
Classification with Low Rank and Missing Data

Elad Hazan EHAZAN@CS.PRINCETON.EDU

Princeton University and Microsoft Research, Herzliya

Roi Livni ROI.LIVNI@MAIL.HUJI.AC.IL

The Hebrew University of Jerusalem and Microsoft Research, Herzliya

Yishay Mansour MANSOUR.YISHAY@GMAIL.COM

Microsoft Research, Hertzelia and Tel Aviv University

Abstract
We consider classification and regression tasks
where we have missing data and assume that the
(clean) data resides in a low rank subspace. Find-
ing a hidden subspace is known to be computa-
tionally hard. Nevertheless, using a non-proper
formulation we give an efficient agnostic algo-
rithm that classifies as good as the best linear
classifier coupled with the best low-dimensional
subspace in which the data resides. A direct im-
plication is that our algorithm can linearly (and
non-linearly through kernels) classify provably
as well as the best classifier that has access to
the full data.

1. Introduction
The importance of handling correctly missing data is a
fundamental and classical challenge in machine learning.
There are many reasons why data might be missing. For
example, consider the medical domain, some data might be
missing because certain procedures were not performed on
a given patient, other data might be missing because the
patient choose not to disclose them, and even some data
might be missing due to malfunction of certain equipment.
While it is definitely much better to have always complete
and accurate data, this utopian desire is, in many cases, un-
fulfilled. For this reason we need to utilize the available
data even if some of it is missing.

Another, very different motivation for missing data are rec-
ommendations. For example, a movie recommendations
dataset might have users opinions on certain movies, which
is the case, for example, in the Netflix motion picture
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dataset. Clearly, no user has seen or reviewed all movies,
or even close to it. In this respect recommendation data is
an extreme case: the vast majority is usually missing (i.e.,
it is sparse to the extreme).

Many times we can solve the missing data problem since
the data resides on a lower dimension manifold. In the
above examples, if there are prototypical users (or patients)
and any user is a mixture of the prototypical users, then this
implicitly suggests that the data is low rank. Another way
to formalize this assumption is to consider the data in a ma-
trix form, say, the users are rows and movies are columns,
then our assumption is that the true complete matrix has a
low rank.

Our starting point is to consider the low rank assumption,
but to avoid any explicit matrix completion, and instead
directly dive in to the classification problem. At the end of
the introduction we show that matrix completion is neither
sufficient and/or necessary.

We consider perhaps the most fundamental data analysis
technique of the machine learning toolkit: linear (and ker-
nel) classification, as applied to data where some (or even
most) of the attributes in an example might be missing.
Our main result is an efficient algorithm for linear and
kernel classification that performs as well as the best
classifier that has access to all data, under low rank as-
sumption with natural non-degeneracy conditions.

We stress that our result is worst case, we do not assume
that the missing data follows any probabilistic rule other
than the underlying matrix having low rank. This is a clear
contrast to most existing matrix completion algorithms. We
also cast our results in a distributional setting, showing that
the classification error that we achieve is close to the best
classification using the subspace of the examples (and with
no missing data). Notably, many variants of the problem
of finding a hidden subspace are computationally hard (see
e.g. (Berthet & Rigollet, 2013)), yet as we show, learn-
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ing a linear classifier on a hidden subspace is non-properly
learnable.

At a high level, we assume that a sample is a triplet
(x,o, y), where x ∈ Rd is the complete example, o ⊂
{1, . . . , d} is the set of observable attributes and y ∈ Y
is the label. The learner observes only (xo, y), where xo
omits any attribute not in o. Our goal is given a sample
S = {(x(i)

o , y(i))}mi=1 to output a classifier fS such that
w.h.p.:

E [`(fS(xo), y)] ≤ min
w∈Rd
‖w‖≤1

E [`(w · x, y)] + ε,

where ` is the loss function. Namely, we like our classifier
fS to compete with the best linear classifier for the com-
pletely observable data.

Our main result is achieving this task (under mild regular-
ity conditions) using a computationally efficient algorithm
for any convex Lipschitz-bounded loss function. Our ba-
sic result requires a sample size which is quasi-polynomial,
but we complement it with a kernel construction which can
guarantee efficient learning under appropriate large margin
assumptions. Our kernel depends only on the intersection
of observable values of two inputs, and is efficiently com-
putable. (We give a more detailed overview of our main
results in Section 2.)

We complement our theoretical contributions with exper-
imental findings that show superior classification perfor-
mance both on synthetic data and on publicly-available rec-
ommendation data.

Previous work. Classification with missing data is a well
studied subject in statistics with numerous books and pa-
pers devoted to its study, (see, e.g., (Little & Rubin, 2002)).
The statistical treatment of missing data is broad, and to
a fairly large extent assumes parametric models both for
the data generating process as well as the process that cre-
ates the missing data. One of the most popular models for
the missing data process is Missing Completely at Random
(MCAR) where the missing attributes are selected indepen-
dently from the values.

We outline a few of the main approaches handling miss-
ing data in the statistics literature. The simplest method is
simply to discard records with missing data, even this as-
sumes independence between the examples with missing
values and their labels. In order to estimate simple statis-
tics, such as the expected value of an attribute, one can use
importance sampling methods, where the probability of an
attribute being missing can depend on it value (e.g., using
the Horvitz-Thompson estimator (Horvitz & Thompson,
1952)). A large body of techniques is devoted to imputa-
tion procedures which complete the missing data. This can
be done by replacing a missing attribute by its mean (mean

imputation), or using a regression based on the observed
value (regression imputation), or sampling the other exam-
ples to complete the missing value (hot deck).1 The impu-
tation methodologies share a similar goal as matrix com-
pletion, namely reduce the problem to one with complete
data, however their methodologies and motivating scenar-
ios are very different. Finally, one can build a complete
Bayesian model for both the observed and unobserved data
and use it to perform inference (e.g. (?)). As with almost
any Bayesian methodology, its success depends largely on
selecting the right model and prior, this is even ignoring
the computational issues which make inference in many of
those models computationally intractable.

In the machine learning community, missing data was con-
sidered in the framework of limited attribute observability
(Ben-David & Dichterman, 1998) and its many refinements
(Dekel et al., 2010; Cesa-Bianchi et al., 2010; 2011; Hazan
& Koren, 2012). However, to the best of our knowledge,
the low-rank property is not captured by previous work,
nor is the extreme amount of missing data. More impor-
tantly, much of the research is focused on selecting which
attributes to observe or on missing attributes at test or train
time (see also (Eban et al., 2014; Globerson & Roweis,
2006)). In our case the learner has no control which at-
tributes are observable in an example and the domain is
fixed. The latter case is captured in the work of (Chechik
et al., 2008), who rescale inner-products according to the
amount of missing data. Their method, however, does not
entail theoretical guarantees on reconstruction in the worst
case, and gives rise to non-convex programs.

A natural and intuitive methodology to follow is to treat
the labels (both known and unknown) as an additional col-
umn in the data matrix and complete the data using a matrix
completion algorithm, thereby obtaining the classification.
Indeed, this exactly was proposed in the innovative work
of (Goldberg et al., 2010), who connected the methodol-
ogy of matrix completion to prediction from missing data.
Although this is a natural approach, we show that com-
pletion is neither necessary nor sufficient for classifica-
tion. Furthermore, the techniques for provably complet-
ing a low rank matrix are only known under probabilistic
models with restricted distributions (Srebro, 2004; Candes
& Recht, 2009; Lee et al., 2010; Salakhutdinov & Srebro,
2010; Shamir & Shalev-Shwartz, 2011). Agnostic and non-
probabilistic matrix completion algorithms such as (Srebro
et al., 2004; Hazan et al., 2012) we were not able to use for
our purposes.

Is matrix completion sufficient and/or necessary? We
demonstrate that classification with missing data is prov-

1We remark that our model implicitly includes mean-
imputation or 0-imputation method and therefore will always out-
perform them.
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ably different from that of matrix completion. We start by
considering a learner that tries to complete the missing en-
tries in an unsupervised manner and then performs classi-
fication on the completed data, this approach is close akin
to imputation techniques, generative models and any other
two step – unsupervised/supervised algorithm. Our exam-
ple shows that even under realizable assumptions, such an
algorithm may fail. We then proceed to analyze the ap-
proach previously mentioned – to treat the labels as an ad-
ditional column.

To see that unsupervised completion is insufficient for pre-
diction, consider the example in Figure 1: the original data
is represented by filled red and green dots and it is linearly
separable. Each data point will have one of its two coor-
dinates missing (this can even be done at random). In the
figure the arrow from each instance points to the observed
attribute. However, the rank-one completion of projection
onto the pink hyperplane is possible, and admits no sepa-
ration. The problem is clearly that the mapping to a low
dimension is independent from the labels, and therefore we
should not expect that properties that depend on the labels,
such as linear separability, will be maintained.

Figure 1. Linearly separable data, for which certain completions
make the data non-separable.

Next, consider a learner that treats the labels as an addi-
tional column. (Goldberg et al., 2010) Considered the fol-
lowing problem:

minimize
Z

rank(Z)

subject to: Zi,j = xi,j , (i, j) ∈ Ω , .
(G)

where Ω is the set of observed attributes (or observed la-
bels for the corresponding columns). Now assume that we
always see one of the following examples: [1, ∗, 1, ∗],
[∗, −1, ∗, −1], or [1, ,−1, 1, −1]. The observed labels
are respectively 1,−1 and 1. A typical data matrix with one
test point might be of the form:

M =


1 ∗ 1 ∗ 1
∗ −1 ∗ −1 −1
1 −1 1 −1 1
1 ∗ 1 ∗ ∗

 (1)

First note that there is no 1-rank completion of this ma-
trix. On the other hand, there is more than one 2-rank
completion each lead to a different classification of the test
point. The first two possible completions are to complete
odd columns to a constant one vector, and even column
vectors to a constant −1 vector. Then complete the label-
ing whichever way you choose. We can also complete the
first and last rows to a constant 1 vector, and the second row
to a constant −1 vector. All possible completions lead to
an optimal solution w.r.t Problem G but have different out-
come w.r.t classification. We stress that this is not a sample
complexity issue. Even if we observe abundant amount of
data, the completion task is still ill-posed.

Finally, matrix completion is also not necessary for pre-
diction. Consider movie recommendation dataset with two
separate populations, French and Chinese, where each pop-
ulation reviews a different set of movies. Even if each pop-
ulation has a low rank, performing successful matrix com-
pletion, in this case, is impossible (and intuitively it does
not make sense in such a setting). However, linear classifi-
cation in this case is possible via a single linear classifier,
for example by setting all non-observed entries to zero. For
a numerical example, return to the matrixM in Eq. 1. Note
that we observe only three instances hence the classifica-
tion task is easy but does not lead to reconstruction of the
missing entries.

2. Problem Setup and Main Result
We begin by presenting the general setting: A vector with
missing entries can be modeled as a tuple x × o, where
x ∈ Rd and o ∈ 2d is a subset of indices. The vector
x represents the full data and the set o represents the ob-
served attributes. Given such a tuple, let us denote by xo a
vector in (R ∪ {∗})d such that

(xo)i =

{
xi i ∈ o

∗ else

The task of learning a linear classifier with missing data
is to return a target function over xo that competes with
best linear classifier over x. Specifically, a sequence of
triplets {(x(i),o(i), yi)}mi=1 is drawn iid according to some
distribution D. An algorithm is provided with the sample
S = {(xioi , yi)}

m
i=1 and should return a target function fS

over missing data such that w.h.p:

E [`(fS(xo), y))] ≤ min
w∈Bd(1)

E [`(w · x, y))] + ε, (2)

where ` : R×R 7→ R is the loss function andBd(r) denotes
the Euclidean ball in dimension d of radius

√
r. For brevity,

we will say that a target function fS is ε-good if Eq. 2
holds.
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Without any assumptions on the distribution D, the task is
ill-posed. One can construct examples where the learner
over missing data does not have enough information to
compete with the best linear classifier. Such is the case
when, e.g., yi is some attribute that is constantly concealed
and independent of all other features. Therefore, certain
assumptions on the distribution must be made.

One reasonable assumption is to assume that the marginal
distribution D over x is supported on a small dimensional
linear subspaceE and that for every set of observations, we
can linearly reconstruct the vector x from the vector Pox,
where Po : Rd → R|o| is the projection on the observed
attributes. In other words, we demand that the mapping
Po|E : E → PoE, which is the restriction of Po to E, is
full-rank. As the learner doesn’t have access to the sub-
space E, the learning task is still far from trivial.

We give a precise definition of the last assumption in As-
sumption 1. Though our results hold under the low rank
assumption the convergence rates we give depend on a cer-
tain regularity parameter. Roughly, we parameterize the
“distance” of Po|E from singularity, and our results will
quantitatively depend on this distance. Again, we defer all
rigorous definitions to Section 3.2.

2.1. Main Result

Our first result is a an upper bound on the sample com-
plexity of the problem. We then proceed to a more general
statement that entails an efficient kernel-based algorithm.
Proofs are available in the supplamentary material (see (?)
for a full version).
Theorem 1 (Main Result). Assume that ` is a L-Lipschitz
convex loss function, let D be a λ-regular distribution (see
Definition 1), let γ(ε) ≥ log 2L/(λε)

λ and

Γ(ε) =
dγ(ε)+1 − d
d− 1

.

There exists an algorithm (independent of D) that re-
ceives a sample S = {(xioi , yi)}

m
i=1 of size m ∈

Ω
(
L2Γ(ε)2 log 1/δ

ε2

)
and returns a target function fS that

is ε-good with probability at least (1 − δ). The algorithm
runs in time poly(|S|).

As the sample complexity in Theorem 1 is quasipolyno-
mial, the result has limited practical value in many situa-
tions. However, as the next theorem states, fS can actu-
ally be computed by applying a kernel trick. Thus, under
further large margin assumptions we can significantly im-
prove performance.
Theorem 2. For every γ ≥ 0, there exists an embedding
over missing data

φγ : xo → RΓ,

such that Γ =
∑γ
k=1 d

k = dγ+1−d
d−1 , and the scalar prod-

uct between two samples φγ(x1
o1) and φγ(x2

o2) can be effi-
ciently computed, specifically it is given by the formula:

kγ(x1
o1 ,x2

o2) :=
|o(1) ∩ o(2)|γ − 1

|o(1) ∩ o(2)| − 1

∑
i∈o(1)∩o(2)

x
(1)
i · x

(2)
i .

In addition, let ` be an L-Lipschitz loss function and S =
{(xioi , yi)}

m
i=1 a sample drawn iid according to a distribu-

tion D. We make the assumption that ‖Pox‖ ≤ 1 a.s. The
followings hold:

1. At each iteration of Alg. 1 we can efficiently compute
v>t φγ(xtot) for any new example xtot . Specifically it
is given by the formula

v>t φγ(xtot) :=

t−1∑
i=1

α
(t−1)
i k(xioi ,x

t
ot).

Hence Alg. 1 runs in poly(T ) time and sequentially
produces target functions ft(xo) = v>t φγ(xo) that
can be computed at test time in poly(T ) time.

2. Run Alg. 1 with fixed T > 0, 0 < ρ < 1
4 and ηt = 1

ρt .

Let v̄ = 1
T

∑T
t=1 vt. For every v let

F̂ρ(v) =
ρ

2
‖v‖2 +

1

m

m∑
i=1

`(v>φγ(xioi), yi)

then with probability (1− δ):

F̂ρ(v̄) ≤ min F̂ρ(v) +O

(
L2Γ lnT/δ

ρT

)
. (3)

3. For any ε > 0, if D is a λ-regular distribution and
γ ≥ log 2L/(λε)

λ then for some v∗ ∈ BΓ(Γ)

E [`(v∗ · φγ(xo), y)] ≤ min
w∈Bd(1)

E [`(w · x, y)] + ε.

To summarize, Theorem 2 states that we can embed the
sample points with missing attributes in a high dimen-
sional, finite, Hilbert space of dimension Γ, such that:

• The scalar product between embedded points can be
computed efficiently. Hence, due to the conventional
representor argument, the task of empirical risk mini-
mization is tractable.

• Following the conventional analysis of kernel meth-
ods: Under large margin assumptions in the ambient
space, we can compute a predictor with scalable sam-
ple complexity and computational efficiency.
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• Finally, the best linear predictor over embedded sam-
ple points in a

√
Γ–ball is comparable to the best

linear predictor over fully observed data. Taken to-
gether, we can learn a predictor with sample complex-
ity Ω(Γ2(ε)/ε2 log 1

δ ) and Theorem 1 holds.

For completeness we present the method together with an
efficient algorithm that optimizes the RHS of Eq. 3 via
an SGD method. The optimization analysis is derived in a
straightforward manner from the work of (Shalev-Shwartz
et al., 2011). Other optimization algorithms exist in the lit-
erature, and we chose this optimization method as it allows
us to also derive regret bounds which are formally stronger
(see Section 2.2). We point out that the main novelty of this
paper is in the introduction of a new kernel and our guaran-
tees do not depend on a specific optimization algorithm.

Finally, note that φ1 induces the same scalar product as a
0-imputation. In that respect, by considering different γ =
1, 2, . . . and using a holdout set we can guarantee that our
method will outperform the 0-imputation method.

2.2. Regret minimization for joint subspace learning
and classification

A significant technical contribution of this manuscript is
the agnostic learning of a subspace coupled with a linear
classifier. A subspace is represented by a projection matrix
Q ∈ Rd×d, which satisfies Q2 = Q. Denote the following
class of target functions

F0 = {fw,Q : w ∈ Bd, Q ∈Md×d, Q
2 = Q}

where fw,Q(xo) is the linear predictor defined by w over
subspace defined by the matrix Q, as formally defined in
definition 2.

Given the aforementioned efficient kernel mapping φγ , we
consider the following kernel-gradient-based online algo-
rithm for classification called KARMA (Kernelized Algo-
rithm for Risk-minimization with Missing Attributes):

Our main result for the fully adversarial online setting is
given next, and proved in the supplamentary material and
in the full version. Notice that the subspace E∗ and associ-
ated projection matrix Q∗ are chosen by an adversary and
unknown to the algorithm.
Theorem 3. For any γ > 1, λ > 0, X > 0, ρ > 0, B > 0,
L-Lipschitz convex loss function `, and λ-regular sequence
{(xt,ot, yt)} w.r.t subspace E∗ and associated projection
matrix Q∗ such that ‖xt‖∞ < X , Run Algorithm 1 with
{ηt = 1

ρt}, sequentially outputs {vt ∈ Rt} that satisfy∑
t

`(v>t φγ(xtot), yt)− min
‖w‖≤1

∑
t

`(fw,Q∗(x
t
ot), yt) ≤

2L2X2Γ

ρ
(1 + log T ) +

ρ

2
T ·B +

e−λγ

λ
LT

Algorithm 1 KARMA: Kernelized Algorithm for Risk-
minimization with Missing Attributes

1: Input: parameters γ > 1, {ηt > 0}, 0 < ρ < 1
2: Initialize: v1 = 0, α(0) = 0.
3: for t = 1 to T do
4: Observe example (xtot , yt), suffer loss

`(v>t φγ(xtot), yt)
5: Update (`′ denotes the derivative w.r.t. the first argu-

ment)

α
(t)
i =


(1− ηtρ) · α(t−1)

i i < t

−ηt`′(v>t φγ(xtot), yt) i = t

0 else

vt+1 =

t∑
i=1

α
(t)
i φγ(xioi)

6: end for

In particular, taking ρ = LX
√

Γ√
BT

, γ = 1
λ log T we obtain

for every ‖w‖ ≤ 1:

∑
t

`(v>t φγ(xtot), yt)−`(fw,Q∗(x
t
ot), yt) ∈ O(XL

√
ΓBT )

3. Preliminaries and Notations
3.1. Notations

As discussed, we consider a model where a distribution D
is fixed over Rd × O × Y , where O = 2d consists of all
subsets of {1, . . . , d}. We will generally denote elements
of Rd by x,w,v,u and elements of O by o. We denote by
Bd the unit ball of Rd, and by Bd(r) the ball of radius

√
r.

Given a subset o we denote by Po : Rd → R|o| the projec-
tion onto the indices in o, i.e., if i1 ≤ i2 ≤ · · · ≤ ik are
the elements of o in increasing order then (Pox)j = xij .
Given a matrix A and a set of indices o, we let

Ao,o = PoAP
>
o .

Finally, given a subspace E ⊆ Rd we denote by PE :
Rd → Rd the projection onto E.

3.2. Model Assumptions

Definition 1 (λ-regularity). We say that D is λ-regular
with associated subpsace E if the following happens with
probability 1 (w.r.t the joint random variables (x,o)):

1. ‖Pox‖ ≤ 1.

2. x ∈ E.
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3. ker(PoPE) = ker(PE)

4. If λo > 0 is a strictly positive singular value of the
matrix PoPE then λo ≥ λ.

Assumption 1 (Low Rank Assumption). We say that D
satisfies the low rank assumption with associated subspace
E if it is λ-regular with associated subspace E for some
λ > 0.

Let o be a set of probable observables, and let Xo be the
matrix obained by taking only columns in o from the data
matrix X . If rank(Xo) < rank(X) then Assumption 1
is not satisfied. Since rank(Xo) < |o| we have that as-
sumption 1 is met only if rank(X) is upperbounded min-
imal number of observations. Previous example, one can
show that without some further restrictive assumptions, if
the rank was larger than is required in the assumption, the
problem of finding an ε-good function becomes ill-posed.

4. Learning under low rank assumption and
λ-regularity.

Definition 2 (The class F0). We define the following class
of target functions

F0 = {fw,Q : w ∈ Bd(1), Q ∈Md×d, Q
2 = Q}

where
fw,Q(xo) = (Pow) ·Q†o,o · (Pox).

(Here M† denotes the pseudo inverse of M .)

The following Lemma states that, under the low rank as-
sumption, the problem of linear learning with missing data
is reduced to the problem of learning the class F0, in the
sense that the hypothesis class F0 is not less-expressive.

Lemma 1. Let D be a distribution that satisfies the low
rank assumption. For every w∗ ∈ Rd there is f∗w,Q ∈ F0

such that a.s:
f∗w,Q(xo) = w∗ · x.

In particular Q = PE and w = P>Ew∗.

4.1. Approximating F0 under regularity

We next define a surrogate class of target functions that ap-
proximates F0

Definition 3 (The classes Fγ). For every γ we define the
following class

Fγ = {fγw,Q : w ∈ Bd(1), Q ∈ Rd×d, Q2 = Q}

where,

fγw,Q(xo) = (Pow) ·
γ−1∑
j=0

(Qo,o)
j · (Pox)

Lemma 2. Let (x,o) be a sample drawn according to a
λ-regular distribution D with associated subspace E. Let
Q = PE and ‖w‖ ≤ 1 then a.s:

‖fγw,I−Q(xo)− fw,Q(xo)‖ ≤ (1− λ)γ

λ
.

Corollary 1. Let ` be a L-Lipschitz function. Under λ-
regularity, for every γ ≥ logL/λε

λ the class Fγ contains an
ε-good target function.

4.2. Improper learning of Fγ and a kernel trick

Let G be the set of all finite, non empty, sequences of length
at most γ over d. For each s ∈ G denote |s|– the length
of the sequence and send the last element of the sequence.
Given a set of observations o we write s ⊆ o if all elements
of the sequence s belong to o. We let

Γ =

γ∑
j=1

dj = |G| = dγ+1 − d
d− 1

and we index the coordinates of RΓ by the elements of G:

Definition 4. We let φγ : (Rd × O) → RΓ be the embed-
ding:

(φγ(xo))s =

{
xsend

s ⊆ o

0 else

Lemma 3. For every Q and w we have:

fγw,Q(xo) =
∑
s1∈o

ws1xs1+

∑
{s:s⊆o, 2≤|s|≤t}

ws1 ·Qs1,s2 ·Qs2,s3 · · ·Qs|s|−1,send
· xsend

Corollary 2. For every fγw,Q ∈ Fγ there is v ∈ BΓ(Γ),
such that:

fγw,Q(xo) = v · φγ(xo).

As a corollary, for every loss function ` and distribution D
we have that:

min
v∈BΓ(Γ)

E [`(v · φ(xo), y)] ≤ min
fγw,Q∈Fγ

E
[
`(fγw,Q(xo), y)

]

Due to Corollary 2, learning Fγ can be improperly done
via learning a linear classifier over the embedded sample
set {φγ(xo)}mi=1. The ambient space RΓ may be very large.
However, as we next show, the scalar product between two
embedded points can be computed efficiently:
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Theorem 4.

φγ(x(1)
o1

) · φγ(x(2)
o2

) =
|o1 ∩ o2|γ − 1

|o1 ∩ o2| − 1

∑
k∈o1∩o2

x
(1)
k x

(2)
k .

(We use the convention that 1γ−1
1−1 = limx→1

xγ−1
x−1 = γ)

5. Experiments
We’ve conducted both toy and real-data experiments to
compare the performance of our new method vs. other
existing methods: 0-imputation, mcb, mc1 and geom.
We’ve conducted experiments on binary classification
tasks, multi-class classification and regression tasks. We
begin by describing how each method was implemented for
each scenario

• karma: We’ve applied our method in all experiments.
We evaluated the loss with γ = {1, 2, 3, 4} and C =
{10−5, 10−4, . . . , 104, 105}. We chose γ and λ
using a holdout set. A constant feature was added to
allow bias and the data was normalized. For binary
classification we let ` be the Hinge loss, for multi-
class we used the multiclass Hinge loss as described
in (Crammer & Singer, 2002) and finally for regres-
sion tasks we used squared loss (which was also used
at test time).

• 0-imputation: 0-imputation is simply reduced to
γ = 1 . A constant feature was added to allow bias
and data was normalized so the mean of each feature
was 0.

• mcb/ mc1: mcb and mc1 are methods suggested by
(Goldberg et al., 2010). They are inspired by a convex
relaxation of Problem G and differ by the way a bias
term is introduced.

When applying mcb and mc1 in binary classifica-
tion tasks, we used the algorithm as suggested there.
We ran their iterative algorithm until the incremental
change was smaller than 1e−5 and used the logistic
loss function to fit the entries. In multi-class tasks the
label matrix was given by a {0, 1} matrix with a 1 en-
try at the correct label. In regression tasks we’ve used
the squared loss to fit the labels (as this is the loss we
tested the results against).

• geom: Finally we‘ve applied geom (Chechik et al.,
2008). This is an algorithm that tries to maximize the
margin of the classifier but the margin is computed
with respect to the revealed entries subspace. We’ve
applied this method only for binary classification as
this method was designed specifically to correct the
hinge loss methods. Again we used the iterative algo-
rithm as suggested in there with 5 iterations. Regular-
ization parameters were chosen using a holdout set.

5.1. Toy Examples

5.1.1. MCAR- MODEL

The first toy data we’ve experimented on was a regression
task. We randomly picked m = 103 examples (normal
distribution), in an r = 10 dimensional subspace embedded
in a d = 20-dimensional linear space. We then randomly
picked a classifier w and let ŷi = w · x(i). The labels
where normalized to have standard deviation 1 and mean 0
(i.e., yi = ŷi−Ei[ŷi]√

1
m

∑
i(ŷi−Ei[ŷi])2

). We then randomly chose a

subset of observed features using iid Bernoulli distribution.
Each feature had probability p = 0.1, 0.2, . . . , 0.9, 1 to be
observed. The results appear in Figure 2: Square loss vs.
fraction of observed features.
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Figure 2. Missing Completely At Random features.

5.1.2. TOY DATA WITH LARGE MARGIN

As discussed earlier, under large margin assumption our
algorithm enjoys strong guarantees. For this we consid-
ered a different type of noise model – one that guarantees
large margin. First we constructed fully observed sample
of size m = 104: The data resides in r = 20 dimension
subspace in a d = 200 dimension linear space. We then
divided the features into three types- {A1, A2, A3}. Each
subset contained “enough information” and we made sure
that for each subset Ai there is a classifier wAi with large
margin that correctly classify xo when o = Ai (in fact a
random division of the features led to this). Thus, if at each
turn o = Ai for some i, the 0-imputation method would
guarantee to perform well. However, in our noise model,
for each sample, each type had probability 1/3 to appear
(independently, conditioned on the event that at least one
type of feature appears). Thus there is no guarantee that
0-imputation will work well.

Such a noise distribution can model, for example, a sce-
nario where we collect our data by letting people answer a
survey. A person is likely to answer a certain type of ques-
tion by and not answer a different type (say for example, he
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is disinclined to answer questions on his financial matters
but would not mind answering questions on his recreational
preferences).

Denote:

χ(o;A) =

{
1 A ⊆ o

0 else
. One can show that the class

{v · φγ(xo) : v ∈ RΓ} can express the following target
function whenever γ ≥ 3:

h(xo) =
∑
i

χ(o;Ai)w
Aixo−

1

2

∑
i1 6=i2

χ(o;Ai1 ∪Ai2)(wAi1 + wAi2 ) · x̄+

χ(o;A1 ∪A2 ∪A3)(wA1 + wA2 + wA3) · x̄

Where x̄ is the vector received by filling zeros at non ob-
served features. One can also verify that h(xo) will have
zero expected loss. Also we can make sure that the corre-
sponding v will have norm 7

3

∑
‖wAi‖.

Our method, indeed, picks a good classifier with a compa-
rably small sample size. Also, due to higher expressiveness
it significantly outperforms 0-imputation.

200 400 600 800 1000
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0.2
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0.8

1

 

 
karma
0−imputation
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Figure 3. Block type revealed entries. Mean square error, Vs.
sample size

5.2. Real Data

Finally, we tested our method on real data sets. We empha-
size that the missing data was inherent in the real data. The
comparison appears in Table 1. The data sets were col-
lected primarily from (Alcal-Fdez et al.). The Jester data
set was collected from (Goldberg et al.), The books dataset
was collected from (Ziegler et al.) and we’ve also used
the MovieLens data set2. We took from the Jester data set

2available here: http://grouplens.org/datasets/
movielens/

Table 1. Experiment Results
(a) Multiclass Labeling

name karma 0–imp mcb mc1
Cleveland 0.44 0.42 0.48 0.42

dermatology 0.03 0.04 0.04 0.04
marketing 0.70 0.71 0.70 0.70

movielens(occupation) 0.81 0.87 0.86 0.87

(b) Regression
name karma 0–imp mcb mc1
jester 0.23 0.24 0.27 0.27
books 0.25 0.25 0.25 0.25

movielens (age) 0.16 0.22 0.25 0.25

(c) Binary Labeling
name karma 0–imp mcb mc1 geom

mammographic 0.17 0.17 0.17 0.18 0.17
bands 0.24 0.34 0.41 0.40 0.35

hepatitis 0.23 0.17 0.23 0.21 0.22
Wisconsin 0.03 0.03 0.03 0.04 0.04

horses 0.35 0.36 0.55 0.37 0.36
movielens (gender) 0.22 0.26 0.28 0.28 0.25

around 1000 users that rated at least 36 Jokes out of 100.
One joke that was rated by almost all users was used as
a label (specifically joke number 5). The movielens data
set includes users who rated various movies, and includes
met-data such as age, gender and occupation. We used the
meta-data to construct three different tasks. In the appendix
we add the details as to data set sizes and percentage of
missing values in each task. Throughout regression tasks
were normalized to have mean zero and standard deviation
1.

6. Discussion and future work
We have described the first theoretically-sound method to
cope with low rank missing data, giving rise to a classifi-
cation algorithm that attains competitive error to that of the
optimal linear classifier that has access to all data. Our non-
proper agnostic framework for learning a hidden low-rank
subspace comes with provable guarantees, whereas heuris-
tics based on separate data reconstruction and classification
are shown to fail for certain scenarios.

Our technique is directly applicable to classification with
low rank missing data and polynomial kernels via kernel
(polynomial) composition. General kernels can be handled
by polynomial approximation, but it is interesting to think
about a more direct approach.

It is possible to derive all our results for a less stringent con-
dition than λ-regularity: instead of bounding the smallest
eigenvalue of the hidden subspace, it is possible to bound
only the ratio of largest-to-smallest eigenvalue. This results

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
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in better bounds in a straightforward plug-and-play into our
analysis, but was omitted for simplicity.
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A. Proofs of theorems and lemmas from main text
A.1. Technical Claims

Claim 1. Let Q ∈Md×d be a square projection matrix and P ∈Mk×d a matrix. Recall that:

Im(A) = {v : ∃u Au = v}, and ker(A) = {v : Av = 0}.

And that rank(A) is the size of the largest collection of linearly independent columns of A.

The following statements are equivalent:

1. ker(PQ) = ker(Q).

2. rank(PQ) = rank(QP>) = rank(PQP>) = rank(Q).

3. Im(QP>) = Im(Q).

Proof.

1⇒ 2 Clearly rank(PQ) ≤ rank(Q). If rank(PQ) < rank(Q) we must have some collection of linearly independent
columns of Q that are linearly dependent in PQ this implies that there is v such that PQv = 0 but Qv 6= 0. Hence
ker(PQ) 6= ker(Q) and thus a contradiction, we conclude that rank(PQ) = rank(Q).

That rank(PQ) = rank(QP>) = rank(PQP>) follows from the fact that rank(A) = rank(A>) = rank(AA>)
and using the fact that Q2 = Q since Q is a projection matrix.

2⇒ 3 We have that Im(QP>) ⊆ Im(Q). The two subspaces, Im(QP>) and Im(Q), are in fact the linear span of the
columns of QP> and Q respectively.

Since rank(QP>) = rank(Q) we conclude that the dimension of the two subspaces is equal. It follows that
Im(QP>) = Im(Q).

3⇒ 1 Since Im(QP>) = Im(Q) we also have rank(QP>) = rank(Q) and as a corollary rank(PQ) = rank(Q).

Now by the rank-nullity Theorem, for every A ∈Mk×d, dim(ker(A)) = d− rank(A).

Hence dim(ker(PQ)) = dim(ker(Q)). Since ker(PQ) ⊆ ker(Q) we must have . ker(PQ) = ker(Q).

Claim 2. Let o ∈ 2d be drawn according to a distribution D that satisfies the low rank assumption. If Q = PE then:

Im(Qo,o) = Im(PoQ)

Proof. ker(PoQ) = ker(Q) holds by assumption (assumption 3 in Definition 1). Im(Q) = Im(QP>o ) then follows from
item 3. In particular Im(PoQ) = Im(PoQPo

>) = Im(Qo,o).

A.2. proof of Lemma 1

By definition, if Pox ∈ Im(Qo,o) then Qo,o (Qo,o)
†
Pox = Pox. We claim that due to the low rank assumption, Pox ∈

Im(Qo,o).

Indeed, recall that Q = PE and x ∈ E hence Qx = x and Pox ∈ Im(PoQ). By Claim 2 we have Im(Qo,o) = Im(PoQ),
hence Pox ∈ (ImQo,o).

Next, we have that

PoQP
>
o (Qo,o)

†
Pox = Qo,o (Qo,o)

†
Pox = Pox
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Alternatively

Po(QP>o Q
†
o,oPox− x) = 0. (4)

Again, since Qx = x we have that:

PoQ(P>o Q
†
o,oPox− x) = 0. (5)

The low rank assumption implies that PoQv = 0 if and only if Qv = 0. Apply this to v = P>o Q
†
oPox− x and get:

QP>o Q
†
o,oPox = Qx = x.

Finally we have that

fw,Q(xo) = (PoQ
>w∗) ·Q†o,oPox = w∗ ·QP>o Q†o,oPox = w∗ · x.

A.3. proof of Lemma 2

Let I denote the identity matrix in Md×d. First note that (Io,o − Qo,o) = (I − Q)o,o and that Io,o is the identity matrix
in R|o|×|o|.

Let v1, . . . ,vk be the normalized and orthogonal eigen-vectors of Qo,o with strictly positive eigenvalues λ1 ≥ . . . ,≥ λk.
By λ-regularity we have that λk ≥ λ and since the spectral norm of Qo,o is smaller than the spectral norm of Q we have
that λ1 ≤ 1.

Note that for every vj we haveQ†o,ovj = 1
λj
vj . Next, recall thatQ = PE and x ∈ E henceQx = x and Pox ∈ Im(PoQ).

By Claim 2 we have Pox ∈ Im(Qo,o). Since Im(Qo,o) = span(v1, . . . ,vk), we may write Pox =
∑
αivi. Since

‖Pox‖ ≤ 1 and {v1, . . . ,vk} is an orthonormal system we have
∑
α2
i ≤ 1.

Hence

‖

γ−1∑
j=0

(Io,o −Qo,o)j −Q†o,o

Pox‖ = ‖
∑
i

αi

γ−1∑
j=0

(1− λ)ji −
1

λi

vi‖ ≤ max
i

∣∣∣∣∣∣
γ−1∑
j=0

(1− λi)j −
1

λi

∣∣∣∣∣∣ ≤
max
i

∣∣∣∣1− (1− λi)γ

λi
− 1

λi

∣∣∣∣ ≤ (1− λ)γ

λ
.

Finally since ‖Pow‖ ≤ 1 we get that

‖fγw,I−Q(xo)− fw,Q(xo)‖ ≤ (1− λ)γ

λ

A.4. Proof of Lemma 3

Let o1 ≤ o2,≤ . . . ≤ o|o| be the elements of o ordered in increasing order. First by definition we have that:

fγw,Q(xo) =

γ−1∑
j=0

|o|∑
n,k=1

won((Qo,o)j)n,kxok =
∑
i∈o

wixi +

γ−1∑
j=1

|o|∑
n,k=1

won((Qo,o)j)n,kxok (6)

We also have by definition that for j ≥ 1:

((Qo,o)j)n,k =

|o|∑
s=1

((Qo,o)j−1)n,s((Qo,o))s,k =

|o|∑
s=1

((Qo,o)j−1)n,sQos,ok
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By induction we can show that:

((Qo,o)j)n,k =
∑
s1∈o

Qon,s1

∑
s2∈o

Qs1,s2

∑ · · ·

 ∑
sj−1∈o

Qsj−2,sj−1Qsj−1,ok

 · · ·
 .

Reordering the elements we get for j ≥ 1:

((Qo,o)j)n,k =
∑

{s:|s|=j+1,s1=on,sj+1=ok}

Qs1,s2
·Qs2,s3

· · ·Qsj ,sj+1
(7)

The result now follows from Eq. 6 and Eq. 7 by a change of indexes.

A.5. Proof of Corollary 2

Choose

vs =

{
ws1 |s| = 1

ws1 ·Qs1,s2 ·Qs2,s3 · · ·Qs|s|−1,send
|s| > 1

It is clear from Lemma 3 that fγw,Q(xo) = v · φγ(xo). We only need to show that ‖v‖ ≤
√

Γ‖w‖.

Note that since Q2 = Q we have max(|Qi,j |) < 1. Hence |vs| ≤ |ws1 | and:

‖v‖2 =
∑
s∈G

v2
s ≤

∑
s∈G

w2
s1
≤ Γ‖w‖2

A.6. Proof of Theorem 4

By definition of φγ we have:

φγ(x(1)
o1

) · φγ(x(2)
o2

) =
∑

s⊆o1∩o2

x(1)
send
· x(2)

send
=

γ∑
l=1

∑
k∈o1∩o2

∑
s⊆o1∩o2,send=k,|s|=l

x
(1)
k · x

(2)
k

=

1∑
l=1

∑
|s|=l−1,s⊂o1∩o2

∑
k∈o1∩o2

x
(1)
k · x

(2)
k

=

1∑
l=1

|s : |{|s| = l − 1, s ⊂ o1 ∩ o2}|
∑

k∈o1∩o2

x
(1)
k · x

(2)
k =

γ∑
l=1

|o1 ∩ o2|l−1 ·
∑

k∈o1∩o2

x
(1)
k · x

(2)
k =

1− |o1 ∩ o2|γ

1− |o1 ∩ o2|
∑

k∈o1∩o2

x
(1)
k x

(2)
k

A.7. Proof of Theorem 2

We take φγ as in Definition 4. That φγ(x1
o1) · φγ(x2

o2) = 1−|o(1)∩o(2)|γ
1−|o(1)∩o(2)|

∑
i∈o(1)∩o(2) x

(1)
i · x

(2)
i is shown in Theorem 4.

The analysis of sub-gradient descent methods to optimize problems of the form:

ρ

2
‖w‖2 +

1

m

m∑
i=1

(`(w>φ(xi), yi)

was studied in (Shalev-Shwartz et al., 2011) and the detailed analysis can be found there (with generalization to mercer
kernels and general losses). We mention that since ` is L-Lipschitz and ‖φγ(xo)‖ ≤

√
Γ a bound on the gradient of

∇`(v>φγ(xo), y) = `′(v>φγ(xo), y)φγ(xo) is given by L
√

Γ.

This establishes items 1 and 2.
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Next we let ` be an L-Lipschitz loss function and D a λ-regular distribution and we assume that γ ≥ log 2L/(λε)
λ .

Due to Corollary 2, for some v∗ ∈ BΓ(Γ)

E [`(v∗ · φγ(xo), y)] ≤ min
fγw,I−Q∈Fγ

E
[
`(fγw,I−Q(xo), y)

]
Applying Lemma 2 and L-Lipschitness, for every f∗w,Q ∈ F0 we have:

E [`(v∗ · φγ(xo), y)] ≤ E
[
`(f∗w,Q(xo, y))

]
+ L

(1− λ)γ

λ
.

The result follows Lemma 1 and choice of γ:

(1− λ)
log 2L/(λε)

λ

λ
≤ (1− λ)

log(λε)/(2L)
log(1−λ)

λ
=

ε

2L
.

A.8. Proof of Theorem 1

Fix a sample S = {xioi}
m
i=1 and γ ≥ log 2L/λε

λ . Let

L(v) = E(`(v>φγ(xo), y) L̂(v) =
1

m

m∑
i=1

`(v>φγ(xioi),

the expected and empirical losses of the vector v.

Further denote by

Fρ(v) =
ρ

2
‖v‖2 + L(v) F̂ρ(v) =

ρ

2
‖v‖2 + L̂(v)

Set ρ(m) ∈ O
(√

log 1/δ
m

)
. Run Alg. 1 with T = m and let v̄ = 1

T

∑T
i=1 vt. By Theorem 2, item 2 we get:

F̂ρ(m)(v̄) ≤ min F̂ρ(m)(v) +O

(
L2Γ(ε)

ρm

)

Note that ‖φγ(xo)‖ ≤
√

dγ−1
d−1 ‖Pox‖ ≤

√
Γ(ε). We now apply Corollary 4. in (Sridharan et al., 2009) with B =

√
Γ(ε)

to obtain the following bound (with probability 1− δ) for every w:

L(v̄) ≤ L(w) +O

(√
L2Γ(ε)‖w‖2 log(1/δ)

m

)

In particular for every ‖w‖ ≤
√

Γ(ε) we have

L(v̄) ≤ L(w) +O

(√
L2Γ(ε)2 log(1/δ)

m

)
.

From Theorem 2, item 3 we have that for some ‖w‖ ≤
√

Γ(ε):

L(w) ≤ min
‖w‖≤1

E(`(w>x, y) + ε.

The result now follows from the choice of m.
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A.9. Proof of Theorem 3

Before proving the theorem, we formally define the sequences for which the algorithm applies: a λ-regular sequence is one
such that the uniform distribution over the sequence elements is λ-regular with associated subspace E.

Proof of Theorem 3. Let E∗ denote the adversarially chosen subspace and Q∗ The projection associated with it. Since the
sequence {(xt,ot, yt) is λ-regular w.r.t. subspace E∗, we have by Lemma 2,

∀‖w‖ ≤ 1 . ‖fγw,I−Q∗(xo)− fw,Q∗(xo)‖ ≤ (1− λ)γ

λ
≤ 1

λ
e−λγ

Thus, taking fγw∗,I−Q∗ ∈ Fγ we have

minw∈Bd
∑
t `(fw,Q∗(x

t
ot), yt)−

∑
t `(f

γ
w∗,I−Q∗(x

t
ot), yt)

=
∑
t `(f

∗
w,Q(xtot), yt)−

∑
t `(f

γ
w∗,I−Q∗(x

t
ot), yt)

≤
∑
t L‖f∗w,Q(xtot)− f

γ,∗
w,Q(xtot)‖ ` is L-Lipschitz

≤ TL 1
λe
−λγ Lemma 2

Hence it suffices to show that ∑
t `(v

>
t φγ(xtot), yt)−

∑
t `(f

γ
w∗,I−Q∗(x

t
ot), yt)

≤
∑
t `(v

>
t φγ(xtot), yt)−minfw,Q∈Fγ

∑
t `(f

γ
w,Q(xtot), yt) = O(

√
T )

Corollary 2 asserts that
fγw,Q(xo) = v · φγ(xo)

Thus, the theorem statement can be further reduced to∑
t

`(v>t φγ(xtot), yt)− min
v∗∈BΓ(Γ)

∑
t

`(v>∗ φγ(xtot), yt) = O(
√
T ) (8)

We proceed to prove equation Eq. 8 above.

Algorithm 1 applies the following update rule

vt+1 =

t∑
i=1

α
(t)
i φγ(xioi)

where wt+1 can be re-written as:

vt+1 = (1− ηtρ)vt − ηt`′(v>t φγ(xtot))φγ(xtot)

= vt − ηt∇˜̀
t(vt) (9)

where
˜̀
t(v) = `(v>φγ(xtot)) +

ρ

2
‖v‖2

The above implies a bound on the norm of the gradients of ˜̀
t, as given by the following lemma:

Lemma 4. For all iterations t ∈ [T ] we have

‖vt‖ ≤ LX
√

Γ , ‖∇˜̀
t(vt)‖ ≤ 2LX

√
Γ
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Equation Eq. 9 implies that KARMA applies the online gradient descent algorithm on the functions ˜̀ which are ρ-
strongly-convex. Hence, the bound of Theorem 3.3 in (Hazan, 2014), with appropriate learning rates ηt and with α = ρ,
G = 2LX

√
Γ) by lemma 4, gives∑

t

˜̀
t(vt)−min

v∗

∑
t

˜̀
t(v
∗) ≤ 2L2X2Γ

ρ
(1 + log T )

This directly implies our theorem since (recall that ‖v∗‖ ≤ B by assumption):∑
t `(v

>
t φγ(xtot), yt)−min‖w‖≤1

∑
t `(fw,Q∗(x

t
ot), yt)

=
∑
t

˜̀
t(vt)−minv∗

∑
t

˜̀
t(v
∗) + ρ

2 (
∑
t ‖v∗‖2 − ‖vt‖2)

≤ 2L2X2Γ
ρ (1 + log T ) + ρ

2T ·B

Proof of Lemma 4. First, notice that the norms of the gradients of the loss functions ` can be bounded by

‖∇`(v>t φγ(xtot), yt)‖ = |`′(v>t φγ(xtot), yt)| · ‖φγ(xtot)‖ ≤ LX
√

Γ

where the last inequality follows from the Lipschitz property of ` and the fact that φγ(xtot) is a vector in RΓ, with coordi-
nates from the vector xt, and the bound ‖xt‖∞ ≤ X .

Next, we prove by induction that ‖vt‖ ≤ LX
√

Γ. For t = 0 we have v1 = 0. Equation Eq. 9 implies that vt+1 is a convex
combination of two vectors:

‖vt+1‖ = ‖(1− ηtρ)vt − ηt`′(v>t φγ(xtot))φγ(xtot)‖
≤ max

{
ρ‖vt‖ , ‖∇`(v>t φγ(xtot))‖

}
≤ max

{
ρLX

√
Γ , ‖∇`(v>t φγ(xtot))‖

}
induction hypothesis

≤ max
{
ρLX

√
Γ , LX

√
Γ
}

above bound on ∇`

≤ LX
√

Γ ρ < 1

We can now conclude with the lemma, by definition of ˜̀
t

‖∇˜̀
t(vt)‖ ≤ ‖∇`(v>t φγ(xtot))‖+

ρ

2
‖vt‖ ≤ LX

√
Γ +

ρ

2
LX
√

Γ ≤ 2LX
√

Γ

B. Experiments – Data size and details

Data Set Dimesnion no. Examples Label (Binary/Real/Multiclass) percentage of Missing Values
mamographic 5 961 B 13.63

bands 19 539 B 32.3
clevland 13 303 M(5) 1.98

dermatology 34 366 M(6) 2.19
hepatitis 19 155 B 48.39
marketing 13 8993 M(9) 23.54
wisconsin 9 699 B 2.29
jester 94 1000 R 29

movieLens(Age) 3952 6040 R 95.8
movieLens(Gender) 3952 6040 B 95.8

movieLens(Occupation) 3952 6040 M(21) 95.8
Books 2494 19651 R 99.8
horses 23 368 B 22.7


