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Abstract

We present a minimax framework for classi-
fication that considers stochastic adversarial
perturbations to the training data. We show
that for binary classification it is equivalent
to SVM, but with a very natural interpreta-
tion of regularization parameter. In the mul-
ticlass case, we obtain that our formulation
is equivalent to regularizing the hinge loss
with the maximum norm of the weight vec-
tor (i.e., the two-infinity norm). We test this
new regularization scheme and show that it
is competitive with the Frobenius regulariza-
tion commonly used for multiclass SVM. We
proceed to analyze various forms of stochas-
tic perturbations and obtain compact op-
timization problems for the optimal classi-
fiers. Taken together, our results illustrate
the advantage of using stochastic perturba-
tions rather than deterministic ones, as well
as offer a simple geometric interpretation for
SVM optimization.

1 Introduction

One of the most common approaches to classification
is to minimize the regularized empirical hinge loss [22].
The most common regularization is the squared ¢o
norm. One of the motivations for this approach comes
from the linearly separable case, in which minimizing
the norm subject to classifying the points correctly is
equivalent to maximizing the separation margin. How-
ever, minimizing the ¢ regularized hinge loss no longer
has this nice geometric interpretation.
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In this work, we provide a simple geometric view of
regularized hinge loss minimization, as well as other
regularized loss optimization scenarios. We show that
this geometric interpretation arises naturally when
casting learning in robust optimization terms, and
specifically in robustness to stochastic perturbations.

In the typical robust setting, the learning algorithm
seeks a classifier that will perform well not only on
the training examples, but also on their perturbed
versions. The optimization follows a minimax setting
where an adversary has access to the classifier w and
can modify the input points & to maximize the loss
incurred by the classifier. In all previous works in
this setting [1, 12, 13, 24, 10, 6, 8]) the adversary has
the power to move the samples x1,...,x, to a set
S(x1,...,2,) defined in advance (e.g., the set of balls
of radius R around each sample point). The goal of
the learning algorithm is then to minimize the worst
case loss.

Here we consider a stochastic variant of this setting,
which turns out to be much more closely related to
standard regularized loss minimization. We employ
a stochastic adversary which uses a distribution over
space to sample new perturbed points. On the one
hand, we maintain the adversarial nature of the formu-
lation, but on the other hand a stochastic adversary
is conceptually weaker than a deterministic one, since
it cannot choose the worst point, but rather needs to
spread points stochastically. Clearly, the distribution
chosen by the adversary needs to be limited somehow,
and we consider several natural choices of distribution
sets, focusing on those bounding the expected devia-
tion from the original point x.

As in standard robust classification, we consider a min-
imax setting where the learner first chooses a weight
vector, and the adversary reacts to it by choosing a
worst case distribution over inputs. The goal of the
learner is to minimize the maximum expected hinge
loss, where expectation is taken over the adversarial
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distribution. In general, solving the minimax problem
with stochastic adversaries is quite challenging since
the adversary gets to optimize over the set of all prob-
ability measures. We show how to overcome this dif-
ficulty and obtain several elegant equivalent formula-
tions of the problem.

Our first result is to show that for binary classifica-
tion the optimal strategy is equivalent to learning via
SVMs. Interestingly, for the multiclass case, our for-
mulation yields an alternative regularization to current
existing versions of multi-class SVMs. Instead of using
the standard /3 2 over the weight vectors (e.g. [27, 5]),
our algorithms result in an /3 o, regularization. Our
formulation also suggests a natural choice of regu-
larization parameter which often works well in prac-
tice. We show empirically that our resulting multiclass
method is competitive with SVM classifiers.

Finally, we generalize our analysis to other perturba-
tion models and loss functions, including log-loss and
{1 regularization. Taken together, our results illus-
trate the utility of using stochastic adversaries, and
the simple geometric interpretations that result from
this analysis.

2 Problem Formulation

We assume a given set of n labeled examples {x;, y;}
with ¢ = 1,...,n. Each example is composed of an
input vector ; € R? and a label from a finite set
of size L, y; € {1,...,L}. In this work we con-
sider linear models parameterized by a set of L weight
vectors w, € R? - one vector per possible class, for
y =1,...,L [5]. Given a new input, the predicted
label is the one which maximizes the inner-product
of the input « and the corresponding weight-vector,
7 = arg max, wy - .

A common strategy for learning the weights w, is to
minimize an upper bound on the average zero-one loss
of the training set. Here we follow the common strat-
egy of bounding the zero-one loss with the hinge loss.
We use the following multiclass hinge loss [5]:

{(z,y; w) = max [wy - T — wy - T+ ey 5] (1)
v

where e, 5 is zero if y = § and one otherwise.

The standard machine learning approach once a loss is
defined, is to minimize a sum of the average loss and a
regularization term. The goal of the latter is to prevent
over-fitting by biasing the algorithm towards “simple”
models. For example, the following multiclass SVM
formulation [5] minimizes the sum of the average hinge
loss and the squared ¢ norm of the weights,

min. 35, U@,y w) + § 5, lwyl3 - (2)

where C' is a regularization parameter, used to trade-
off simplicity and accuracy.

In our formulation we do not introduce such a regu-
larization. Rather, we employ a minimax formulation
and we shall see how regularization naturally follows
from it.

Our formulation requires that not only should the
learned classifier perform well on the training data,
but it should also be robust with respect to pertur-
bations of the input points x;. Unlike previous ap-
proaches for robust classification [12, 13, 10] we focus
on perturbations that are stochastic in nature and not
deterministic. We model perturbations of an input x
via a conditional distribution p(&|x), and formalize
the learning process as a minimization of the expected
loss w.r.t. this distribution. For this setup to be well-
defined the distribution p(Z|x) is constrained to belong
to a subset of the possible measures on RY.

Below we sketch two alternative definitions of the set of
distributions. In both cases we enforce the expectation
of & with respect to p(Z|x) to be x (i.e., the original in-
put point). Additionally, we limit the spread of p(Z|x)
so that it represents perturbations that are local with
high-probability. We formalize this limit via a bound
on the average distance of & from «, and we consider
either the Euclidean distance or its square. Since the
square function and the expectation operator are not
commutative, these two alternatives are not equivalent
in general. In summary, we consider perturbation sets
of the type

S(z;o, f) = {p(w|m) cP: Epz)x) (2] = = }

Eyzlz) [f(@,2)] =0

where P is the set of all Borel probability measures
over R%. The two cases we address are Sy, which cor-
responds to S(x; 0, f) with f(Z,x) = || — x||2, and
Spz which corresponds to S(x;o, f) with f(z,x) =
& — 3.

These sets induce two corresponding stochastically-
robust optimization problems:

1
min. = > max
" p(@| @) €S (@i, f)

Ep@lay) (@, yi;w)]  (3)

When &, is considered, we denote the problem by
RSVM;(0), and when Sy is considered, we denote the

problem by RSVM3 (o).

3 Solving the classification problems

Optimization problems of the form in Eq. 3 are not
trivial, as the maximization part is over an infinite
dimensional space (i.e., the space of Borel measures
on R%). In what follows, we obtain compact tractable
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forms for solving the robust classification problems in
the previous section by working with their convex dual
problems. We make use of the observation that the
maximization problems correspond to linear programs

over variables p(Z|z) (e.g., see [15, 26]). Specifically,
they are of the form:
. B 7}
max p[fo@] | @
st.  E)fi@)])=qa; j=1,...,m.

where f;(z) are functions on . For example, in
RSVM;(o) the i*" point problem corresponds to:
w)

w), [1(Z) =z, fo(x) = [|[Z—x;]|2

and a; = x;,a2 = 0. The dual problem is a linear
optimization problem with infinitely many constraints,
and variables zg, ..., Zm:

fO(‘ivyh *5(5373/1,

min. 29+ >0, a;2; (5)
S.t. z2o + Z;ﬂzl ijj(i) > fo(i) V.

The dual objective, Eq. 5, is always an upper bound
on the primal problem. Moreover, it is known [15]
that under mild conditions (which are satisfied by all
the problems we consider), the dual problem is a strict
upper bound. Specifically, the supremum of the primal
problem coincides with the minimum of the dual. As
we will see below, analyzing the dual is simpler since
the number of constraints can be reduced significantly,
to a polynomial size.

3.1 Solving RSVM,

We now develop RSVM,; into a more tractable form.
The key consequence of our analysis is that this prob-
lem is equivalent to SVM in binary classification prob-
lems. Furthermore, in the multi class cases it is equiv-
alent to an alternative to standard multi-class SVM.

To present our result, we define the following new mul-
ticlass optimization problem which will be shown to be
equivalent to the minimax problem RSVM; (see The-
orem 3.1).

(£2) SVM(U) :

mm — Zé T, Yi; W

+0max||wy||2

The objective of (¢5) SV M(o) is a sum of two terms.
The first is the average hinge loss on the input exam-
ples. The second term is an f3 o norm on the matrix
of weights, this is the maximal value of the Euclidean
norm over all L weights vectors, one per label.

Before proving that (¢3) SV M (o) and RSVM; are
equivalent we mention some implications of this re-
sult. First, we claim that in the binary class case,

(¢2),, SVM(o) is equivalent to the classic £y regu-
larized hinge loss. To see this, note we can assume
wlog that the optimal solution satisfies w; = —ws,
(since the objective in w is translation invariant so we
can shift wq, wy so that their sum is zero), and thus
maxy ||lwyll2 = [[wi]2. So the l3 o regularization is
just ¢5 regularization. Note that in SVM the squared
{5 norm is typically used. However, the squared and
non-squared cases are equivalent up to the precise
value of the regularization constant . Thus, we ob-
tain a novel and simple interpretation of binary SVM
with /5 regularization: it is simply the best minimax
strategy if one wants to be robust to stochastic per-
turbation of sample points.

In the multi-class case, we note that (¢2). SV M (o)
uses a regularization that is different from the Frobe-
nius norm often used in this context (e.g., see [5]). In
the Frobenius case, the regularization is the sum of
norms of w, whereas in (¢2)_ SV M (o) it is the maxi-
mum over these norms. We proceed to state and prove
the equivalence between (¢5) SV M (o) and RSVMs.

Theorem 3.1. The optimization problem RSVM, (o)
is equivalent to ({2). SVM(c). Namely, they have
the same optimal value and optimal assignment to the
parameters wy,.

Proof. Consider the adversary maximization problem
for the labeled pair @,y (we begin by considering a
sample point, and later consider the whole sample),

r;lg%(. Epzla) [((@; y; w)]

s.t. Ep(ilw) [@] =z (6)
Epzlx) |2 — 2] = 0.

As discussed earlier, the dual problem is given by:

min. ao+ BTx+~

B,y

st allz—x)s+ BTz +v > U3 y;w) VE

where o,y € R and 3 € R?. We decompose the hinge-
loss to linear objective and constraints, change vari-
ables (Z + & — x) and obtain an equivalent form:

min. ao+ BTz +7
a,By

s.t.
vz, g allzls + BT (& +2) + v > ey + Aw] (T + )
(7)
where Awy; = wy — w,. For every g, two necessary
and sufficient conditions for the last constraint to hold
are:
Bla+y>eyy+Awja 8)

1Specifically, since a constraint on ¢ norm can be ex-
pressed equivalently as a constraint on ¢3. For the two
formulations to be equivalent different values of o should
be used.
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and:
VI aH.’Tc||2+(ﬂ—Awg)T§: >0. (9)

Sufficiency follows from summing the constraints in
Eq. 9 and Eq. 8. The first constraint is necessary by
setting & = 0. The second constraint is necessary as
shown by the following negation argument. If indeed
there is some & for which Eq. 9 is violated, it will also
be violated with r& for sufficiently large r such that,

r(allz)z + (B — Awy) z) < —ﬁT:c—'y—i—ey,g—i—Awgm

which yields

alrzls+BTre + BT+ v <eyy+ Awgric + Aw%w

implying that Eq. 7 is wrong.

Eq. 9 can be replaced with the single constraint:
18— Awglle < o (10)

To see this, note that substituting £ = Awg — 3 in
Eq. 9 yields Eq. 10. On the other hand, Eq. 9 follows
from Eq. 10 via the Cauchy-Schwartz inequality. The
equivalence can alternatively be derived from the fact
that Eq. 9 is equivalent to upper bounding the dual
norm of the ¢; norm? of Awy; — 8 by . Since ¢5 is
self dual, the equivalence follows.

Plugging Eq. (8,9,10) in Eq. 7 we get,

m,ien. ac+ BTz +7
By
ot 18- Awgls<a vy (11)

Yy Bl +~> ey,g + Awgw
Optimizing over v we get:
miﬁn ao + Lz y;w) st [|B—Awgl: <a Vg (12)
«,
Finally, we note that both the objective and the con-

straint are invariant to adding a constant vector to w,,.
We thus replace wy <+ wz — w, + S and get,

min. ao + {(x;y;w) st [wglla <a Yy
[e%

Optimizing over o we get that problem RSVMs (o) is
equivalent to:

o1
m&)n.ﬁzasci,yi;w) +0’H13XH’UJy||2 (13)
which is of the desired form. O

In general there is no probability distribution that at-
tains the supremum value. In the supplementary file
we give a construction of a sequence of probabilities
that attain the supremum.

2Given a norm || - || on a linear space X, recall that the

()

[l

dual norm || - ||« on X* is defined as ||z*||. = sup,

3.2 Extension to general norms

Our results until now are only for the special case of
a perturbation whose expected value is bounded in ¢
norm. We claim that this result can be generalized
to any norm constraint on the perturbation. Specif-

ically, given any norm | - ||, define the corresponding
set SH.H(:B;J),
_ E ziz) [XZ] =
Sz 0) = zlx) e p: @=Lt }
150) {p( @) Epal |2 —2[] =0

In the following theorem, we generalize the case of /o
constraints to general norms.

Theorem 3.2. The optimization problem:

min. 1 > max

E x|z, 1 7a 5
w T p(Z|xi) €S| (T4s50) p(Z|xi) (:B Y 'LU) (14)

is equivalent to: min. L 3 0(wm;, y; w) + o max ||wy,
w Y

where || - ||« is the dual norm of || - ||.

The proof follows the same line as of the previous the-
orem which states the equivalence between Eq. 9 and
Eq. 10. We only need to replace the Euclidean norm
(and its dual, the Euclidean norm again) with the spe-
cific norm and its dual.

Two interesting cases of the above are: ¢; constraints
which translate to max, ||w, o regularization, and £,
constraints which translate to max, ||w,|/; regulariza-
tion [21]. Note that the squared Euclidean norm is not
a norm, and thus needs to be analyzed separately (see
Sec. 3.4).

3.3 Extension to General Losses

Thus far we only considered the hinge loss as the loss
we wish to minimize. Here we generalize our results
to a wider set of losses. To obtain results similar to
what we had earlier, we consider non-negative convex
loss functions ¢ (this is satisfied for almost all typical
surrogate losses) with the following two properties:

1. ¢ is translation invariant with respect to w (the
matrix with w, in each row), i.e. if w' —w is a
constant row matrix, then ¢(x, y, w’) = {(x, y, w).

2. The second property describes the set of subgradi-
ents of the loss function. We require that a vector
r is a subgradient of ¢(x,y, w) with respect to @
if and only if it can be written as aw, + v where
v is a vector in a set V(w), dependent only on w
and a # 0 is a constant scalar.

The following theorem gives a simple characterization
of our minimax problem for losses that satisfy the
above requirements.
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Theorem 3.3. The optimization problem:

E

min. £ 3° (@) L (T, Yis w) (15)

=2 . max
w p(z|x;) €S| (2i;0)

is equivalent to: min. 2 3. 0(x;,y;, w) + o sup ||v].,
w V(w)
where || - ||« is the dual norm of || - ||.

The theorem has exactly the same form as what we ob-
served for the hinge loss (see Theorem 3.2). Namely,
the minimax problem is equivalent to regularized loss
minimization. The functional form of the regulariza-
tion depends on the loss through V.

Proof. First note that since ¢ is translation invariant
its subgradients are also translation invariant. Hence
if v € V(w) we have, v —ab € V(w + b), for every b.
As before, considering the dual problem we obtain:

min. ao+ BTz +~
a,B,y
st. oz -zl +B 2+ > U@ yw) VE

(16)
¢ is a convex function in x, and demanding that a
function f is larger than ¢ at every point is equivalent
to demanding that f is larger than every affine func-
tion ¢+ vTx, that supports ¢ at some point. Let A be
the set of affine functions that supports ¢(-, y, w), and
recall that I(x) € A means:?

l(x) = Uz)+ Viz)(x—z)
= C2)+ Vi) 'x
where C(z) = {(z) — V{(z)Tz. We now replace the

condition in Eq. 16 with the equivalent condition that
the RHS is greater than all affine supports of £:

min. ac+ BTz +~
a,B,y

st. a2+ BT @+ ) +y>C2) + V)T (2 + )

where the above constraints are V&, z. As before, for
each subgradient, indexed by z, two necessary and suf-
ficient conditions for the corresponding constraints to
hold are:

Ble +v>C(2)+ Viz) (17)
and:
vz aofz| + (8- Veiz)Tz>0. (18)
Eq. 18 is equivalent to a > || — V4(2)]|-
This leads to the problem:
min. «o + ,BT:B +
a,B,y

st. BTx4+y>0(=)+Viz) Tz Vz
az||f=Viz)|. Vz

3We drop the dependence of £ on y,w in what follows
for notational convenience.
4As before we change variables & — x — .

The first constraint says that 87 @ + ~ is greater than
all affine supports of the loss and hence is equivalent
to requiring: fTx 4+ v > f(x,y, w). Now, using our
assumption of subgradients form we obtain:

min.
B,y
st Bla+vy>l(z,yw)

ac+ BTz +~

a>|f—awy +v|. YveV(w)
which is equivalent to
min. «aoc + {(x,y, w)
a8,y
st. a>||f—awy+v]. YveV(w).

The desired result follows from a change of variables
as in Sec. 3.1. O

To see how this result applies to the hinge loss, note
that the hinge loss is translation invariant and V' (w) is
the set of {wy} for all §. The result in Sec. 3.2 easily
follows.

We next consider another popular convex loss, the log-

exp('wgm) >
>, exp (w?,a:) ’
The following corollary shows that the minimax strat-
egy for log-loss with /5 constraints is to minimize the
log-loss plus max, ||w, |2 regularization.’

loss, given by: {4(x,y,w) = log(

Corollary 3.4. The problem:

. 1 —
.= . E szt i
P 2 g R oy 0 (P05 0) (19)

is equivalent to:
min. 1 Y oilg(xi, i, w) + omax w2
w " )

Proof. First, we note that the loss is translation in-
variant. Second, its subgradient is given by —w, +

wl, wl, o
Z /’UJT/e Y’ Z ’ ’UJT/e v’
%, so that V(w) = = v .
xR

w Zy/ ewy/w

5, e
To see why the regularization is max, ||w,||2 note that:

,wg,ewg’m
——— || = max|lwy|]>
y € v Y

sup [|v]| = max | ==
veV T

where the  that maximizes the above is equal to awy
where § = argmax, ||wy||2 and o — oo. O

Similar results may be obtained for other losses such as
smoothed variants of the hinge loss, regression SVMs
and others.

5 As with the hinge loss case, in the binary classification
setting this is standard 2 regularization, and otherwise it
is ZQ,OO
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Taken together, all of the above results suggest an in-
tuitive interpretation of the regularization factor o.
Namely, it is a bound on the expected perturbation
a point is likely to undergo. The regularized objec-
tive in this case is precisely the minimal worst case
loss that can arise as a result of such a perturbation.
This interpretation turns out to be useful in finding
new ways, other then cross validation, to choose o.
One suggestion that we explore in the experiments is
to relate o to the expected distance of a point from its
nearest neighbor in the training sample.

3.4 Solving RSVM}

So far we have considered only perturbations with
bounded norms. A natural question is what happens
when the bound is not on a norm. A simple instance
of this is when the bound is on the £3 of the perturba-
tion, i.e., the perturbation set is Sy (see Sec. 2). As
we show below, it turns out that the minimax strategy
in this case is considerably more complicated, and in
fact requires solving a semi-definite problem (SDP).

The following theorem states the equivalence (see the
supplementary file for proof).

Theorem 3.5. RSVM3(0) is equivalent to the prob-
lem

. 1 2 T
2 2o el m
ald LB, — Alwy
s.t. vg |: . ; T 2 (132 y)
5 (ﬁz -A 'wg) Vi T Cyiy
Where Alwy = wy — w,,.

The above problem has a particularly simple form in
the case of binary classification as stated in the next
theorem (proof in supplementary file).

Theorem 3.6. If y € {1,—1}, then RSVM3(o) is
equivalent to the problem

1 ol + (1 ywTa) + (1 - ywTa)
min. — .
w4 2

The above loss is a smoothed version of the hinge loss,
with the level of smoothing determined by o. For
o = 0 we get the hinge-loss, while for large values
of o we get the norm of w with a linear correction.
Interestingly, minimizing this loss yields a consistent
classifier, as was shown in a different context [19].

4 Related Work

As noted earlier, multiple works have considered min-
imax learning where training points are perturbed by

=0

an adversary. However, all of these [1, 12, 13, 24, 10, 8,
28] have used deterministic perturbations, where the
adversary is constrained to replace a training point
with a different point in the perturbation set.

Of these deterministic based approaches, the work
closest to ours is [28] which shows equivalence be-
tween binary SVM and a certain minimax problem.
However the model in [28] involves a rather unnatural
adversary that considers the entire empirical sample
jointly and splits a given perturbation budget between
the training points. In our case, the adversary han-
dles each training point independently, and this seems
like a much more geometrically intuitive setting, which
also results in a natural choice for . Furthermore, [28]
need to assume non-separability of the sample, which
is not needed in our case, and is often not a reasonable
assumption. Finally, our analysis naturally extends to
the multiclass case, and yields new and effective regu-
larization schemes.

One work that did address stochastic noise is [3]. They
studied an online setting where the observed feature
vector is a mnoisy version of the true feature vector,
and the noise has bounded variance. In their setting
the emphasis is on recovering the true feature vector
by accessing multiple instantiations of the noise. The
setup is thus inherently different from ours. An inter-
esting technical point in [3] is that they handle noise in
the original feature space, even when using kernels. It
would be interesting to see whether some of their tools
can be used in our case to allow kernel classification
with adversaries in the original space.

A complementary approach to robustness is to train
a classifier that is robust to predefined or known per-
turbations of the training data. For example, tangent-
distances [23] have been used to incorporate invari-
ances in the training data. A similar approach was
used to training SVMs [7], by expanding the training
set with virtual examples, i.e., instances which are per-
turbations of existing training points, where the per-
turbations are obtained from prior knowledge of the
specific problem.

Another approach to robustness is via stability of an
algorithm to replacement of small subsets of the train-
ing set. It was shown theoretically [2, 18, 11, 20] that
such stability analysis translates nicely to generaliza-
tion bounds, and in particular support vector machines
(SVMs) are stable in that sense. It would be interest-
ing to analyze the algorithmic stability in our setting.

5 Experiments

We derived two new multiclass algorithms: RSVM,
and RSVM3. Here we compare those to standard mul-
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RSVM, | RSVMq(H)

USPS 9.40 9.32
glass 47.23 52.89
ecolt 15.43 15.08
pen 7.27 11.42
poker 49.43 50.36
satimage 15.49 16.5
segment 5.65 9.18
shuttle 2.70 3.69

RSVM;3 | SVM || SVM(H)
8.88 | 9.06 || 10.42
50.52 | 48.28 || 56.18
15.34 | 15.25 | 29.65
720 | 7.27 || 15.83
49.51 | 49.81 || 50.28
15.25 | 15.33 | 16.21
6.15 | 6.25 || 14.31
3.60 | 3.52 7.61

Figure 1: Error rates (in %) for three multiclass algorithms. The columns RSVMz, RSVM3 and SVM correspond to using
these algorithms with cross validation for the regularization coefficient. The columns RSVM3(H), SVM(H) correspond to
using the heuristic value (see text). Note that RSVM3(H) outperforms SVM(H) and is within 5% of the cross validation

result RSVMz. Result are averaged over ten random shuffles.

0 10 20 30

50 60 70 80

w0
Noisy Dims

Figure 2: Comparison of RSVM; (o) and SVM on toy data
with noisy features added to a separable problem with 10
classes. The p—value corresponding to RSVMz (o) outper-
forming SVM is shown as a function of the number of noisy
features (low values indicate that RSVMa (o) is better).

ticlass SVM. We begin by considering a toy example
where we have 10 classes and the original features are
drawn from Gaussians in R%2. We then add varying
numbers of noisy dimensions and test the RSVMz (o)
and multiclass SVM (as in Eq. 2) methods. Regu-
larization parameters are chosen by cross-validation.
Fig. 2 shows the p-value for the t-test hypothesis that
RSVMz;(0) is better than SVM (over 20 repetitions) as
a function of the number of noisy dimensions. It can
be seen that as more dimensions are added, RSVM; (o)
outperforms SVM, suggesting the former is more re-
silient to noise.

We next compare the performance of three methods:
RSVM, (o), RSVM3(0) and multiclass SVM. Because
RSVMz2(0) is relatively slower, we use training samples
of up to 1000 samples.5 We use several UCI datasets
as indicated in Fig. 1. We also explore approaches

5The minimization problems RSVMaz (o) and SV M (C)
were solved using cvx [14]. RSVM3(o) was solved using
SDPT3 [25], for the inner minimization problems (i.e. the
adversarial noise) and gradient descent over w using L-
BFGS [17].

to automatically choosing regularization parameters.
As discussed earlier, our approach suggests a nat-
ural interpretation of the parameter in RSVMjy(o).
Following this intuition, the chosen parameter was
nld S @i — N(x;)||2, where N(z;) is @;’s nearest
neighbor, and d is the number of features. This reflects
our interpretation of SVM whereby o represents the
expected value of the /5 perturbation a point can un-
dergo when projected to a one dimensional space. The
factor v/d reflects the fact that we are interested in the
mean deviation in one particular direction. It can be
derived assuming features are independent Gaussians.
For comparison, in the case of SVM(C) the heuris-
tic parameter was chosen to be the default parameter

choice in SV M'"9"*[16], namely (L 3" | xfxi)_l. For

the objective in eq. 2, this is given by # Sala;.

We compared the above scheme for choosing o to the
common scheme of choosing it by cross validation. As
shown in Fig. 1 the three algorithms yield compara-
ble results. The heuristic parameter of RSVM;s (o)
proves to be much better then the heuristic parameter
of SVM and is within a 5% absolute difference from
the cross validation result RSVMsy. This suggests that
our heuristic parameter choice yields the right order
of magnitude for the parameter. It can also be further
improved by using a small number of cross validation
search steps.

Next, we were interested in comparing the methods on
large scale problems. This was done on considerably
larger datasets, with over 10,000 features and exam-
ples in each (see description in [4] and in Fig. 3). In
order to run RSVMjs(o) on such datasets, we could
not use the cvx package, but instead implemented a
composite mirror descent (COMID) algorithm for the
RSVM; (o) objective using the approach in [9].7 We

"To apply COMID to this case, one needs to solve

optimization problems of the form min, ||[w — z||3 +
C max, |w||3, where z is a vector and C is a constant.
It turns out that this problem can be solved in closed form
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20News | AmT7 Am3 EnronA
nTraining || 18,828 | 13,580 | 7,000 3,000
nFeatures || 252,115 | 686,724 | 494,481 | 13,559
nLabels 20 7 3 10
SVM 14.76 23.28 6.36 21.6
RSVM 12.74 24.37 6.36 19.33

Figure 3: Comparison of error rates (in %) between the standard multi class SVM and RSVM; (o).

EnronB | NYTD NYTO NYTS Reuters
3,000 10,000 | 10,000 10,000 | 4000
18,065 | 108,671 | 108,671 | 114,316 | 23,669
10 26 34 20 4

31.1 18.5 18.44 45.66 6.53
29.43 18.31 17.8 43.21 7.38

The datasets and

procedures are as in [4] (Am7 and Am3 stand for Amazon7 and Amazon3). Statistically significant differences are shown
in bold (following the same statistical procedure as in [4]). Parameters were chosen by cross-validation. The first, second
and third row show the number of training instances, the number of features and the number of labels respectively. Errors
were calculated using ten fold cross validation. Bold indicates that algorithm is better with significance p < 0.05.

compared RSVM;(0) to standard multi class SVM
with Frobenius regularization [5]. The SVM was also
optimized with COMID. Note that this algorithm is
scalable, as it works online and the update cost is lin-
ear in the number of features and labels. Results are
shown in Fig. 3. It can be seen that the two algorithms
have comparable performance, with RSV M being bet-
ter on more datasets.

6 Discussion

We presented an analysis of minimax learning strate-
gies where adversaries are stochastic, and have ob-
tained several key results. First, we show that in the
binary classification case, learning with bounded ex-
pected ¢ norm on the perturbation is equivalent to
standard SVM, where the regularization coefficient is
exactly the bound on the norm.® This gives a natu-
ral geometric interpretation for SVM and its regular-
ization parameter. Furthermore, it provides a natural
way of choosing the regularization parameter which, as
we show empirically, provides a good approximation to
the error obtained via the cross-validating parameter.

Second, we show that in the multiclass case, /¢
bounded perturbations are equivalent to regularization
with o0 norm (i.e., max, ||wy||2) where the regular-
ization parameter is again the bound on the norm.
Thus, we have the same advantages as in the binary
case. We note that, in retrospect, the /5 o, makes sense
as complexity regularization, perhaps even more so
than the standard Frobenius norm used in this con-
text [5]. Specifically, the ¢ o, bounds the complexity
of each classifier as opposed to their sum. We believe
that this should be reflected in generalization bounds
(as obtained from e.g., stability, Rademacher or cover-
ing numbers) and are currently pursuing this direction.

efficiently. Complexity is linear in the number of labels and
input dimension.

8The SVM regularizer in this case is ||w||2 rather than
lw]||3 but as noted in the derivation, these are equivalent
in terms of their expressive power.

Third, we show that the analysis can be performed
for any normed perturbation on the adversary, as long
as the dual norm is known and can be computed ef-
ficiently. This has interesting implications on ¢; and
{+ regularization. Specifically, it implies that ¢; reg-
ularized classification (e.g., [21]) can be interpreted
as minimax learning with bounded /., perturbations.
We also generalize our results to losses other than the
hinge loss, and show that similar results are obtained
for example for log-loss.

Finally, we show that when the perturbation is ex-
pressed in ¢ the optimal classifier can be obtained by
solving a semidefinite program. It is interesting that
this small variation on the perturbation constraints re-
sults in a considerably more computationally demand-
ing optimization problem.

Our empirical results show that there are cases where
our new multiclass approach outperforms standard
SVM, and that the methods are comparable on a va-
riety of other datasets.

Many interesting questions arise from our analysis.
The first is the theoretical generalization capabilities of
our classifiers. As noted above, this can be approached
via different tools. Other open issues are using other
non-normed perturbations, and specifically structured
domain dependent ones, such as translations and rota-
tions. Another natural extension is to the structured
prediction case, where interesting perturbations may
also be applied to the labels themselves.

Taken together our results illustrate the utility of using
stochastic adversaries for both understanding existing
methods and deriving new ones.
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