
Multi-Armed Bandits with Metric Movement Costs

Tomer Koren1, Roi Livni2, and Yishay Mansour3

1Google; tkoren@google.com
2Princeton University; rlivni@cs.princeton.edu

3Tel Aviv University; mansour@cs.tau.ac.il

October 25, 2017

Abstract

We consider the non-stochastic Multi-Armed Bandit problem in a setting where there is
a fixed and known metric on the action space that determines a cost for switching between
any pair of actions. The loss of the online learner has two components: the first is the usual
loss of the selected actions, and the second is an additional loss due to switching between
actions. Our main contribution gives a tight characterization of the expected minimax regret
in this setting, in terms of a complexity measure C of the underlying metric which depends
on its covering numbers. In finite metric spaces with k actions, we give an efficient algorithm
that achieves regret of the form Õ(max{C1/3T 2/3,

√
kT}), and show that this is the best

possible. Our regret bound generalizes previous known regret bounds for some special cases:
(i) the unit-switching cost regret Θ̃(max{k1/3T 2/3,

√
kT}) where C = Θ(k), and (ii) the

interval metric with regret Θ̃(max{T 2/3,
√
kT}) where C = Θ(1). For infinite metrics spaces

with Lipschitz loss functions, we derive a tight regret bound of Θ̃(T
d+1
d+2) where d ≥ 1 is

the Minkowski dimension of the space, which is known to be tight even when there are no
switching costs.

1 Introduction

Multi-Armed Bandit (MAB) is perhaps one of the most well studied model for learning that
allows to incorporate settings with limited feedback. In its simplest form, MAB can be thought
of as a game between a learner and an adversary: At first, the adversary chooses an arbitrary
sequence of losses `1, . . . , `T (possibly adversarially). Then, at each round the learner chooses an
action it from a finite set of actions K. At the end of each round, the learner gets to observe her
loss `t(it), and only the loss of her chosen action. The objective of the learner is to minimize her
(external) regret, defined as the expected difference between her loss,

∑T
t=1 `t(it), and the loss of

the best action in hindsight, i.e., mini∈K
∑T

t=1 `t(i).
One simplification of the MAB is that it assumes that the learner can switch between actions

without any cost, this is in contrast to online algorithms that maintain a state and have a cost of
switching between states. One simple intermediate solution is to add further costs to the learner
that penalize movements between actions. (Since we compare the learner to the single best
action, the adversary has no movement and hence no movement cost.) This approach has been
studied in the MAB with unit switching costs [2, 12], where the learner is not only penalized
for her loss but also pays a unit cost for any time she switches between actions. This simple
penalty implicitly advocates the construction of algorithms that avoid frequent fluctuation in
their decisions. Regulating switching has been successfully applied to many interesting instances
such as buffering problems [16], limited-delay lossy coding [19] and dynamic pricing with patient
buyers [15].

1

The unit switching cost assumes that any pair of actions have the same cost, which in many
scenarios is far from true. For example, consider an ice-cream vendor on a beach, where his
actions are to select a location and price. Clearly, changing location comes at a cost, while
changing prices might come with no cost. In this case we can define a interval metric (the
coast line) and the movement cost is the distance. A more involved case is a hot-dog vendor
in Manhattan, which needs to select a location and price. Again, it makes sense to charge a
switching cost between locations according to their distance, and in this case the Manhattan-
distance seems the most appropriate. Such settings are at the core of our model for MAB with
movement cost. The authors of [24] considered a MAB problem equipped with an interval
metric, i.e, the actions are [0, 1] and the movement cost is the distance between the actions.
They proposed a new online algorithm, called the Slowly Moving Bandit (SMB) algorithm, that
achieves optimal regret bound for this setting, and applied it to a dynamic pricing problem with
patient buyers to achieve a new tight regret bound.

The objective of this paper is to handle general metric spaces, both finite and infinite. We
show how to generalize the SMB algorithm and its analysis to design optimal moving-cost
algorithms for any metric space over finite decision space. Our main result identifies an intrinsic
complexity measure of the metric space, which we call the covering/packing complexity, and
give a tight characterization of the expected movement regret in terms of the complexity of
the underlying metric. In particular, in finite metric spaces of complexity C with k actions, we
give a regret bound of the form Õ(max{C1/3T 2/3,

√
kT}) and present an efficient algorithm that

achieves it. We also give a matching Ω̃(max{C1/3T 2/3,
√
kT}) lower bound that applies to any

metric with complexity C.
We extend out results to general continuous metric spaces. For such a settings we clearly

have to make some assumption about the losses, and we make the rather standard assumption
that the losses are Lipchitz with respect to the underlying metric. In this setting our results
depend on a quite different complexity measures: the upper and lower Minkowski dimensions
of the space, thus exhibiting a phase transition between the finite case (that corresponds to
Minkowski dimension zero) and the infinite case. Specifically, we give an upper bound on the
regret of Õ(T

d+1
d+2) where d ≥ 1 is the upper Minkowski dimension. When the upper and lower

Minkowski dimensions coincide—which is the case in many natural spaces, such as normed
vector spaces—the latter bound matches a lower bound of [10] that holds even when there are
no switching costs. Thus, a surprising implication of our result is that in infinite actions spaces
(of bounded Minkowski dimension), adding movement costs do not add to the complexity of the
MAB problem!

Our approach extends the techniques of [24] for the SMB algorithm, which was designed
to optimize over an interval metric, which is equivalent to a complete binary Hierarchally
well-Separated Tree (HST) metric space. By carefully balancing and regulating its sampling
distributions, the SMB algorithm avoids switching between far-apart nodes in the tree and
possibly incurring large movement costs with respect to the associated metric. We show that
the SMB regret guarantees are much more general than just binary balanced trees, and give an
analysis of the SMB algorithm when applied to general HSTs. As a second step, we show that a
rich class of trees, on which the SMB algorithm can be applied, can be used to upper-bound
any general metric. Finally, we reduce the case of an infinite metric space to the finite case via
simple discretization, and show that this reduction gives rise to the Minkowski dimension as a
natural complexity measure. All of these contractions turn out to be optimal (up to logarithmic
factors), as demonstrated by our matching lower bounds.

1.1 Related Work

Perhaps the most well known classical algorithm for non-stochastic bandit is the Exp3 Algorithm
[4] that guarantee a regret of Õ(

√
kT) without movement costs. However, for general MAB

algorithms there are no guarantees for slow movement between actions. In fact, it is known that

2

in a worst case Ω̃(T) switches between actions are expected (see [12]).
A simple case of MAB with movement cost is the uniform metric, i.e., when the distance

between any two actions is the same. This setting has seen intensive study, both in terms of
analyzing optimal regret rates [2, 12], as well as applications [16, 19, 15]. Our main technical
tools for achieving lower bounds is through the lower bound of Dekel et al. [12] that achieve such
bound for this special case. The general problem of bandits with movement costs has been first
introduced in [24], where the authors gave an efficient algorithm for a 2-HST binary balanced
tree metric, as well as for evenly spaced points on the interval. The main contribution of this
paper is a generalization of these results to general metric spaces.

There is a vast and vigorous study of MAB in continuous spaces [23, 11, 5, 10, 31]. These
works relate the change in the payoff to the change in the action. Specifically, there has been
a vast research on Lipschitz MAB with stochastic payoffs [22, 28, 29, 21, 25], where, roughly,
the expected reward is Lipschitz. For applying our results in continuous spaces we too need to
assume Lipschitz losses, however, our metric defines also the movement cost between actions
and not only relates the losses of similar actions. Our general findings is that in Euclidean
spaces, one can achieve the same regret bounds when movement cost is applied. Thus, the SMB
algorithm can achieve the optimal regret rate.

One can model our problem as a deterministic Markov Decision Process (MDP), where the
states are the MAB actions and in every state there is an action to move the MDP to a given
state (which correspond to switching actions). The payoff would be the payoff of the MAB action
associated with the state plus the movement cost to the next state. The work of Ortner [27]
studies deterministic MDP where the payoffs are stochastic, and also allows for a fixed uniform
switching cost. The work of Even-Dar et al. [13] and it extensions [26, 32] studies a MDP where
the payoffs are adversarial but there is full information of the payoffs. Latter this work was
extended to the bandit model by Neu et al. [26]. This line of works imposes various assumptions
regarding the MDP and the benchmark policies, specifically, that the MDP is “mixing” and that
the policies considered has full support stationary distributions, assumptions that clearly fail in
our very specific setting.

Bayesian MAB, such as in the Gittins index (see [17]), assume that the payoffs are from
some stochastic process. It is known that when there are switching costs then the existence of
an optimal index policy is not guaranteed [6]. There have been some works on special cases with
a fixed uniform switching cost [1, 3]. The most relevant work is that of Guha and Munagala [18]
which for a general metric over the actions gives a constant approximation off-line algorithm.
For a survey of switching costs in this context see [20].

The MAB problem with movement costs is related to the literature on online algorithms
and the competitive analysis framework [8]. A prototypical online problem is the Metrical
Task System (MTS) presented by Borodin et al. [9]. In a metrical task system there are a
collection of states and a metric over the states. Similar to MAB, the online algorithm at
each time step moves to a state, incurs a movement cost according to the metric, and suffers a
loss that corresponds to that state. However, unlike MAB, in an MTS the online algorithm is
given the loss prior to selecting the new state. Furthermore, competitive analysis has a much
more stringent benchmark: the best sequence of actions in retrospect. Like most of the regret
minimization literature, we use the best single action in hindsight as a benchmark, aiming for a
vanishing average regret.

One of our main technical tools is an approximation from above of a metric via a Metric
Tree (i.e., 2-HST). k-HST metrics have been vastly studied in the online algorithms starting
with [7]. The main goal is to derive a simpler metric representation (using randomized trees)
that will both upper and lower bound the given metric. The main result is to show a bound
of O(log n) on the expected stretch of any edge, and this is also the best possible [14]. It is
noteworthy that for bandit learning, and in contrast with these works, an upper bound over the
metric suffices to achieve optimal regret rate. This is since in online learning we compete against

3

the best static action in hindsight, which does not move at all and hence has zero movement
cost. In contrast, in a MTS, where one compete against the best dynamic sequence of actions,
one needs both an upper a lower bound on the metric.

2 Problem Setup and Background

In this section we recall the setting of Multi-armed Bandit with Movement Costs introduced in
[24], and review the necessary background required to state our main results.

2.1 Multi-armed Bandits with Movement Costs

In the Multi-armed Bandits (MAB) with Movement Costs problem, we consider a game between
an online learner and an adversary continuing for T rounds. There is a set K, possibly infinite,
of actions (or “arms”) that the learner can choose from. The set of actions is equipped with a
fixed and known metric ∆ that determines a cost ∆(i, j) ∈ [0, 1] for moving between any pair of
actions i, j ∈ K.

Before the game begins, an adversary fixes a sequence `1, . . . , `T : K 7→ [0, 1] of loss functions
assigning loss values in [0, 1] to actions in K (in particular, we assume an oblivious adversary).
Then, on each round t = 1, . . . , T , the learner picks an action it ∈ K, possibly at random. At
the end of each round t, the learner gets to observe her loss (namely, `t(it)) and nothing else.
In contrast with the standard MAB setting, in addition to the loss `t(it) the learner suffers an
additional cost due to her movement between actions, which is determined by the metric and is
equal to ∆(it, it−1). Thus, the total cost at round t is given by `t(it) + ∆(it−1, it).

The goal of the learner, over the course of T rounds of the game, is to minimize her expected
movement-regret, which is defined as the difference between her (expected) total costs and the
total costs of the best fixed action in hindsight (that incurs no movement costs); namely, the
movement regret with respect to a sequence `1:T of loss vectors and a metric ∆ equals

RegretMC(`1:T ,∆) = E

[
T∑
t=1

`t(it) +
T∑
t=2

∆(it, it−1)

]
−min

i∈K

T∑
t=1

`t(i) .

Here, the expectation is taken with respect to the learner’s randomization in choosing the actions
i1, . . . , iT ; notice that, as we assume an oblivious adversary, the loss functions `t are deterministic
and cannot depend on the learner’s randomization.

2.2 Basic Definitions in Metric Spaces

We recall basic notions in metric space that govern the regret in the MAB with movement costs
setting. Throughout we assume a bounded metric space (K,∆), where for normalization we
assume ∆(i, j) ∈ [0, 1] for all i, j ∈ K. Given a point i ∈ K we will denote by Bε(i) = {j ∈ K :
∆(i, j) ≤ ε} the ball of radius ε around i.

The following definitions are standard.

Definition 1 (Packing numbers). A subset P ⊂ K in a metric space (K,∆) is an ε-packing
if the sets {Bε(i)}i∈P are disjoint sets. The ε-packing number of ∆, denoted Np

ε (∆), is the
maximum cardinality of any ε-packing of K.

Definition 2 (Covering numbers). A subset C ⊂ K in a metric space (K,∆) is an ε-covering if
K ⊆ ∪i∈CBε(i). The ε-covering number of K, denoted N c

ε (∆), is the minimum cardinality of
any ε-covering of K.

4

Tree metrics and HSTs. We recall the notion of a tree metric, and in particular, a metric
induced by an Hierarchically well-Separated (HST) Tree; see [7] for more details. Any weighted
tree defines a metric over the vertices, by considering the shortest path between each two nodes.
An HST tree (2-HST tree, to be precise) is a rooted weighted tree such that: 1) the edge weight
from any node to each of its children is the same and 2) the edge weight along any path from
the root to a leaf are decreasing by a factor 2 per edge. We will also assume that all leaves are
of the same depth in the tree (this does not imply that the tree is complete).

Given a tree T we let depth(T) denote its height, which is the maximal length of a path
from any leaf to the root. Let level(v) be the level of a node v ∈ T , where the level of the leaves
is 0 and the level of the root is depth(T). Given nodes u, v ∈ T , let LCA(u, v) be their least
common ancestor node in T .

The metric which we next define is equivalent (up to a constant factor) to standard tree–
metric induced over the leaves by an HST. By a slight abuse of terminology, we will call it HST
metric:

Definition 3 (HST metric). Let K be a finite set and let T be a tree whose leaves are at the
same depth and are indexed by elements of K. Then the HST metric ∆T over K induced by
the tree T is defined as follows:

∆T (i, j) =
2level(LCA(i,j))

2depth(T)
∀ i, j ∈ K.

For a HST metric ∆T , observe that the packing number and covering number are simple to
characterize: for all 0 ≤ h < depth(T) we have that for ε = 2h−H ,

N c
ε (∆T) = Np

ε (∆T) =
∣∣{v ∈ T : level(v) = h}

∣∣
Complexity measures for finite metric spaces. We next define the two notions of com-
plexity that, as we will later see, governs the complexity of MAB with metric movement costs.

Definition 4 (covering complexity). The covering complexity of a metric space (K,∆) denoted
Cc(∆) is given by

Cc(∆) = sup
0<ε<1

ε·N c
ε (∆).

Definition 5 (packing complexity). The packing complexity of a metric space (K,∆) denoted
Cp(∆) is given by

Cp(∆) = sup
0<ε<1

ε·Np
ε (∆).

For a HST metric, the two complexity measures coincide as its packing and covering numbers
are the same. Therefore, for a HST metric ∆T we will simply denote the complexity of (K,∆T)
as C(T). In fact, it is known that in any metric space Np

ε (∆) ≤ N c
ε (∆) ≤ Np

ε/2(∆) for all ε > 0.
Thus, for a general metric space we obtain that

Cp(∆) ≤ Cc(∆) ≤ 2Cp(∆). (1)

Complexity measures for infinite metric spaces. For infinite metric spaces, we require
the following definition.

Definition 6 (Minkowski dimensions). Let (K,∆) be a bounded metric space. The upper
Minkowski dimension of (K,∆), denoted D(∆), is defined as

D(∆) = lim sup
ε→0

logNp
ε (∆)

log(1/ε)
= lim sup

ε→0

logN c
ε (∆)

log(1/ε)
.

Similarly, the lower Minkowski dimension is denoted by D(∆) and is defined as

D(∆) = lim inf
ε→0

logNp
ε (∆)

log(1/ε)
= lim inf

ε→0

logN c
ε (∆)

log(1/ε)
.

5

We refer to [30] for more background on the Minkowski dimensions and related notions in
metric spaces theory.

3 Main Results

We now state the main results of the paper, which give a complete characterization of the
expected regret in the MAB with movement costs problem.

3.1 Finite Metric Spaces

The following are the main results of the paper. Detailed proofs are provided in Appendix A.

Theorem 7 (Upper Bound). Let (K,∆) be a finite metric space over |K| = k elements with
diameter ≤ 1 and covering complexity Cc = Cc(∆). There exists an algorithm such that for any
sequence of loss functions `1, . . . , `T guarantees that

RegretMC(`1:T ,∆) = Õ
(

max
{
C1/3c T 2/3,

√
kT
})
.

Theorem 8 (Lower Bound). Let (K,∆) be a finite metric space over |K| = k elements with
diameter ≥ 1 and packing complexity Cp = Cp(∆). For any algorithm there exists a sequence
`1, . . . , `T of loss functions such that

RegretMC(`1:T ,∆) = Ω̃
(

max
{
C1/3p T 2/3,

√
kT
})
.

Recalling Eq. (1), we see that the regret bounds obtained in Theorems 7 and 8 are matching
up to logarithmic factors. Notice that the tightness is achieved per instance; namely, for any
given metric we are able to fully characterize the regret’s rate of growth as a function of the
intrinsic properties of the metric. (In particular, this is substantially stronger than demonstrating
a specific metric for which the upper bound cannot be improved.) Note that for the lower bound
statement in Theorem 8 we require that the diameter of K is bounded away from zero, where for
simplicity we assume a constant bound of 1. Such an assumption is necessary to avoid degenerate
metrics. Indeed, when the diameter is very small, the problem reduces to the standard MAB
setting without any additional costs and we obtain a regret rate of Ω(

√
kT).

Notice how the above results extend known instances of the problem from previous work:
for uniform movement costs (i.e., unit switching costs) over K = {1, . . . , k} we have Cc = Θ(k),
so that the obtain bound is Θ̃(max{k1/3T 2/3,

√
kT}), which recovers the results in [2, 12]; and

for a 2-HST binary balanced tree with k leaves, we have Cc = Θ(1) and the resulting bound is
Θ̃(max{T 2/3,

√
kT}), which is identical to the bound proved in [24].

The 2-HST regret bound in [24] was primarily used to obtain regret bounds for the action
space K = [0, 1]. In the next section we show how this technique is extended for infinite metric
space to obtain regret bounds that depend on the dimensionality of the action space.

3.2 Infinite Metric Spaces

When (K,∆) is an infinite metric space, without additional constraints on the loss functions, the
problem becomes ill-posed with a linear regret rate, even without movement costs. Therefore,
one has to make additional assumptions on the loss functions in order to achieve sublinear regret.
One natural assumption, which is common in previous work, is to assume that the loss functions
`1, . . . , `T are all 1-Lipschitz with respect to the metric ∆. Under this assumption, we have the
following result.

Theorem 9. Let (K,∆) be a metric space with diameter ≤ 1 and upper Minkowski dimension
d = D(∆), such that d ≥ 1. There exists a strategy such that for any sequence of loss functions
`1, . . . , `T , which are all 1-Lipschitz with respect to ∆, guarantees that

RegretMC(`1:T ,∆) = Õ
(
T

d+1
d+2
)
.

6

Again, we observe that the above result extend the case of K = [0, 1] where d = 1. Indeed,
for Lipschitz functions over the interval a tight regret bound of Θ̃(T 2/3) was achieved in [24],
which is exactly the bound we obtain above.

We mention that a lower bound of Ω̃(T
d+1
d+2) is known for MAB in metric spaces with

Lipschitz cost functions—even without movement costs—where d = D(∆) is the lower Minkowski
dimension.

Theorem 10 (Bubeck et al. [10]). Let (K,∆) be a metric space with diameter ≤ 1 and lower
Minkowski dimension d = D(∆), such that d ≥ 1. Then for any learning algorithm, there exists
a sequence of loss function `1, . . . , `T , which are all 1-Lipschitz with respect to ∆, such that the
regret (without movement costs) is Ω̃

(
T

d+1
d+2
)
.

In many natural metric spaces in which the upper and lower Minkowski dimensions coincide
(e.g., normed spaces), the bound of Theorem 9 is tight up to logarithmic factors in T . In
particular, and quite surprisingly, we see that the movement costs do not add to the regret of
the problem!

It is important to note that Theorem 9 holds only for metric spaces whose (upper) Minkowski
dimension is at least 1. Indeed, finite metric spaces are of Minkowski dimension zero, and as
we demonstrated in Section 3.1 above, a O(

√
T) regret bound is not achievable. Finite matric

spaces are associated with a complexity measure which is very different from the Minkowski
dimension (i.e., the covering/packing complexity). In other words, we exhibit a phase transition
between dimension d = 0 and d ≥ 1 in the rate of growth of the regret induced by the metric.

4 Algorithms

In this section we turn to prove Theorem 7. Our strategy is much inspired by the approach in
[24], and we employ a two-step approach: First, we consider the case that the metric is a HST
metric; we then turn to deal with general metrics, and show how to upper-bound any metric
with a HST metric.

4.1 Tree Metrics: The Slowly-Moving Bandit Algorithm

In this section we analyze the simplest case of the problem, in which the metric ∆ = ∆T is
induced by a HST tree T (whose leaves are associated with actions in K). In this case, our main
tool is the Slowly-Moving Bandit (SMB) algorithm [24]: we demonstrate how it can be applied
to general tree metrics, and analyze its performance in terms of intrinsic properties of the metric.

We begin by reviewing the SMB algorithm. In order to present the algorithm we require few
additional notations. The algorithm receives as input a tree structure over the set of actions K,
and its operation depends on the tree structure. We fix a HST tree T and let H = depth(T).
For any level 0 ≤ h ≤ H and action i ∈ K, let Ah(i) be the set of leaves of T that share a
common ancestor with i at level h (recall that level h = 0 is the bottom–most level corresponding
to the singletons). In terms of the tree metric we have that Ah(i) = {j : ∆T (i, j) ≤ 2−H+h}.

The SMB algorithm is presented in Algorithm 1. The algorithm is based on the multiplicative
update method, in the spirit of Exp3 algorithms [4]. Similarly to Exp3, the algorithm computes
at each round t an estimator ˜̀t to the loss vector `t using the single loss value `t(it) observed.
In addition to being an (almost) unbiased estimate for the true loss vector, the estimator ˜̀t
used by SMB has the additional property of inducing slowly-changing sampling distributions
pt: This is done by choosing at random a level ht of the tree to be rebalanced (in terms of the
weights maintained by the algorithm): As a result, the marginal probabilities pt+1(Aht(i)) are
not changed at round t.

In turn, and in contrast with Exp3, the algorithm choice of action at round t + 1 is not
purely sampled from pt, but rather conditioned on our last choice of level ht. This is informally

7

justified by the fact that pt and pt+1 agree on the marginal distribution of Aht(it), hence we can
think of the level drawn at round t as if it were drawn subject to pt+1(Aht) = pt(Aht).

Input: A tree T with a set of finite leaves K, η > 0.
Initialize: H = depth(T), Ah(i) = B2−H+h(i), ∀i ∈ K, 0 ≤ h ≤ H
Initialize p1 = unif(K), h0 = H and i0 ∼ p1
For t = 1, . . . , T :

(1) Choose action it ∼ pt(· | Aht−1(it−1)), observe loss `t(it)
(2) Choose σt,0, . . . , σt,H−1 ∈ {±1} uniformly at random;

let ht = min{0 ≤ h ≤ H : σt,h < 0} where σt,H = −1
(3) Compute vectors ¯̀

t,0, . . . , ¯̀t,H−1 recursively via

¯̀
t,0(i) =

1{it = i}
pt(i)

`t(it),

and for all h ≥ 1:

¯̀
t,h(i) = −1

η
ln

 ∑
j∈Ah(i)

pt(j)

pt(Ah(i))
e−η(1+σt,h−1)¯̀t,h−1(j)


(4) Define Et = {i : pt(Ah(i)) < 2hη for some 0 ≤ h < H} and

set:

˜̀
t =

{
0 if it ∈ Et;
¯̀
t,0 +

∑H−1
h=0 σt,h

¯̀
t,h otherwise

(5) Update:

pt+1(i) =
pt(i) e

−η˜̀t(i)∑k
j=1 pt(j) e

−η˜̀t(j) ∀ i ∈ K

Algorithm 1: The SMB algorithm.

A key observation is that by directly applying SMB to the metric ∆T , we can achieve the
following regret bound:

Theorem 11. Let (K,∆T) be a metric space defined by a 2-HST T with depth(T) = H and
complexity C(T) = C. Using SMB algorithm we can achieve the following regret bound:

RegretMC(`1:T ,∆T) = O
(
H
√

2HTClog C +H2−HT
)
. (2)

To show Theorem 11, we adapt the analysis of [24] (that applies only to complete binary
HSTs) to handle more general HSTs. We defer this part of our analysis to the appendix, since
it follows from a technical modification of the original proof; for the proof of Theorem 11, see
Appendix B.

For a tree that is either too deep or too shallow, Eq. (2) may not necessarily lead to a
sublinear regret bound, let alone optimal. The main idea behind achieving optimal regret bound
for a general tree, is to modify it until one of two things happen: Either we have optimized the
depth so that the two terms in the left-hand side of Eq. (2) are of same order: In that case,
we will show that one can achieve regret rate of order O(C(T)1/3T 2/3). If we fail to do that,
we show that the first term in the left-hand side is the dominant one, and it will be of order
O(
√
kT).

8

For trees that are in some sense “well behaved” we have the following Corollary of Theorem 11
(for a proof see Appendix A.1).

Corollary 12. Let (K,∆T) be a metric space defined by a tree T over |K| = k leaves with
depth(T) = H and complexity C(T) = C. Assume that T satisfies the following:

(1) 2−HHT ≤
√

2HHCT ;
(2) One of the following is true:

(a) 2HC ≤ k;
(b) 2−(H−1)(H − 1)T ≥

√
2H−1(H − 1)CT .

Then, the SMB algorithm can be used to attain RegretMC(`1:T ,∆T) = Õ
(

max
{
C1/3T 2/3,

√
kT
})
.

The following establishes Theorem 7 for the special case of tree metrics (see Appendix A.2
for proofs).

Lemma 13. For any tree T and time horizon T , there exists a tree T ′ (over the same set K
of k leaves) that satisfies the conditions of Corollary 12, such that ∆T ′ ≥ ∆T and C(T ′) =
C(T). Furthermore, T ′ can be constructed efficiently from T (i.e., in time polynomial in |K|
and T). Hence, applying SMB to the metric space (K,∆T ′) leads to RegretMC(`1:T ,∆T) =
Õ
(

max
{
C(T)1/3T 2/3,

√
kT
})
.

4.2 General Finite Metrics

Finally, we obtain the general finite case as a corollary of the following.

Lemma 14. Let (K,∆) be a finite metric space. There exists a tree metric ∆T over K (with
|K| = k) such that 4∆T , dominates ∆ (i.e., such that 4∆T (i, j) ≥ ∆(i, j) for all i, j ∈ K) for
which C(T) = O(Cc(∆) log k). Furthermore, T can be constructed efficiently.

Proof. Let H be such that the minimal distance in ∆ is larger than 2−H . For each r =
2−1, 2−2, . . . , 2−H we let {Br(i{1,r}), . . . , Br(i{mr,r})} = Br be a covering of K of size N c

r (T) log k
using balls of radius r. Note that finding a minimal set of balls of radius r that covers K is
exactly the set cover problem. Hence, we can efficiently approximate it (to within a O(log k)
factor) and construct the sets Br.

We now construct a tree graph, whose nodes are associated with the cover balls: The leaves
correspond to singleton balls, hence correspond to the action space. For each leaf i we find an
action a1(i) ∈ K such that: i ∈ B2−H+1(a1(i)) ∈ B2−H+1 . If there is more than one, we arbitrarily
choose one, and we connect an edge between i and B2−H+1(a1(i)). We continue in this manner
inductively to define ar(i) for every a and r < 1: given ar−1(i) we find an action ar(i) such
that ar−1(i) ∈ B2−H+r(ar(i)) ∈ B2−H+r , and we connect an edge from B2−H+r−1(ar−1(i)) and
B2−H+r(ar(i)).

We now claim that the metric induced by the tree graph dominates up to factor 4 the
original metric. Let i, j ∈ K such that ∆T (i, j) < 2−H+r then by construction there are
i, a1(i), a2(i), . . . ar(i) and j, a1(j), a2(j), . . . ar(j), such that ar(i) = ar(j) and also ∆(as(i), as−1(i)) ≤
2−H+s and similarly ∆(as(j), as−1(j)) ≤ 2−H+s for every s ≤ r. Denoting a0(i) = i and a0(j) = j,
we have that

∆(i, j) ≤
r∑
s=1

∆(as−1(i), as(i)) +

r∑
s=1

∆(as−1(j), as(j))

≤ 2

r∑
s=1

2−H+s ≤ 2·2−H ·2r+1 ≤ 4∆T (i, j).

9

4.3 Infinite Metric Spaces

Finally, we address infinite spaces by discretizing the space K and reducing to the finite case.
Recall that in this case we also assume that the loss functions are Lipschitz.

Proof of Theorem 9. Given the definition of the covering dimension d = D(∆) ≥ 1, it is
straightforward that for some constant C > 0 (that might depend on the metric ∆) it holds that
N c
r (∆) ≤ Cr−d for all r > 0. Fix some ε > 0, and take a minimal 2ε-covering K ′ of K of size
|K ′| ≤ C(2ε)−d ≤ Cε−d. Observe that by restricting the algorithm to pick actions from K ′, we
might lose at most O(εT) in the regret. Also, since K ′ is minimal, the distance between any two
elements in K ′ is at least ε, thus the covering complexity of the space has

Cc(∆) = sup
r≥ε

r·N c
r (∆) ≤ C sup

r≥ε
r−d+1 ≤ Cε−d+1,

as we assume that d ≥ 1. Hence, by Theorem 7 and the Lipschitz assumption, there exists an
algorithm for which

RegretMC(`1:T ,∆) = Õ
(

max
{
ε−

d−1
3 T

2
3 , ε−

d
2T

1
2 , εT

})
.

A simple computation reveals that ε = Θ(T−
1

d+2) optimizes the above bound, and leads to

Õ(T
d+1
d+2) movement regret.

Acknowledgements

RL is supported in funds by the Eric and Wendy Schmidt Foundation for strategic innovations.
YM is supported in part by a grant from the Israel Science Foundation, a grant from the United
States-Israel Binational Science Foundation (BSF), and the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11).

References

[1] R. Agrawal, M. V. Hegde, and D. Teneketzis. Asymptotically efficient adaptive allocation
rules for the multiarmed bandit problem with switching costs. IEEE Transactions on
Optimal Control, 33(10):899–906, 1988.

[2] R. Arora, O. Dekel, and A. Tewari. Online bandit learning against an adaptive adversary:
from regret to policy regret. In Proceedings of the 29th International Conference on Machine
Learning (ICML-12), pages 1503–1510, 2012.

[3] M. Asawa and D. Teneketzis. Multi-armed bandits with switching penalties. IEEE
Transactions on Automatic Control, 41(3):328–348, 1996.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[5] P. Auer, R. Ortner, and C. Szepesvári. Improved rates for the stochastic continuum-armed
bandit problem. Proceedings of the 20th Annual Conference on Learning Theory, pages
454–468, 2007.

[6] J. S. Banks and R. K. Sundaram. Switching costs and the gittins index. Econometrica, 62:
687–694, 1994.

10

[7] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184–193, 1996.

[8] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[9] A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical task
system. Journal of the ACM (JACM), 39(4):745–763, 1992.

[10] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X -armed bandits. Journal of Machine
Learning Research, 12:1587–1627, 2011.

[11] E. Cope. Regret and convergence bounds for a class of continuum-armed bandit problems.
IEEE Transactions on Automatic Control, 54(6):1243–1253, 2009.

[12] O. Dekel, J. Ding, T. Koren, and Y. Peres. Bandits with switching costs: T 2/3 regret. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 459–467.
ACM, 2014.

[13] E. Even-Dar, S. M. Kakade, and Y. Mansour. Online markov decision processes. Math.
Oper. Res., 34(3):726–736, 2009.

[14] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[15] M. Feldman, T. Koren, R. Livni, Y. Mansour, and A. Zohar. Online pricing with strategic
and patient buyers. In Annual Conference on Neural Information Processing Systems, 2016.

[16] S. Geulen, B. Vöcking, and M. Winkler. Regret minimization for online buffering problems
using the weighted majority algorithm. In COLT, pages 132–143, 2010.

[17] J. Gittins, K. Glazebrook, and R. Weber. Multi-Armed Bandit Allocation Indices, 2nd
Edition. John Wiley, 2011.

[18] S. Guha and K. Munagala. Multi-armed bandits with metric switching costs. In International
Colloquium on Automata, Languages, and Programming, pages 496–507. Springer, 2009.

[19] A. Gyorgy and G. Neu. Near-optimal rates for limited-delay universal lossy source coding.
IEEE Transactions on Information Theory, 60(5):2823–2834, 2014.

[20] T. Jun. A survey on the bandit problem with switching costs. De Economist, 152(4):
513–541, 2004.

[21] R. Kleinberg and A. Slivkins. Sharp dichotomies for regret minimization in metric spaces.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 827–846. Society for Industrial and Applied Mathematics, 2010.

[22] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 681–690. ACM, 2008.

[23] R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances
in Neural Information Processing Systems, pages 697–704, 2004.

[24] T. Koren, R. Livni, and Y. Mansour. Bandits with movement costs and adaptive pricing.
In COLT, 2017.

11

[25] S. Magureanu, R. Combes, and A. Proutiere. Lipschitz bandits: Regret lower bound and
optimal algorithms. In COLT, pages 975–999, 2014.

[26] G. Neu, A. György, C. Szepesvári, and A. Antos. Online markov decision processes under
bandit feedback. IEEE Trans. Automat. Contr., 59(3):676–691, 2014.

[27] R. Ortner. Online regret bounds for markov decision processes with deterministic transitions.
Theor. Comput. Sci., 411(29-30):2684–2695, 2010.

[28] A. Slivkins. Multi-armed bandits on implicit metric spaces. In Advances in Neural
Information Processing Systems, pages 1602–1610, 2011.

[29] A. Slivkins, F. Radlinski, and S. Gollapudi. Ranked bandits in metric spaces: learning
diverse rankings over large document collections. Journal of Machine Learning Research,
14(Feb):399–436, 2013.

[30] T. Tao. 245c, notes 5: Hausdorff dimension. http://terrytao.wordpress.com/2009/05/
19/245c-notes-5-hausdorff-dimension-optional/, 2009.

[31] J. Yu and S. Mannor. Unimodal bandits. In Proceedings of the 28th International Conference
on Machine Learning, 2011.

[32] J. Y. Yu, S. Mannor, and N. Shimkin. Markov decision processes with arbitrary reward
processes. Math. Oper. Res., 34(3):737–757, Aug. 2009. ISSN 0364-765X.

A Proofs

A.1 Proof of Corollary 12

Corollary. Let (K,∆T) be a metric space defined by a tree T over |K| = k leaves with
depth(T) = H and complexity C(T) = C. Assume that T satisfies the following:

(1) 2−HT ≤
√

2HCT ;
(2) One of the following is true:

(a) 2H−1C ≤ k;
(b) 2−(H−1)T ≥

√
2H−1CT .

Then, the SMB algorithm can be used to attain regret bounded as

RegretMC(`1:T ,∆T) = Õ
(

max
{
C1/3T 2/3,

√
kT
})

.

Proof. Notice that by condition (1) and Theorem 11 we have RegretMC ≤ c
√
T2HH2C log C for

some constant factor c. First assume, we have that condition (2)a holds. Note that in particular
max(2H−1, C) ≤ k. We thus, obtain:

RegretMC ≤ c
√
T2HH2C log C

≤ c
√
T2HC log2 k log k ∵ max(2H−1, C) ≤ k

≤ 4c
√
Tk log C log3/2 k ≤ 4c

√
kT log3/2 k. (3)

The next case is that condition (2)b holds. By reordering we can write condition (2)b as:

2H ≤ 8T 1/3C−1/3; (4)

Which also implies H = O(log T), hence:√
2HH2TC log C = Õ

(
C1/3T 2/3

)
. (5)

12

http://terrytao.wordpress.com/2009/05/19/245c-notes-5-hausdorff-dimension-optional/
http://terrytao.wordpress.com/2009/05/19/245c-notes-5-hausdorff-dimension-optional/

Overall, we see that in both cases the regret is bounded by the maximum between the two terms
in Eqs. (3) and (5).

A.2 Proof of Lemma 13

Lemma. For any tree T and time horizon T , there exists a tree T ′ (over the same set K of
k leaves) that satisfies the conditions of Corollary 12, such that ∆T ′ ≥ ∆T and C(T ′) = C(T).
Furthermore, T ′ can be constructed efficiently from T (i.e., in time polynomial in |K| and T).
Hence, applying SMB to the metric space (K,∆T ′) leads to

RegretMC(`1:T ,∆T) = Õ
(

max
{
C(T)1/3T 2/3,

√
kT
})

.

Proof. Let us call T a T -well-behaved tree if it satisfies the conditions of Corollary 12. First we
construct a tree T1 that will satisfy condition (1). To do that, we simply add to each leaf at T a
single son, which is a new leaf: we naturally identify each leaf in T1 with an actions from K,
by considering the father of the leaf. One can see that, with the definition of HST-metric we
have not changed the distances: i.e. ∆T1 = ∆T . In particular, we did not change the covering
number or the complexity. (Note however, that this change does effect the Algorithm though, as
it depends on the tree representation and not directly on the metric.)

The aforementioned change, did however change the depth of the tree and increased it by
one. We can repeat this step iteratively until condition (1) is satisfied. To avoid the notation T1,
we will simply assume that T satisfies condition (1).

Next, we prove the following statement by induction over H the depth of T : We assume
that for every tree T of depth H − 1 that satisfies condition (1) the statement holds, and prove
it for depth H. For H = 1, since C ≤ k we have that condition (2)a holds.

Next, let T1 be a tree that we get from T by connecting all the leaves to their grandparents
(and removing their fathers from the graph). The first observation is that we have increased
the distance between the leaves, so ∆T ≤ ∆T1 . We also assume that T is not T -well behaved,
because otherwise the statement obviously holds for T with T ′ = T .

Given that C(T) > 2−H+1k we next show that C(T1) = C(T). Note that by construction
for every r = 2−1, . . . , 2−H+2 we have that N c

r (T) = N c
r (T1). We also have by assumption

C(T) > 2−Hk and since any covering is smaller than k we also have C(T) > 2−H+1N c
2−H+1(T).

Overall, by defintion of C(T) we have that C(T) = sup2−H+2≤ε≤1N
c
ε (T). Hence,

Cc(T1) = sup
0<ε≤1

εN c
ε (T1)

= max

{
max

2−H+2<ε≤1
εN c

ε (T1) , 2−H+1k

}
= max

{
max

2−H+2<ε≤1
εN c

ε (T) , 2−H+1k

}
= max{C(T) , 2−H+1k}
= Cc(T).

Next, we assume that T1 does not satisfy condition (1). We then have 2−(H−1)T >
√

2H−1C(T1)T =√
2H−1C(T)T , which implies that T satisfies condition (2)b. Thus, either T is well-behaved

or we can construct a tree T1 with depth H − 1 such that ∆T ≤ ∆T1 , Cc(T) = Cc(T1) and T1
satisfies condition (1). The result now follows by an induction step.

A.3 Proof of Theorem 7

Theorem. Let (K,∆) be a finite metric space over |K| = k elements with diameter ≤ 1 and
covering complexity Cc = Cc(∆). There exists an algorithm such that for any sequence of loss
functions `1, . . . , `T guarantees that RegretMC(`1:T ,∆) = Õ

(
max

{
C1/3c T 2/3,

√
kT
})
.

13

Proof. Given a finite metric space (K,∆) we have by Lemma 14 a tree T with complexity
C = Cc(∆) such that ∆(i, j) ≤ 4∆T (i, j). We can apply SMB as depicted in Lemma 13 over the
sequence of losses 1

4`1, . . . ,
1
4`T To obtain:

1

4
RegretT =

1

4
E

[
T∑
t=1

`t(it) +
1

4
∆(it, it−1)

]
− min
i∗∈K

∑ 1

4
`t(i
∗)

≤ 1

4
E

[
T∑
t=1

`t(it) + ∆T (it, it−1)

]
− min
i∗∈K

∑ 1

4
`t(i
∗)

= Õ
(

max
(
C1/3T 2/3,

√
kT
))

.

A.4 Proof of Theorem 8

We next set out to prove the lower bound of Theorem 8. We begin by recalling the known lower
bound for MAB with unit switching cost.

Theorem 15 (Dekel et al. [12]). Let (K,∆) be a metric space over |K| = k ≥ 2 actions and
∆(i, j) = c for every i 6= j ∈ K. Then for any algorithm, there exists a sequence `1, . . . , `T such
that

RegretMC(`1:T ,∆) = Ω̃
(
(ck)1/3T 2/3

)
.

Note that for a discrete metric the minimum covering of k points with balls of radius c < 1
is by k balls, hence N c

c (∆) = k. Thus we see that Theorem 15 already gives Theorem 8 for the
special case of a unit-cost metric (up to logarithmic factors). The general case can be derived
by embedding the lower bound construction in an action set that constitute a c-packing of size
Np
c (∆).

Proof of Theorem 8 (sketch). First, it is easy to see that the adversary can always force a regret
of Ω(

√
kT); indeed, this lower bound applies for the MAB problem even when there is no

movement cost between actions [4]. We next show a regret lower bound of Ω(C1/3p T 2/3). By
definition, there exist ε such that Cp = εNp

ε (∆). Let Bε(i1), . . . , Bε(in) be a set of balls that
form a maximal packing with n = Np

ε (∆), and observe that ∆(i, i′) ≥ ε for all i, i′ ∈ {i1, . . . , in},
i 6= i′. Since we assume the diameter of the metric space is exactly 1 we have that for all ε < 1,
Np
ε (∆) ≥ 2. Therefore we may assume n ≥ 2. We can now use Theorem 15 to show that for any

algorithm, one can construct a sequence `1, . . . , `T of loss functions supported on i1, . . . , in (and
extend them to the entire domain K by assigning a maximal loss of 1 to any i /∈ {i1, . . . , in})
such that

RegretMC(`1:T ,∆) = Ω
(
(εn)1/3T 2/3

)
= Ω

(
C1/3p T 2/3

)
.

B Analysis of SMB for General HSTs

In this section, we extend the analysis given in [24] for the SMB algorithm (Algorithm 1) to
general HST metrics over finite action sets, and prove the following theorem.

Theorem 16. Assume that the metric ∆ = ∆T is a metric specified by a tree T which is a
HST with depth(T) = H and complexity C(T) = C. Then, for any sequence of loss functions
`1, . . . , `T , Algorithm 1 guarantees that

RegretMC(`1:t,∆T) = O
(H log C

η
+ ηCH2HT +H2−HT

)
.

14

In particular, by setting η = Θ
(√

2−H log(C)/CT
)
, the bound on the expected movement regret

of the algorithm becomes

RegretMC(`1:t,∆T) = O
(
H
√
T2HC log C +H2−HT

)
.

The main new ingredients in the generalized proof are bounds on the bias and the variance
of the loss estimates ˜̀t used by Algorithm 1, which we give in the following two lemmas. In the
proof of both, we require the following inequality:

1

H

H−1∑
h=0

∑
i∈K

2h

|Ah(i)|
≤ 2HC. (6)

This follows from the fact that
∑

i∈K |Ah(i)|−1 equals N c(∆T , 2
h−H) (both quantities are equal

to the number of nodes in the h’th level of T), and since 2h−HN c(∆T , 2
h−H) ≤ Cc(∆T) = C by

definition of the (covering) complexity of T .
We begin with bounding the bias of the estimator ˜̀t from the true loss vector `t.

Lemma 17. For all t, we have E[˜̀t(i)] ≤ `t(i) and E[`t(it)] ≤ E[pt · ˜̀t] + ηH2HC.

Proof. The proof of the first inequality is identical to the one found in [24] and thus omitted.
To bound E[`t(it)], observe that E[pt · ˜̀t | it ∈ Et] = 0 and

E[pt · ˜̀t | it /∈ Et] = E[pt · ¯̀t,0 | it /∈ Et] +
H−1∑
h=0

E[σt,h]E[pt · ¯̀t,h | it /∈ Et] = E[`t(it) | it /∈ Et].

Then, denoting βt = P [it ∈ Et], we have

E[`t(it)] = βtE[`t(it) | it ∈ Et] + (1− βt)E[`t(it) | it /∈ Et]

≤ βt + (1− βt)E[pt · ˜̀t | it /∈ Et]
= βt + E[pt · ˜̀t],

where for the inequality we used the fact that `t(it) ≤ 1.
To complete the proof, we have to show that βt ≤ ηH2HC. To this end, write

βt = P[it ∈ Et] ≤
H−1∑
h=0

P[pt(Ah(it)) < 2hη].

Using Eq. (10) to write

E
[

1

pt(Ah(it))

]
=
∑
i∈K

1

|Ah(i)|
E
[
1{it ∈ Ah(i)}
pt(Ah(i))

]
=
∑
i∈K

1

|Ah(i)|
,

together with Markov’s inequality, we obtain

P
[
pt(Ah(it)) < 2hη

]
= P

[
1

pt(Ah(it))
>

1

2hη

]
≤ η

∑
i∈K

2h

|Ah(i)|
.

Using Eq. (6), we conclude that

βt ≤ η
H−1∑
h=0

∑
i∈K

2h

|Ah(i)|
≤ ηH2HC.

We proceed to control the variance of the estimator ˜̀t.
15

Lemma 18. For all t, we have E[pt · ˜̀2t] ≤ 2H2HC.

Proof. We begin by bounding

˜̀2
t (i) ≤

(
¯̀
t,0(i) +

H−1∑
h=0

σt,h¯̀t,h(i)
)2
.

Since E[σt,h] = 0 and E[σt,hσt,h′] = 0 for all h 6= h′, we have for all i that

E[˜̀2t (i)] = E[˜̀2t,0(i)] +
H−1∑
h=0

E[¯̀2t,h(i)] ≤ 2
H−1∑
h=0

E[¯̀2t,h(i)]. (7)

Following [24], we have for all h by Lemma 19 that

pt · ¯̀2t,h ≤
∑

i∈K pt(i)1{it ∈ Ah(i)}
pt(Ah(it))2

h−1∏
j=0

(1 + σt,j)
2

=
1

pt(Ah(it))

h−1∏
j=0

(1 + σt,j)
2

=
∑
i∈K

1

|Ah(i)|
1{it ∈ Ah(i)}
pt(Ah(i))

h−1∏
j=0

(1 + σt,j)
2.

Now, since it is independent of the σt,j , and recalling Eq. (10), we get

Et[pt · ¯̀2t,h] ≤
∑
i∈K

1

|Ah(i)|
E
[
1{it ∈ Ah(i)}
pt(Ah(i))

] h−1∏
j=0

E[(1 + σt,j)
2] =

∑
i∈K

2h

|Ah(i)|
.

This, combined with Eqs. (6) and (7), gives the result:

E[pt · ˜̀2t] ≤ 2

H−1∑
h=0

E[pt · ¯̀2t,h] ≤ 2

H−1∑
h=0

∑
i∈K

2h

|Ah(i)|
≤ 2H2HC.

B.1 Additional Lemmas from [24]

We state several lemmas proved in [24] that are required for our generalized analysis; we refer to
the original paper for the proofs.

Lemma 19. For all t and 0 ≤ h < H the following holds almost surely:

0 ≤ ¯̀
t,h(i) ≤ 1{it ∈ Ah(i)}

pt(Ah(i))

h−1∏
j=0

(1 + σt,j) ∀ i ∈ K . (8)

In particular, if σt,j = −1 then ¯̀
t,h = 0 for all h > j. As a result,

˜̀
t = ¯̀

t,0 − ¯̀
t,ht +

ht−1∑
j=0

¯̀
t,j . (9)

Lemma 20. For all t and 0 ≤ h < H the following hold:

(i) for all A ∈ {Ah(i) : i ∈ K} we have

E
[
1{it ∈ A}
pt(A)

]
= 1 ; (10)

16

(ii) with probability at least 1− 2−(h+1), we have that Ah(it) = Ah(it−1).

Lemma 21 (Second-order regret bound for MW). Let η > 0 and let c1, . . . , cT ∈ Rk be real
vectors such that ct(i) ≥ −1/η for all t and i. Consider a sequence of probability vectors q1, . . . , qT
defined by q1 = (1k , . . . ,

1
k), and for all t > 1:

qt+1(i) =
qt(i) e

−ηct(i)∑k
j=1 qt(j) e

−ηct(j)
∀ i ∈ [k].

Then, for all i? ∈ [k] we have that

T∑
t=1

qt · ct −
T∑
t=1

ct(i
?) ≤ ln k

η
+ η

T∑
t=1

qt · c2t .

B.2 Regret Analysis

We now have all we need in order to prove our main result.

Proof of Theorem 16. First, we bound the expected movement cost. Lemma 20 says that with
probability at least 1− 2−(h+1), the actions it and it−1 belong to the same subtree on level h of
the tree, which means that ∆T (it, it−1) ≤ 2h−H with the same probability. Hence,

E[∆T (it, it−1)] ≤
H−1∑
h=0

2h−H P
[
∆T (it, it−1) > 2h−H

]
≤

H−1∑
h=0

2−(H+1) =
H

2H+1
, (11)

and the cumulative movement cost is then O(H2−HT).
We turn to analyze the cumulative loss of the algorithm. We begin by observing that˜̀

t(i) ≥ −1/η for all t and i. To see this, notice that ˜̀t = 0 unless it /∈ Et, in which case we have,
by Lemma 19 and the definition of Et,

0 ≤ ¯̀
t,h(i) ≤ 2h

pt(Ah(it))
≤ 1

η
∀ 0 ≤ h < H,

and since ˜̀t has the form ˜̀
t = ¯̀

t,0 +
∑ht−1

j=0
¯̀
t,j − ¯̀

t,ht (recall Eq. (9)), we see that ˜̀t(i) ≥ −1/η.

Hence, we can use second-order bound of Lemma 21 on the vectors ˜̀t to obtain

T∑
t=1

pt · ˜̀t − T∑
t=1

˜̀
t(i

?) ≤ ln k

η
+ η

T∑
t=1

pt · ˜̀2t
for any fixed i? ∈ K. Taking expectations and using Lemmas 17 and 18, and using the rough
bound k ≤ 2HC, we have

E

[
T∑
t=1

`t(it)

]
−

T∑
t=1

`t(i
∗) ≤ H ln(C)

η
+ 3ηH2HTC. (12)

The theorem now follows from Eqs. (11) and (12).

17

	Introduction
	Related Work

	Problem Setup and Background
	Multi-armed Bandits with Movement Costs
	Basic Definitions in Metric Spaces

	Main Results
	Finite Metric Spaces
	Infinite Metric Spaces

	Algorithms
	Tree Metrics: The Slowly-Moving Bandit Algorithm
	General Finite Metrics
	Infinite Metric Spaces

	Proofs
	Proof of cor:smb-goodtree
	Proof of lem:tree
	Proof of thm:upper
	Proof of thm:lower

	Analysis of SMB for General HSTs
	Additional Lemmas from koren2017bandits
	Regret Analysis

