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Abstract

We consider a seller with an unlimited supply of a single good, who is faced with
a stream of T buyers. Each buyer has a window of time in which she would like
to purchase, and would buy at the lowest price in that window, provided that this
price is lower than her private value (and otherwise, would not buy at all). In this
setting, we give an algorithm that attains O(T2/3) regret over any sequence of T
buyers with respect to the best fixed price in hindsight, and prove that no algorithm
can perform better in the worst case.

1 Introduction

Perhaps the most common way to sell items is using a “posted price” mechanism in which the seller
publishes the price of an item in advance, and buyers that wish to obtain the item decide whether to
acquire it at the given price or to forgo the purchase. Such mechanisms are extremely appealing. The
decision made by the buyer in a single-shot interaction is simple: if it values the item by more than
the offering price, it should buy, and if its valuation is lower, it should decline. The seller on the other
hand needs to determine the price at which she wishes to sell goods. In order to set prices, additive
regret can be minimized using, for example, a multi-armed bandit (MAB) algorithm in which arms
correspond to a different prices, and rewards correspond to the revenue obtained by the seller.

Things become much more complicated when the buyers who are facing the mechanism are patient
and can choose to wait for the price to drop. The simplicity of posted price mechanisms is then
tainted by strategic considerations, as buyers attempt to guess whether or not the seller will lower
the price in the future. The direct application of MABs is no longer adequate, as prices set by such
algorithms may fluctuate at every time period. Strategic buyers can make use of this fact to gain
the item at a lower price, which lowers the revenue of the seller and, more crucially, changes the
seller’s feedback for a given price. With patient buyers, the revenue from sales is no longer a result
of the price at the current period alone, but rather the combined outcome of prices that were set in
surrounding time periods, and of the expectation of buyers regarding future prices.

In this paper, we focus on strategic buyers that may delay their purchase in hopes of obtaining a
better deal. We assume that each buyer has a valuation for the item, and a “patience level” which
represents the length of the time-window during which it is willing to wait in order to purchase the
item. Buyers wish to minimize the price during this period. Note that such buyers may interfere with
naïve attempts to minimize regret, as consecutive days at which different prices are set are no longer
independent.

∗Parts of this work were done while the author was at Microsoft Research, Herzliya.
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To regain the simplicity of posted prices for the buyers, we consider a setting in which the seller
commits to the price in subsequent time periods in advance, publishing prices for the entire window
of the buyers. Strategic buyers that arrive at the market are then able to immediately choose the
lowest price within their window. Thus, given the valuation and patience of the buyers (the number
of days they are willing to wait) their actions are clearly determined: buy it at a day that is within the
buyer’s patience window and price is cheapest, provided that it is lower than the valuation.

An important aspect of our proposed model is to consider for each buyer a window of time (rather
than, for example, discounting). For example, when considering discounting, the buyers, in order
to best respond, would have argue how would other buyers would behave and how would the seller
adjust the prices in response to them. By fixing a window of time, and forcing the seller to publish
prices for the entire window, the buyers become “price takers” and their behavior becomes tractable
to analyze.

As in previous works, we focus on minimizing the additive regret of the seller, assuming that the
appearance of buyers is adversarial; that is, we do not make any statistical assumptions on the buyers’
valuation and window size (except for a simple upper bound). Specifically we assume that the values
are in the range [0, 1] and that the window size is in the range {1, . . . , τ̂ + 1}. The regret is measured
with respect to the best single price in hindsight. Note that the benchmark of a fixed price p∗ implies
that any buyer with value above p∗ buys and any buyer with value below p∗ does not buy. The window
size has no effect when we have a fixed price. On the other hand, for the online algorithm, having to
deal with various window sizes create a new challenge.

The special case of this model where τ̂ = 0 (and hence all buyers have window of size exactly one)
was previously studied by Kleinberg and Leighton [11], who discussed a few different models for
the buyer valuations and derived tight regret bounds for them. When the set of feasible prices is of
constant size their result implies a Θ(

√
T ) regret bound with respect to the best fixed price, which

is also proven to be the best possible in that case. In contrast, in the current paper we focus on
the case τ̂ ≥ 1, where the buyers’ window sizes may be larger than one, and exhibit the following
contributions:

(i) We present an algorithm that achieves O(τ̂1/3T2/3) additive regret in an adversarial setting,
compared to the best fixed posted price in hindsight. The upper bound relies on creating epochs,
when the price within each epoch is fixed and the number of epochs limit the number of times
the seller switches prices. The actual algorithm that is used to select prices within an epoch is
EXP3 (or can be any other multi-arm bandit algorithm with similar performance).

(ii) We exhibit a matching lower bound of Ω(τ̂1/3T2/3) regret. The proof of the lower bound reveals
that the difficulty in achieving lower regret stems from the lost revenue that the seller suffers
every time she tries to lower costs. Buyers from preceding time slots wait and do not purchase
the items at the higher prices that prevailed when they arrive. We are thus able to prove a lower
bound by reducing to a multi-armed bandit problem with switching costs. Our lower bound
uses only two prices.

In other words, we see that as soon as the buyers’ patience increases from zero to one, the optimal
regret rate immediately jumps from Θ(

√
T ) to Θ(T2/3).

The rest of the paper is organized as follows. In the remainder of this section we briefly overview
related work. We then proceed in Section 2 to provide a formal definition of the model and the
statement of our main results. We continue in Section 3 with a presentation of our algorithm and its
analysis, present our lower bound in Section 4, and conclude with a brief discussion.

1.1 Related work

As mentioned above, the work most closely related to ours is the paper of Kleinberg and Leighton
[11] that studies the case τ̂ = 0, i.e., in which the buyers’ windows are limited to be all of size one.
For a fixed set of feasible prices of constant size, their result implies a Θ(

√
T ) regret bound, whereas

for a continuum of prices they achieve a Θ(T2/3) regret bound. The Ω(T2/3) lower bound found in
[11] is similar to our own in asymptotic magnitude, but stems from the continuous nature of the prices.
In our case the lower bound is achieved for buyers with only 2 prices, a case in which Kleinberg
and Leighton [11] have a bound of Θ(

√
T ). Hence, we show that such a bound can occur due to the

strategic nature of the interaction itself.
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A line of work appearing in [1, 12, 13] considers a model of a single buyer and a single seller, where
the buyer is strategic and has a constant discount factor. The main issue is that the buyer continuously
interacts with the seller and thus has an incentive to lower future prices at the cost of current valuations.
They define strategic regret and derive near optimal strategic regret bounds for various valuation
models. We differ from this line of work in a few important ways. First, they consider other either
fixed unknown valuation or stochastic i.i.d. valuations, while we consider adversarial valuations.
Second, they consider a single buyer while we consider a stream of buyers. More importantly, in
our model the buyers do not influence the prices they are offered, so the strategic incentives are very
different. Third, their model uses discounting to model the decay of buyer valuation over time, while
we use a window of time.

There is a vast literature in Algorithmic Game Theory on revenue maximization with posted prices,
in settings where agents’ valuations are drawn from unknown distributions. For the case of a single
good of unlimited supply, the goal is to approximate the best price, as a function of the number of
samples observed and with a multiplicative approximation ratio. The work of Balcan et al. [4] gives
a generic reduction which can be used to show that one can achieve an ε-optimal pricing with a
sample of size O((H/ε2) log(H/ε )), where H is a bound on the maximum valuation. The works
of Cole and Roughgarden [8] and Huang et al. [10] show that for regular and Monotone Hazard
Rate distributions sample bounds of Θ(ε−3) and Θ(ε−3/2), respectively, guarantee a multiplicative
approximation of 1 − ε .

Finally, our setting is somewhat similar to a unit-demand auction in which agents desire a single
item out of several offerings. In our case, we can consider items sold at different times as different
items and agents desire a single one that is within their window. When agents have unit-demand
preferences, posted-price mechanisms can extract a constant fraction of the optimal revenue [5, 6, 7].
Note that a constant ratio approximation algorithm implies a linear regret in our model. On the other
hand, these works consider a more involved problem from a buyer’s valuation perspective.

2 Setup and Main Results

We consider a setting with a single seller and a sequence of T buyers b1, . . . , bT . Every buyer bt is
associated with value vt ∈ [0, 1] and patience τt . A buyer’s patience indicates the time duration in
which the buyer stays in the system and may purchase an item.

The seller posts prices in advance over some time window. Let τ̂ be the maximum patience, and
assume that τt ≤ τ̂ for every t. Let pt denote the price at time t, and assume that all prices are chosen
from a discrete (and normalized) predefined set of n prices P = {0, 1

n ,
2
n , . . . 1}. At time t = 1, the

seller posts prices p1, . . . , pτ̂+1, and learns the revenue obtained at time t = 1 (the revenue depends
on the buyers’ behavior, which is explained below). Then, at each time step t, the seller publishes
a new price pt+τ̂ ∈ P, and learns the revenue obtained at time t, which she can use to set the next
prices. Note that at every time step, prices are known for the next τ̂ time steps.

The revenue in every time step is determined by the strategic behavior of buyers, which is explained
next. Every buyer bt observes prices pt, . . . , pt+τt , and purchases the item at the lowest price among
these prices (breaking ties toward earlier times), if she does not exceed her value. The revenue
obtained from buyer bt is given by:

β(pt, . . . , pt+τ̂ ; bt ) =
{

min{pt, . . . , pt+τt } if min{pt, . . . , pt+τt } ≤ vt,

0 otherwise.

As bt has patience τt , we will sometime omit the irrelevant prices and write β(pt, . . . , pt+τt ; bt ) =
β(pt, . . . , pt+τ̂ ; bt ).

As we described, a buyer need not buy the item on her day of appearance and may choose to wait.
If the buyer chooses to wait, we will observe the feedback from her decision only on the day of
purchase. We therefore need to distinguish between the revenue from buyer t and the revenue at time
t. Given a sequence of prices p1, . . . , pt+τ̂ and a sequence of buyers b1, . . . , bt we define the revenue
at time t to be the sum of all revenues from buyers that preferred to buy at time t. Formally, let It
denote the set of all buyers that buy at time t, i.e.,

It = {bi : t = arg min{i ≤ t ≤ i + τi : pt = β(pi . . . , pi+τ̂ ; bi )}}.
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Then the revenue obtained at time t is given by:

Rt (pt−τ̂, . . . , pt+τ̂ ) = R(p1, . . . , pt+τ̂ ; b1:t ) :=
∑

i∈It
β(pi, . . . pi+τ̂ ; bi )),

where we use the notation b1:T as a shorthand for the sequence b1, . . . , bT . The regret of the (possibly
randomized) seller A is the difference between the revenue obtained by the best fixed price in
hindsight and the expected revenue obtained by the seller A, given a sequence of buyers:

RegretT (A; b1:T ) = max
p∗∈P

T∑
t=1

R(p∗, . . . , p∗; b1:t ) − E


T∑
t=1

R(p1, . . . pt+τ̂ ; b1:t )

.

We further denote by RegretT (A) the expected regret a seller A incurs for the worst case sequence,
i.e., RegretT (A) = maxb1:T RegretT (A; b1:T ).

2.1 Main Results

Our main result are optimal regret rates in the strategic buyers setting.

Theorem 1. The T-round expected regret of Algorithm 1 for any sequence of buyers b1, . . . , bT with
patience at most τ̂ ≥ 1 is upper bounded as RegretT ≤ 10(τ̂n log n)1/3T2/3.

Theorem 2. For any τ̂ ≥ 1, n ≥ 2 and for any pricing algorithm, there exists a sequence of buyers
b1, . . . , bT with patience at most τ̂ such that RegretT = Ω(τ̂1/3T2/3).

3 Algorithm

In this section we describe and analyze our online pricing algorithm. It is worth to start by highlighting
why simply running an “off the shelf” multi-arm bandit algorithm such as EXP3 would fail. Consider
a fixed distribution over the actions and assume the buyer has a window size of two. Unlike the
standard multi-arm bandit, where we get the expected revenue from the price we select, now the
buyer would select the lower of the two prices, which would clearly hurt our revenue (there is a slight
gain, by the increased probability of sell, but it does suffice to offset the loss). For this reason, the
seller would intuitively like to minimize the number of time it changes prices (more precisely, lower
the prices).

Our online pricing algorithm, which is given in Algorithm 1, is based on the EXP3 algorithm of
Auer et al. [3] which we use as a black-box. The algorithm divides the time horizon to roughly T2/3

epochs, and within each epoch the seller repeatedly announces the same price, that was chosen by
the EXP3 black-box in the beginning of the epoch. In the end of the epoch, EXP3 is updated with
the overall average performance of the chosen price during the epoch (ignoring the time steps which
might be influenced by different prices). Hence, our algorithm changes the posted price only O(T2/3)
times, thereby keeping under control the costs associated with price fluctuations due to the patience
of the buyers.

Algorithm 1: Online posted pricing algorithm
Parameters: horizon T , number of prices n, and maximal patience τ̂;
Let B = bτ̂2/3(n log n)−1/3T1/3c and T ′ = bT/Bc;
Initialize A← EXP3(T ′, n);
for j = 0, . . . ,T ′ − 1 do

Sample i ∼ A and let p′j = i/n;
for t = B j + 1, . . . , B( j + 1) do

Announce price pt+τ̂ = p′j ; %On j = 0, t = 1 announce p1, . . . pt+τ = p′0.;
Receive and observe total revenue Rt (pt−τ̂, . . . , pt+τ̂ );

Update A with feedback 1
B

∑B( j+1)
t=Bj+2τ̂+1 Rt (pt−τ̂, . . . , pt+τ̂ );

for t = BT ′ + 1, . . . ,T do
Announce price pt+τ̂ = p′

T ′−1;
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We now analyze Algorithm 1 and prove Theorem 1. The proof follows standard arguments in
adversarial online learning (e.g., Arora et al. [2]); we note, however, that for obtaining the optimal
dependence on the maximal patience τ̂ one cannot apply existing results directly and has to analyse
the effect of accumulating revenues over epochs more carefully, as we do in the proof below. This
is mainly because in our model the revenue at time t is not bounded by 1 but by τ, hence readily
amenable results would add a factor τ to the regret.

Proof of Theorem 1. For all 0 ≤ j ≤ T ′ and for all prices p ∈ P, define

R′j (p) =
1
B

B( j+1)∑
t=Bj+2τ̂+1

Rt (p, . . . , p).

(Here, the argument p is repeated 2τ̂ + 1 times.) Observe that 0 ≤ R′j (p) ≤ 1 for all j and p, as the
maximal total revenue between rounds B j + 2τ̂ + 1 and B( j + 1) is at most B; indeed, there are at
most B buyers who might make a purchase during that time, and each purchase yields revenue of at
most 1. By a similar reasoning, we also have

Bj+2τ̂∑
t=Bj+1

Rt (p, . . . , p) ≤ 4τ̂ (1)

for all j and p.

Now, notice that pt = p′j for all B j + τ̂ + 1 ≤ t ≤ B( j + 1) + τ̂, hence the feedback fed back to A
after epoch j is

1
B

B( j+1)∑
t=Bj+2τ̂+1

Rt (pt−τ̂, . . . , pt+τ̂ ) =
1
B

B( j+1)∑
t=Bj+2τ̂+1

Rt (p′j, . . . , p′j ) = R′j (p′j ).

That is, Algorithm 1 is essentially running EXP3 on the reward functions R′j . By the regret bound of
EXP3, we know that

T ′−1∑
j=0

R′j (p∗) − E


T ′−1∑
j=0

R′j (p′j )

≤ 3

√
T ′n log n

for any fixed p∗ ∈ P, which implies

T ′−1∑
j=0

B( j+1)∑
t=Bj+2τ̂+1

Rt (p∗, . . . , p∗) − E


T ′−1∑
j=0

B( j+1)∑
t=Bj+2τ̂+1

Rt (pt−τ̂, . . . , pt+τ̂ )

≤ 3

√
BTn log n. (2)

In addition, due to Eq. (1) and the non-negativity of the revenues, we also have

T ′−1∑
j=0

Bj+2τ̂∑
t=Bj+1

Rt (p∗, . . . , p∗) − E


T ′−1∑
j=0

Bj+2τ̂∑
t=Bj+1

Rt (pt−τ̂, . . . , pt+τ̂ )

≤ 4τ̂T ′ ≤

4τ̂T
B

. (3)

Summing Eqs. (2) and (3), and taking into account rounds BT ′ + 1, . . . ,T during which the total
revenue is at most B + 2τ̂, we obtain the regret bound

T∑
t=1

Rt (p∗, . . . , p∗) − E


T∑
t=1

Rt (pt−τ̂, . . . , pt+τ̂ )

≤ 3

√
BTn log n +

4τ̂T
B
+ B + 2τ̂.

Finally, for B = bτ̂2/3(n log n)−1/3T1/3c, the theorem follows (assuming that τ̂ < T). �

4 Lower Bound

We next briefly overview the lower bound and the proof’s main technique. A full proof is given in the
supplementary material; for simplicity of exposition, here we assume τ̂ = 1 and n = 2.
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Our proof relies on two steps. The first step is a reduction from pricing with patience τ̂ = 0 but with
switching cost. The second step is to lower bound the regret of pricing with switching cost. This we
do again by reduction from the Multi Armed Bandit (MAB) problem with switching cost. We begin
by briefly over-viewing these terms and definitions.

We recall the standard setting of MAB with two actions and switching cost c. A sequence of losses
is produced `1, . . . , `T where each loss is defined as a function `t : {1, 2} → {0, 1}. At each round
a player chooses an action it ∈ {1, 2} and receives as feedback `t (it ). The switching cost regret of
player A is given by

Sc -RegretT (A; `1:T ) = E


T∑
t=1

`t (it ) −min
i∗

T∑
t=1

`t (i∗)

+ cE [|{it : it , it−1}|] .

We will define analogously the switching cost regret for non-strategic buyers. Namely, given a
sequence of buyers b1, . . . , bT , all with patience τ̂ = 0, the switching cost regret for a seller is given
by:

Sc -RegretT (A; b1:T ) = E

max
p∗

∑
R(p∗; bt ) −

T∑
t=1

R(pt ; bt )

+ cE

[
|{pt : pt , pt−1}|

]
.

4.1 Reduction from Switching Cost Regret

As we stated above, our first step is to show a reduction from switching cost regret for non-strategic
buyers. This we do in Theorem 3:
Theorem 3. For every (possibly randomized) seller A for strategic buyers with patience at most
τ̂ = 1, there exists a randomized seller A′ for non-strategic buyers with patience τ̂ = 0 such that:

1
2 S 1

12
-RegretT (A′) ≤ RegretT (A)

The proof idea is to construct from every sequence of non-strategic buyers b1, . . . , bT a sequence of
strategic buyers b̄1, . . . , b̄T such that the regret incurred to A by b̄1:T is at least the switching cost
regret incurred to A′ by b1:T . The idea behind the construction is as follows: At each iteration t we
choose with probability half to present to the seller bt and with probability half we present to the
seller a buyer zt that has the following statistics:

zt =
{

(v = 1
2, τ = 0) w.p. 1

2
(v = 1, τ = 1) w.p. 1

2
(4)

That is, zt is with probability 1
2 a buyer with value v = 1

2 and patience τ = 0, and with probability 1
2 ,

zt is a buyer with value v = 1 and patience τ = 1.

Observe that if zt would always have patience τ = 0 (i.e., even if her value is v = 1), for any sequence
of prices the expected rewards from the zt buyer is always half, independent of the prices. In other
words, the sequence of noise does not change the performance of the sequence of prices and cannot
be exploited to improve. On the other hand, note since the value 1 corresponds to patience 1, the
seller might lose half whenever she reduces the price from 1 to 1

2 . A crucial point is that the seller
must post her price in advance, therefore she cannot in any way predict if the buyer is willing to
wait or not and manipulate prices accordingly. A proof for the following Lemma is provided in the
supplementary material.
Lemma 4. Consider the pricing problem with τ̂ = 1 and n = 2. Let b1, . . . , bT be a sequence of
buyers with patience 0. Let z1, . . . , zT be a sequence of stochastic buyers as in Eq. (4). Define b̄t to
be a stochastic buyer that is with probability half bt and with probability half zt . Then, for any seller
A, the expected regret A incurs from the sequence b̄1:T is at least

E
[
RegretT (A; b̄1:T )

]
≥

1
2
E

max
p∗∈P

T∑
t=1

β(p∗; bt ) − β(pt ; bt )

+

1
8
E


T∑
t=1
|{pt : pt > pt+1}|


(5)

where the expectations are taken with respect to the internal randomization of the seller A and the
random bits used to generate the sequence b̄1:T .
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4.1.1 Proof for Theorem 3

To construct algortihm A′ from A, we develop a meta algorithm A, depicted in Algorithm 2 that
receives an algorithm, or seller, as input. A′ is then the seller obtained by fixing A as the input for A.
In our reduction we assume that at each iteration algorithm A can ask from A one posted price,pt ,
and in turn she can return a feedback rt to algorithm A, then a new iteration begins.

The idea of construction is as follows: As an initialization step Algorithm A′ produces a stochastic
sequence of buyers of type z1, . . . , zt , the algorithm then chooses apriori if at step t a buyer b̄t is
going to be the buyer bt that she observes or zt (with probability half each). The sequence b̄t is
distributed as depicted in Lemma 4. Note that we do not assume that the learner knows the value of
bt .

At each iteration t, algorithm A′ receives price pt from algorithm A and posts price pt . She then
receives as feedback β(pt ; bt ): Given the revenues β(p1; b1), . . . , β(pt ; bt ) and her own internal
random variables, the algorithm can calculate the revenue for algorithm A w.r.t to the sequence of
buyers b̄1, . . . , b̄t , namely rt = R(pt−1, . . . , pt+1, b̄1:t ).

In turn, at time t algorithm A′ returns to algorithm A her revenue, or feedback, w.r.t b̄1, . . . , b̄T at
time t which is rt .

Since Algorithm A receives as feedback at time t R(pt−1, pt, pt+1; b̄1:t ), we obtain that for the
sequence of posted prices p1, . . . , pT :

RegretT (A; b̄1:T ) =
T∑
t=1

β(p∗, p∗; b̄t ) −
T∑
t=1

β(pt, pt+1; b̄t ).

Taking expectation, using Lemma 4, and noting that the number of time pt+1 > pt is at least 1/3 of
the times pt , pt+1 (since there are only 2 prices), we have that

1
2

S 1
12

-RegretT (A′; b1:T ) ≤ Eb̄1:T

[
RegretT (A; b̄1:T )

]
≤ RegretT (A)

Since this is true for any sequence b1:T we obtain the desired result.

Algorithm 2: Reduction from from pricing with switching cost to strategic buyers
Input:T, A % A is an algorithm with bounded regret for strategic buyers;
Output:p1, . . . , pT ;
Set r1 = . . . = rT = 0;
Draw IID z1, . . . , zT % see Eq. 4;
Draw IID e1, . . . , eT ∈ {0, 1} Distributed according to Bernoulli distribution;
for t=1,. . . ,T do

Receive from A a posted price pt+1; %At first round receive two prices p1, p2.;
post price pt and receive as feedback β(pt ; bt );
if et = 0 then

Set rt = rt + β(pt ; bt ); % b̄t = bt

else
if (pt ≤ pt+1) OR (zt has patience 0) then

Set rt = rt + β(pt ; zt )
else

Set rt+1 = rt+1 + β(pt, pt+1; zt )

Return rt as feedback to A.

4.2 From MAB with switching cost to Pricing with switching cost

The above section concluded that switching cost for pricing may be reduced to pricing with strategic
buyers. Therefore, our next step would be to show that we can produce a sequence of non-strategic
buyers with high switching cost regret. Our proof relies on a further reduction for MAB with
Switching cost.
Theorem 5 (Dekel et al. [9]). Consider the MAB setting with 2 actions. For any randomized
player, there exists a sequence of loss functions `1, . . . , `T where `t : {1, 2} → {0, 1} such that
Sc -RegretT (A; `1:T ) ∈ Ω(T2/3), for every c > 0.

7



Here we prove an analogous statement for pricing setting:

Theorem 6. Consider the pricing problem for buyers with patience τ̂ = 0 and n = 2. For any
randomized seller, there exists a sequence of buyers b1, . . . , bT such that Sc -RegretT (A; b1:T ) ∈
Ω(T2/3), for every c > 0.

The transition from MAB with switching cost to pricing with switching cost is a non-trivial task. To
do so, we have to relate actions to prices and values to loss vectors in a manner that would relate the
revenue regret to the loss regret. The main challenge, perhaps, is that the structure of the feedback is
inherently different in the two problems. In two-armed bandit problems all loss configuration are
feasible. In contrast, in the pricing case certain feedbacks collapse to full information: for example, if
we sell at price 1 we know the feedback from price 1

2 , and if we fail to sell at price 1
2 we obtain full

feedback for price 1.

Our reduction proceeds roughly along the following lines. We begin by constructing stochastic
mappings that turn loss vectors into values νt : {0, 1}2 → {0, 1

2, 1}. This in turn defines a mapping
from a sequences of losses `t to stochastic sequences of buyers bt . In our reduction we assume we
are given an algorithm A that solves the pricing problem; that is, at each iteration we may ask for
a price and then in turn we return a feedback β(pt ; bt ). Note that we cannot assume that we have
access or know bt that is defined by νt (`t ). The buyer bt depends on the full loss vector `t : assuming
that we can see the full `t would not lead to a meaningful reduction for MAB.

However, our construction of νt is such that each posted price is associated with a single action. This
means that for each posted price there is a single action we need to observe in order to calculate the
correct feedback or revenue. This also means that we switch actions only when algorithm A switches
prices. Finally, our sequence of transformation has the following property: if i is the action needed in
order to discover the revenue for price p, then E(`t (i)) = 1

2 −
1
4E(β(p; bt )). Thus, the regret for our

actions compares to the regret of the seller.

5 Discussion

In this work we introduced a new model of strategic buyers, where buyers have a window of time
in which they would like to purchase the item. Our modeling circumvents complicated dynamics
between the buyers, since it forces the seller to post prices for the entire window of time in advance.

We consider an adversarial setting, where both buyer valuation and window size are selected adver-
sarially. We compare our online algorithm to a static fixed price, which is by definition oblivious
to the window sizes. We show that the regret is sub-linear, and more precisely Θ(T2/3). The upper
bound shows that in this model the average regret per buyer is still vanishing. The lower bound shows
that having a window size greater than 1 impacts the regret bounds dramatically. Even for window
sizes 1 or 2 and prices 1

2 or 1 we get a regret of Ω(T2/3), compared to a regret of O(T1/2) when all
the windows are of size 1.

Given the sharp Θ(T2/3) bound, it might be worth revisiting our feedback model. Our model assumes
that the feedback for the seller is the revenue obtained at the end of each day. It is worthwhile to
consider stronger feedback models, where the seller can gain more information about the buyers.
Namely, their day of arrival and their window size. In terms of the upper bound, our result applies to
any feedback model that is stronger, i.e., as long as the seller gets to observe the revenue per day,
the O(T2/3) bound holds. As far as the lower bound is concerned, one can observe that our proofs
and construction are valid even for very strong feedback models. Namely, even if the seller gets as
feedback the revenue from buyer t at time t (instead of the time of purchase), and in fact even if she
gets to observe the patience of the buyers (i.e. full information w.r.t. patience), the Ω(T2/3) bound
holds, as long as the seller posts prices in advance.

We did not consider continuous pricing explicitly, but one can verify that applying our algorithm
to a setting of continuous pricing gives a regret bound of O(T3/4), by discretizing the continuous
prices to T1/4 prices. On the positive side, it shows that we still obtain a vanishing average regret in
the continuous case. On the other hand, we were not able to improve our lower bound to match this
upper bound. This gap is one of the interesting open problems in our work.
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A Proofs for Lower Bound

In this section we prove Theorem 2. We follow the two step proof idea presented in the main text.
For simplicity we begin by assuming τ̂ = 1. The general case is dealt with in Section A.3.1

A.1 Reduction from switching cost

A.1.1 proof of Lemma 4

By definition we have that:

E
b̄1:T

RegretT (A; b̄1:T ) = E

max
p

T∑
t=1

R(p, . . . p, b̄1, . . . , b̄t ) −
T∑
t=1

R(pt−1, pt, pt+1, b̄1, . . . , b̄t )


By definition of R we can rewrite the terms as:

E
[
RegretT

(
A; b̄1:T

)]
= E


max
p

T∑
t=1

β(p, p; b̄t ) −
T∑
t=1

β(pt, pt+1; b̄t )

.

Let p∗ be the maximizer of the non noisy sequence of buyers:

p∗ = arg max
p∗

T∑
t=1

β(p∗, p∗; bt ) =
∑

p∗1
(
vt ≤ p∗

)
Then

RegretT (A; b̄1:T ) ≥ E


T∑
t=1

β(p∗, p∗; b̄t ) −
T∑
t=1

β(pt, pt+1; b̄t )


Note that p∗, pt and pt+1
2 are independent on whether b̄t = bt or b̄t = zt hence

E


T∑
t=1

β(p∗, p∗; b̄t ) −
T∑
t=1

β(pt, pt+1; b̄t )

=

1
2
E


T∑
t=1

β(p∗, p∗; bt ) − β(pt, pt+1; bt )

+

1
2
E


T∑
t=1

β(p∗, p∗; zt ) − β(pt, pt+1; zt )


Recall that if the value of zt is 1/2 her patience is τ = 0 and we have β(pt, pt+1; zt ) = β(pt, pt ; zt )
and if zt has value 1 then β(pt, pt+1; zt ) = β(pt, pt ; zt ) − 1

21(pt ≥ pt+1). Where

1(pt ≥ pt+1) =
{

1 pt > pt+1
0 else

.

Taken together, and exploiting the fact that pt and pt+1 are both independent of ztwe have that
E(β(pt, pt+1; zt ) = E(β(zt ; pt, pt )) − 1

41(pt ≥ pt+1). Hence

E
[
RegretT (A; b̄1:T

]
≥

1
2
E


T∑
t=1

β(p∗, p∗; bt ) − β(pt, pt+1; bt )

+

1
2
E


T∑
t=1

β(p∗, p∗; zt ) − β(pt, pt ; zt ) +
1
4
1(pt ≥ pt+1)


Recall that bt has patience 0 hence we can write β(pt, pt+1; bt ) = β(pt ; bt ).

Finally note that for any fixed price E(β(p, p; zt )) = 1
2 . Since both p∗ and pt are independent of zt

we have: E(β(p∗, p∗; zt )) = E(β(pt, pt ; zt )), and we obtain the desired result,

Eb̄1:T

[
RegretT (A; b̄1:T

]
≥

1
2
E


T∑
t=1

β(p∗; bt ) − β(pt ; bt )

+

1
8
1(pt ≥ pt+1).

2Recall that the seller needs to publish one price a head in advance
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A.2 Pricing with switching cost

The aim of this section is to prove Theorem 6. Our proof relies on the following technical Lemma
which we leave her proof to Section A.2.2:
Lemma 7. Let F be the class of pairs of transformations from {0, 1} to revenues in {0, 1

2, 1} i.e.

F =

{
f = ( f (1), f (2)) : f (i) : {0, 1} →

{
0,

1
2
, 1

}
, i = 1, 2

}
.

and letV be the class of transformations from {0, 1}2 to values in
{
0, 1

2, 1
}

V =

{
ν : ν : {0, 1}2 →

{
0,

1
2
, 1

}}
There exist a distribution D over F ×V , that can be efficiently implemented and has the following
properties:

1. For every pairs of bits (a1, a2) ∈ {0, 1}2, if b is a buyer with value v = ν(a1, a2) and patience
0 then:

β(1; b) = f (1) (a1) and β(
1
2

; b) = f (2) (a2),

always.

2. For both i = 1, 2 we have

E
f∼D

[
f (i) (x)

]
=

1
2
−

1
4

x.

A.2.1 Proof of Theorem 6

Let A be some seller against non-strategic buyers with bounded Sc -RegretT . we will first construct
an algorithm A′ for the 2-action MAB problem with bounded Sc -RegretT . Namely, we will have that
for every sequence of losses `1, . . . , `T we can construct a sequence of non-strategic buyers such that:

Sc -RegretT (A′; `1:T ) ≤ Sc -RegretT (A; b1:T ).

In the reduction we are considering, Algorithm A′ receives at each iteration t the price posted by
algorithm A at step t and at each iteration algorithm A′ chooses the feedback algorithm A observes.
The algorithm is depicted in Algorithm 3.

Our algorithm A′ work as follows: At the beginning of the iterations, the algorithm produces an
IID sequence of pairs (f1, ν1), . . . , (fT , νT ) as depicted in Lemma 7. At each iteration, the algorithm
receives from algorithm A a price 1/2 or 1. If the algorithm A posts price 1

2 then algorithm A′

chooses action 2, observes `t (2) and returns to algorithm A as feedback f (2)
t (`t (2)). By property

1 of Lemma 7 we have that A returns as feedback f (2)
t (`t (2)) = β( 1

2 ; bt ). Similarly if algorithm
A posts price 1 then algorithm A′ chooses action 1, observes `t (1) and returns to algorithm A as
feedback f (1)

t (`t (1)) = β(1; bt ).

Since algorithm A received at each iteration as feedback β(pt ; bt ) we have by assumption that:

Sc -RegretT (A; b1:T = E *
,
max
p∗

T∑
t=1

β(p∗; bt ) − β(pt ; bt )+
-
+ cE(|{pt : pt , pt+1}|))

Next, for every fixed action i and loss vectors `1, . . . , `T , we have by property 2 of Lemma 7:

Ef



T∑
i=1

f (i)
t (`t (i))


=

T
2
−

1
4

T∑
i=1

`t (i).

Thus, fix `1, . . . , `T and i∗ and set p∗ =
{

1 i∗ = 1
1
2 i∗ = 2

:

*
,

T∑
t=1

(`t (it )) −
T∑
t=1

(`t (i∗))+
-
= 4 *

,
E
ft

T∑
t=1

( f (i∗)
t (`t (i∗))) − f (it )

t (`t (it ))+
-
=

11



4E *
,

T∑
t=1

β(p∗; bt ) − β(pt ; bt )+
-
≤ 4E *

,
max
p∗

T∑
t=1

β(p∗; bt ) − β(pt ; bt )+
-

Thus we have

RegretT (A′; `1:T ) ≤ Eb1:T

[
4Sc -RegretT (A; b1:T ) − 4cE( |{pt : pt+1 , pt }|

]
.

Next note that for every realization b1, . . . , bT algorithm A and algorithm A′ have the same number
of switching taken together we obtain that for algorithm A′:

S4c -RegretT (A′; `1:T ) ≤ Eb1:T

[
Sc -RegretT (A; b1:T )

]
≤ Sc -RegretT (A).

Finally, since the result holds for every `1:T we obtain the desired result from Theorem 5.

Algorithm 3: Reduction from MAB with switching cost to pricing with switching cost
Input: T, A % A is an algorithm with bounded regret for pricing with switching cost;
Output: i1, . . . , iT ;
Draw IID (f1, ν1), . . . , (fT , νT ) ∼ D % see Lemma 7;
for t=1,. . . ,T do

Receive from A a posted price pt ;
if pt = 1 then

Set it = 1
else

Set it = 2
Play action it and receive as feedback `t (it );
Return to A as feedback f (it )

t (`t (it )); %Note that f (it )
t (`t (it )) = β(pt ; bt )

A.2.2 Proof of Lemma 7

We begin by constructing f: We choose f as follow:

• With probability 1
4 we let: f (1) (`) = 1 − ` and f (2) (`) = 1

2 .

• With probability 1
4 we let: f (1) (`) = 1 and f (2) (`) = 1

2 .

• With probability 1
2 we let: f (1) (`) = 0 and f (2) (`) = 1

2 (1 − `).

The random variable ν is then defined as a function of f and for which 1 holds. To define ν note that for
any feasible realization of f and any two bits a1, a2 we have ( f (1) (a1), f (2) (a2) ∈ {(0, 0), (0, 1

2 ), (1, 1
2 )}

Thus we can define ν(a1, a2) as a function of f as follows:

ν(a1, a2; f) =



0 ( f (1) (a1), f (2) (a2)) = (0, 0)
1
2 ( f (1) (a1), f (2) (a2)) = (0, 1

2 )
1 ( f (1) (a1), f (2) (a2)) = (1, 1

2 )

A.3 Proof of Theorem 2 for τ̂ = 1

Let A be some seller for buyers with patience at most τ̂ = 1. Let A′ be the algorithm whose existence
follows from Lemma 4. A′ is an algorithm against non strategic sellers, and by Theorem 6

S 1
12

-RegretT (A′) = Ω(T2/3).

By Lemma 4 RegretT (A) ≥ S 1
12

-RegretT (A′).

A.3.1 Generalization to arbitrary τ̂

In this section we prove Theorem 2, in which the lower bound has dependence on τ̂, namely
Ω(τ̂1/3T2/3). For simplicity we will assume τ̂ is odd (we can always construct an adversary with
τ̂ − 1).

We will restrict ourselves to adversaries with the following properties:
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1. The adversary divides the interval T to τ̂+1
2 blocks and at each block the adversary chooses

a constant value for all buyers.
2. The adversary only chooses buyers with τ = 0 or with patience up to the end of the next

block (since the size of the blocks is τ̂+1
2 he can always do that).

3. If the patience of the buyer is not 0 then the buyer has maximal value v = 1.

To further simplify things, we will strengthen our seller and allow him to choose all the prices in the
next block at the beginning of the block before (this only strengthen him since he can now delay the
posting of some of the prices). Note that since the patience of all buyers is only one block ahead their
revenue is well defined even for this type of buyer.

Next note, the given such buyers and sellers the seller can choose a fixed price throughout the block.
Indeed, if the optimal seller chooses price pt, pt+1, . . . pt+ τ̂+1

2
for some block: the expected revenue

for those prices and for picking one of them randomly is the same (as the buyers are fixed within a
block). Further, since the buyer has τt , 0 only if his value is maximal, by choosing an expected
price he only gains in terms of revenue from buyers and previous blocks.

Taken together, we reduced the problem to a setting of τ̂ = 1– both adversary and seller choose at
each block a fixed buyer and price. However, the revenue per round is now multiplied by a factor of
τ̂+1

2 .

The only tackle is that we restrict ourselves to adversarial sequences where buyer has patience
different then zero iff his value is maximal. Luckily one can see in our construction that this is indeed
the case for our adversarial buyers.

Taken together with number of blocks we obtain:

RegretT ≥
τ̂ + 1

2

(
2T
τ̂ + 1

)2/3

= Ω(τ̂1/3T2/3).
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