, y) ≡ ∂dPk
(∂y)d

(x, y). Again, Lemma 2.5 tells us that

there exist a formula ∆ that computes D(x, y) and has the required properties.

Proof of Lemma 2.8. By Lemma 2.4, from Γ we can obtain circuits Φi computing Pi(x) such
that |Φi| ≤ 3r · |Γ|. Now, with a formula Λ of size ≤ 2r one can compute all powers yi, where
0 ≤ i ≤ r. And finally, with a formula of size ≤ 2r (using the output gates of Φi and the gates
of Λ as inputs), one can compute the expression

r∑
i=0

yr−iPi(x).

Hence, we obtain a circuit ∆ computing P̃ and the size of ∆ is upper bounded by

|∆| ≤ r · (3r · |Γ|) + 4r ≤ 8r2|Γ|.

Since we did not reuse any gates in this construction, notice that if Γ is a formula then ∆
will also be a formula.

Proof of Lemma 2.9. If f | P , then there exists g(x, y) ∈ F[x, y] such that P (x, y) ≡ f(x, y) ·

g(x, y). If we let g(x, y) ≡
r−k∑
i=0

gi(x)yi, then P (x, y) ≡ f(x, y) · g(x, y) implies that

Pt(x) ≡
t∑
i=0

ft−i(x)gi(x), for all 0 ≤ t ≤ r.

Since Pr(x) ·P0(x) 6≡ 0 and fk(x) ·f0(x) 6≡ 0, we must have that gr−k(x) ·g0(x) 6≡ 0. Therefore,
the reversal of g is well defined.

Let g̃(x, y) ≡
r−k∑
i=0

gi(x)yr−k−i. Then, notice that

f̃(x, y) · g̃(x, y) ≡

(
k∑
i=0

fi(x)yk−i

)
·

(
r−k∑
i=0

gi(x)yr−k−i

)

≡
r∑
t=0

(
t∑
i=0

ft−i(x)gi(x)

)
yr−t ≡

r∑
t=0

Pt(x)yr−t ≡ P̃ (x, y).

This last equation implies that f̃ | P̃ . Analogously, we can show that f̃ | P̃ ⇒ f | P .
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Proof of Lemma 2.11. Let f(x) ≡ α ·
Df∏
j=1

(x−λj)dj and f(x) ≡ β ·
Dg∏
j=1

(x−µj)ej , where α, β ∈ F.

Since f and g share no common roots, it must be the case that λi 6= µj , for all i ∈ {1, . . . , Df}
and j ∈ {1, . . . , Dg}.

Since

f̃(x) ≡ αλ ·
Df∏
j=1

(
x− 1

λj

)dj

where λ =

Df∏
j=1

(−λdjj ), and

g̃(x) ≡ αµ ·
Dg∏
j=1

(
x− 1

µj

)ej

where λ =

Dg∏
j=1

(−µejj ) we have that no root of f̃(x) is a root of g̃(x).
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