
– Independent Work Report, Spring 2023 –

Creating an Application for Improved Communication

During Tournaments for the Eastern Collegiate

Taekwondo Conference (ECTC)

Joseph Lou

Advisor: Robert Dondero

May 1, 2023

Abstract

The Eastern Collegiate Taekwondo Conference (ECTC) hosts a few taekwondo

tournaments a year for students of college universities in the Eastern United States. At these

tournaments, there is a need to send timely notifications to participants, such as when they need

to get ready to compete. My project aimed to create a system that would make it easier for

administrators to send the notifications and make the notifications themselves a better

experience for the recipients. I created the Tournament Notification System (TNS), which ended

up being used in an actual ECTC tournament at the end of the semester.

This paper represents my own work in accordance with University guidelines.

Joseph Lou

1

Table of Contents

1. Introduction 3
1.1 Background 3
1.2 Motivation 4
1.3 Prior Work 5

2. Approach 5
2.1 Plan 5
2.2 The System 7

2.2.1 Authentication and Authorization 7
2.2.2 Manage Admins 8
2.2.3 Global Settings 9
2.2.4 Admin Settings 11
2.2.5 Notifications 14
2.2.6 Matches Status 21
2.2.7 Sent Emails 22
2.2.8 Subscriptions 22

3. Implementation 24
3.1 Database Schema 24

3.1.1 Global State 24
3.1.2 Admins 25
3.1.3 Roster Tables 25
3.1.4 Matches Status 27
3.1.5 Emails Sent 27
3.1.6 Team Subscriptions 28

3.2 Reading from Google Spreadsheets 28
3.3 Sending Notifications 30
3.4 Mailchimp 30

3.4.1 Templates and Campaigns 30
3.4.2 Custom Email Content 33
3.4.3 Sending Batch Notifications 34
3.4.4 Batch Operations 35

3.5 AJAX 35
3.6 Frontend 36

3.6.1 Responsiveness 36
3.6.2 Success and Error Messages 36

3.7 Code 37
3.7.1 Organization 37

2

3.7.2 Statistics 39
3.8 Deployment 39

4. Evaluation 40
4.1 Formal Evaluations with Users 40
4.2 Real Use at the 2023 UVM Tournament 42

4.2.1 Training Session 43
4.2.2 Scaling Issue 43
4.2.3 Campaigns and Segments Issue 44
4.2.4 Survey 46

5. Conclusion 47
5.1 Future Work 47
5.2 Lessons Learned 48
5.3 Project Self-Assessment 49

Appendices 50
A. Service Accounts 50
B. Roster Spreadsheet Specifications 50
C. Subject Placeholders 51
D. Conversation with Mailchimp Support 53
E. Evaluation Notes 58

3

1. Introduction

1.1 Background

To better understand the motivation for the system and all the relevant parts of what the project

aimed to achieve, we will need to first discuss the background for the problem.

Taekwondo is a Korean martial art. The Eastern Collegiate Taekwondo Conference

(ECTC) (https://www.ectc-online.org/about-us) is a collegiate taekwondo league that hosts five

Olympic-style tournaments each academic year at various universities in the Eastern United

States, including a tournament at Princeton, typically in the spring (this year’s was on Sunday,

February 26, 2023). At these tournaments, athletes from many colleges and universities come

together to compete in two events called poomsae (forms) and kyorugi (sparring). Poomsae has

three divisions split between belt levels (PA, PB, PC), and sparring has six divisions split

between belt levels and gender (Men’s [ABC], Women’s [ABC]), for a total of nine divisions.

Each division uses a single-elimination bracket (Princeton COS Professor Matt Weinberg, a

long-time member of the league, helped develop the bracket generation algorithm) between

teams of at most three members. Each match consists of the members of both teams facing off

one-by-one against someone from the opposing team, and the team with the most wins (best of

3) advances1. Each match takes place at a ring, the number of which varies depending on the

amount of space the tournament venue has and the number of competitors (more competitors

means more teams, which means the tournament will need to go faster to end on time or at least

get through the majority of the matches, so more rings are needed). To ensure a smooth process

of getting the proper competitors for each match to the proper ring and assigning matches to

1 I am omitting some rules here, such as sparring teams also being restricted by weight classes, since they are not
relevant for the paper. If you are interested, you can visit https://www.ectc-online.org/rules to see the official rules of
ECTC tournaments.

https://www.ectc-online.org/about-us
https://www.ectc-online.org/rules

4

rings whenever one becomes available, the teams for matches are first called to a holding area,

where a representative will find all the team members for a match and then lead them to their

assigned ring to compete. The most important and most frequent notification is therefore the one

that calls specific match numbers to holding.

The ECTC currently uses a collection of Google Spreadsheets to aid them during

tournaments. A registration spreadsheet is sent out to each school that is participating at a

tournament, where they will list all their competing athletes and how their teams among the nine

divisions are composed. Teams have names in the format “<School> <Division><Team

Number>”. For example, Princeton may have two teams of black belts competing in poomsae,

which would be teams Princeton PA1 and Princeton PA2, and two teams of green belts

competing in sparring, which would be teams Men’s B1 and Women’s B1. After registration, all

the relevant information is imported into a main spreadsheet called the Tournament Management

System (TMS), which has an impressive use of formulas and Google Apps Script integrations to

almost work like a live updating webpage. During the day of the tournament, members of the

Tournament Committee (TC) use the TMS spreadsheet to keep the tournament running, assign

matches to rings, save results, and update the brackets in real time.

1.2 Motivation

The ECTC sends emails for notifications. They used to use Google Groups, but due to

limitations on how many contacts can be added per day, they switched to an email service called

Mailchimp (https://mailchimp.com/). Because so many notification emails need to be sent, the

Communications Manager (who is in charge of sending the notifications) simply sends all emails

to everyone at the tournament, with a subject like “Matches XXX-XXX: Report to Holding”.

Receiving the hundreds of emails in my inbox every tournament despite only being on a single

https://mailchimp.com/

5

team, I wondered if there could be a way to send targeted email notifications to only the relevant

people. If I have to compete in Match 920, for example, then Matches 901-919 being called to

holding doesn’t really pertain to me. This was the basis for my project idea.

1.3 Prior Work

Although there do exist third-party tournament management systems, since the ECTC already

had a dedicated and working workflow, I thought that integrating into it would be the best way to

incrementally improve some tedious parts of the process. In particular, sending emails on

Mailchimp isn’t super straightforward, involving steps such as setting the content from a

template (which goes through a few screens), setting the recipients, setting the subject, and then

triggering a send. The subject for each email only changes the match numbers, but otherwise the

email content is the same (a generic template that asks the intended recipients to report to

holding). It is possible to define a limited set of recipients for an email, but it does require a bit of

work as well, so it makes it simpler to just send to everybody. Whenever a new batch of matches

can be called to holding to be assigned a ring and compete, the Communications Manager must

go through all these steps to send out the notification. This was the particular point that I wanted

to focus on for at least the first parts of my project. If I had time, there were also some other

ideas floating around that I was willing to tackle.

2. Approach

2.1 Plan

I started by contacting members from the TC, William Estey, Carissa Fu, and Tara Sarathi, to

gauge interest in a project like this. Being tired of the manual work, they were immediately

interested, and we set up weekly calls to stay updated on the progress of my work. Their input on

6

what was and was not needed or wanted was very helpful in narrowing down the scope of the

project and figuring out what exactly I would work on to be most helpful to the actual users.

In the end, we decided on a project that would focus on simplifying the process of

sending notifications, with more features added on if time permitted. (The users had many ideas

of additional features they wanted, so running out of things to do wasn’t an issue.) The benefits

of the system would include:

1. Being able to send personalized notifications to only the relevant people for each match

2. Using less of the Mailchimp email quota2

3. Making the workflow of sending notifications more efficient

In order to properly send notifications to certain people, I needed to know all the information

about each team. Since we have a single-elimination bracket, the teams competing in later

matches aren’t clear until previous matches have finished and the winner advances. Thus, I knew

I needed a design that would be able to fetch the updated competing teams for a given match

number. Once I knew the team names, I also needed a way to find out the athletes that belong to

each team, specifically their email addresses, and finally I could send a personalized email to just

the people in that match.

The TMS spreadsheet conveniently had all the information I needed. My users and I

agreed on a roster format, and they would create a roster worksheet that I could query to get the

full roster, including all the schools, user emails, and teams. There was also another worksheet in

the TMS that updated in real time with the competing team names for each match based on the

results from previous matches in the bracket, which is exactly what I needed. I was also able to

gain access to their existing Mailchimp account, where I created an API key to connect with the

2 The Mailchimp account has a quota of sent emails. Every email sent to a single email address counts as a distinct
email sent, even if all the emails were sent at once with the same content body. Therefore, personalizing the
recipients would use less of this email quota.

7

Mailchimp Marketing API. Using some method of accessing data from a Google Spreadsheet, I

would then have all the tools I needed to achieve the goal of personalized notifications.

2.2 The System

In this section, I will walk through very generally how to use the system, as if the reader were an

intended user of the system that only has the base knowledge of tournaments as described in the

1.1 Background section. Each subsection (with exception of the first subsection) will focus on a

single page of the application.

2.2.1 Authentication and Authorization

To authenticate users, I use Sign in with Google (see Figure 1). For authorization, since sending

notification is entirely an admin task, I check that the logged in user is a Super Admin or an

Admin for the site. If so, they will be able to access all the relevant pages of the application.

Otherwise, the user can still view the Matches Status page, which is public. See Figure 2 for a

comparison of the available navbar pages for each type of user.

Figure 1: The Google authentication prompt that users see.

8

Figure 2: The home page as a Super Admin, an Admin, and a non-admin user, respectively.

2.2.2 Manage Admins

A Super Admin user is able to add or remove Admin users through the Manage Admins page

(see Figure 3). To avoid the headache of recursive higher levels of admin permissions to add

other admins, there is no way to add Super Admins on the frontend, and the first Super Admin

was seeded as the ECTC’s main email address. To edit Super Admins, one would have to

manually update rows in the production database. I assumed this would not be a common task,

and my users agreed that this seemed reasonable.

Figure 3: The Manage Admins page.

9

2.2.3 Global Settings

A Super Admin user also handles the one-time global settings that only a Super Admin would

have access to or would need to set. In particular, in order to access data from a Google

Spreadsheet, I am using a Google service account, which the user must provide in the form of a

credentials JSON file3, and to be able to send emails through the Mailchimp account, I need a

Mailchimp API key. These values are unlikely to ever change throughout the lifespan of the

application. Even if they did change, only the Super Admin would be expected to be able to reset

them; regular Admins should not need to worry about these higher-level settings.

On the Global Settings page, a Super Admin may input the required information (see

Figure 4). The rest of the application will not work without these settings set, as demonstrated in

Figure 5. Since regular Admins cannot access the Global Settings page, they will instead be able

Figure 4: The Global Settings page.

3 See Appendix A for more information about service accounts and how to create them.

10

Figure 5: The Admin Settings page (for Super Admins) when the Global Settings are not
set.

Figure 6: The Admin Settings (for Admins) when the Global Settings are not set.

11

to see a modal popup that lists the Super Admins they can contact if there are any missing global

settings, as demonstrated in Figure 6.

In addition, a Super Admin may clear all the currently saved data. This should be done

before each tournament so that the system can start with a clean slate. The global settings will

not be cleared because those are one-time settings that would likely be used throughout the

lifespan of the system, so the user should manually clear those if they wish to reset them.

A Super Admin also has the option of clearing all the user subscriptions to team

notifications (see section 2.2.8 Subscriptions). This gives the Super Admin the ability to clear all

the database values from this page.

2.2.4 Admin Settings

An Admin user (which includes Super Admin users) may access the pages relevant to sending

notifications. In the Admin Settings page, they may configure the system for a tournament (see

Figure 7). This includes the link to the TMS spreadsheet, so the system can fetch the required

information, and some Mailchimp settings for sending emails.

On Mailchimp, an “audience” (or “list”) is a collection of contact emails. Each contact

may have optional “tags”, which the TC has been using to organize contacts by tournament (e.g.,

athletes who competed at the Princeton Tournament were tagged with “2023 Princeton

Tournament”). In order to send an email, one must create a “campaign”, which can be sent to an

entire audience or to the contacts tagged with a specific “segment” (another name for tags). The

content of the campaign, which recipients will see as the body of the received email, can be

populated by “templates”, which can be created by the user. Templates may be added to

“template folders”, and sent or draft campaigns may be added to “campaign folders”.

12

Figure 7: The Admin Settings page.

13

The current flow for the Communications Manager is to create an email template before

the tournament (if one doesn’t already exist), then create campaigns using that template during

the tournament, sending to all the contacts tagged with the current tournament. Since contacts

that went to previous tournaments but possibly not the current tournament are in the audience,

filtering the recipients using the tournament tag is necessary to avoid unnecessarily spamming

people.

It would be ideal for me to emulate this flow as best as I can, cutting out the repetitive

tedium of having to keep creating campaigns for every notification. In addition, by automating

tasks with the API, I could easily create a segment that contained only the relevant recipients for

a match notification and send a campaign to only that segment (thereby not sending the email to

people who don’t need to receive it).

However, the Mailchimp API had a bug relating to user-defined templates, and I was

unable to create a campaign and set its content to be a user-defined template. I still decided to

name everything on the Admin Settings page as if we were using actual templates, but the

requirements are a little different. The ideal user flow would be:

1. The user creates one template for each email body content they want to use. Each

template should be descriptively named so the user can know which one they want to

select from a dropdown.

2. The user puts all these templates in a single template folder.

3. The user selects the desired template folder on the Admin Settings page, so that the

system can fetch all the relevant templates to use for the notification emails. When the

emails are sent, the selected template will be used as the body content of the email.

Instead, the workaround4 I went with changed this flow to be:

4 See section 3.4.1 Templates and Campaigns for more technical details and challenges on this workaround.

14

1. The user creates one draft campaign for each email body content they want to use, with

the content already set. Each campaign should be descriptively named so the user can

know which one they want to select from a dropdown.

2. The user puts all these campaigns in a single campaign folder.

3. The user selects the desired campaign folder on the Admin Settings page, so that the

system can fetch all the relevant “campaign templates” to use for the notification emails.

When the emails are sent, the selected “campaign template” will be replicated, which will

result in the newly created campaign having the desired body content.

The Mailchimp settings on the Admin Settings page allow an Admin user to select the audience

they wish to use, specify an optional tag name for all the imported contacts, and select a template

folder (which is actually a campaign folder for the workaround) to use for the notification email

campaign templates. When the teams roster is fetched from the TMS spreadsheet, all the emails

will be added to the selected Mailchimp audience and tagged with the specified tag name, if it

was given. When sending a notification, the user will be able to choose a template (actually a

draft campaign) from the selected template folder (actually a campaign folder) to use for the

body of the email.

2.2.5 Notifications

The Notifications page will not work without all the Admin Settings being set, since all those

settings are required for the page to work.

The first step for an Admin user on the Notifications page would be to fetch the roster.

Before the roster is fetched, the page also will not work (meaning all inputs relating to sending

notifications will be disabled; see Figure 8 and Figure 9), since it would not know the team

members for each team, and thus it wouldn’t know who to send emails to.

15

Figure 8: The Notifications page before the roster is fetched.

16

Figure 9: The Notifications page after the roster is fetched.

17

Fetching the roster will query a worksheet in the TMS spreadsheet called FULL ROSTER.

All the users and teams found in the roster will be saved in the system’s database to minimize the

number of repeated queries to the actual TMS spreadsheet. All the emails will be added to the

Mailchimp audience and tagged with the optional tag. Every time the roster is fetched, the

existing saved roster in the database will be wiped and replaced, so that any changes to the actual

roster will be reflected in the system. Successfully fetching the roster also creates fetch logs,

which includes possible warnings or errors that occurred in the rows of the worksheet, and a link

to the full roster organized by schools, users, and teams. See Appendix B for the full expected

format and specifications of the roster worksheet. There is also a help page linked on the

Notifications page for the end users.

This brings us to the core part of the system, sending notifications. In the TMS

spreadsheet, there exists a “communications view” worksheet called Communications that lists

all the match numbers and information about them, including the division, round, status, and the

competing teams (which may need to be updated from previous matches). Whenever a match

number or range of match numbers is typed into the input box, this worksheet will be fetched to

look for the relevant information for the requested matches. This information will then be

inserted into the matches queue list, which contains all of the matches that will be sent a

notification when the button is clicked. The user may modify this list as they see fit, removing

matches with the “Remove” buttons on the right or adding more matches with the input. Above

the queue is a matches query that exactly matches the matches currently in the matches queue,

such that the user may enter the query into the input box and get the same result back (assuming

the information in the worksheet hasn’t changed). The “Last Query” button also does the same

thing. See Figure 10 for the matches queue and the corresponding inputs for interacting with it.

18

Figure 10: The matches queue and the inputs for interacting with it.

When the user is satisfied with the matches queue and wishes to send a notification for all

of the listed (valid) matches, they can go down to the sending section on the left (see Figure 11).

Here, they may select a template for the email content (from the selected template folder on the

Admin Settings page), specify a subject, and choose additional recipients.

The subject requires a bit of attention at first. Since the point of the system is to

personalize the notification emails, it also makes sense to personalize the subjects of the emails.

Figure 11: The sending section.

19

Currently, one campaign is created per batch of matches, such as “Matches 701-704: Report to

Holding”. Now, since we are creating one campaign per individual match in order to personalize

the recipients, we can also change the subjects to include only the relevant match number. I still

wanted to let the end user have control over the subject content (also lightly requested by my

users), so the subject input allows placeholder values such as {match}, {division},

{round}, and {team}5, which will be automatically populated with the proper values for each

campaign for each match. After a successful send, the last used subject is remembered, so the

user may only need to set this once, but it is available to be changed if they wish.

The roster supports coaches, athletes, and spectators, and here the Admin user may also

opt to send the notification emails to other recipients for the school of the team in each match.

For instance, it is reasonable to assume that the coach for a school would want to know all the

times one of their teams is being called to holding, and similarly for spectators. The Admin user

may also send the notifications to any subscribers to the teams in the matches being sent. See

section 2.2.8 Subscriptions for more information on team subscriptions.

The final part of the Notifications page is the ability to send blast notifications to a large

group of people, such as an entire division. When the audience tag from the Admin Settings page

is not set, the user may also send a blast notification to the entire audience, which may include

contacts that are not in the current tournament. A confirmation dialog will display a warning

about this when attempting to send to an entire audience (see Figure 12). When the audience tag

is set, the user will instead have the option to send a blast notification to all the contacts with that

tag (see Figure 13). In either case, an Admin may send a blast notification to any of the divisions

seen in the roster (see Figure 14).

5 See Appendix C for the full list of placeholders, what they are for, and how they work.

20

Figure 12: Sending a blast notification when the audience tag is not set.

Figure 13: Sending a blast notification when the audience tag is set to “2023 Princeton
Tournament”.

Figure 14: Sending a blast notification to the “PA” division.

21

2.2.6 Matches Status

The Matches Status page is a public page, but only Admin users can see the full information (see

Figure 15). In the TMS, each match has a status, from waiting for previous matches to “In

Holding” to “Competing” to “Done”. (There are more statuses, but they are not relevant to the

actual system.) For the user’s convenience, the status for every match is saved whenever the

Communications worksheet is fetched (when fetching match information) and then displayed

on this page. The table of statuses allows the user to easily see if a match has had an email sent to

it, including all the relevant information about the email. The public version of the page only

shows the email subject and when it was sent, while the admin version of the page also shows

the name of the Mailchimp template used and all the recipients of the email. This page was an

important feature requested by my users to see if any matches had been accidentally skipped.

Figure 15: The Matches Status page for an Admin and non-admin user, respectively (from
the 2023 UVM Tournament).

22

2.2.7 Sent Emails

The Sent Emails page is a protected Admin page and lists all the emails that were sent by the

system, including blast notifications (which don’t appear on the Matches Status page) (see Figure

16). The displayed information is similar to the Admin view of the Matches Status page.

Figure 16: The Sent Emails page (from the 2023 UVM Tournament).

2.2.8 Subscriptions

The Subscriptions page, which is available through the dropdown on the user’s email, allows the

user to subscribe to the notifications for a team, allowing them to receive any notifications that

the team gets. For instance, I may be interested in knowing when my teammates are going to be

competing, so I could subscribe to all the Princeton teams. The subscriptions are listed by school

and division, and there are pagination buttons for easily finding what the user may be looking for

(see Figure 17).

To prevent unknown users from logging in to the system and subscribing to some teams,

this feature is only enabled for Admin users and users that are in the fetched tournament roster6.

6 There is also a technical reason for this. Mailchimp campaigns will only send to recipients that are actually
contacts in the audience, so if we try to send an email to an unknown user, it wouldn’t work anyway (see section 5.1
Future Work for an unforeseen bug relating to this). It also makes sense from a security perspective to not allow
random users to receive these emails.

23

This means that coaches, athletes, or spectators in the roster will be able to subscribe to any

teams they wish, but non-participants will not have access (see Figure 18).

Note that the Admin user sending the notifications has full control over the recipients and

can prevent team subscribers from receiving notification emails, as seen in Figure 11. This

means that users who subscribe to certain teams may still not receive all notification emails.

Figure 17: The Subscriptions page (from the 2023 UVM Tournament).

Figure 18: The Subscriptions page for a user not in the roster.

24

3. Implementation

For the implementation of this system, I used a Python Flask server with a PostgreSQL database,

connected with the Flask extension Flask-SQLAlchemy. The frontend was served through Jinja2

templates, and the styling made use of the Bootstrap framework. The final project is deployed

through Render (https://render.com/), and the production database is also hosted on Render.

The source code is available at https://github.com/josephlou5/ectc-tournament-app. The

application is live at https://ectc-notifications.onrender.com7.

There were some interesting bugs that were discovered during a real use of the system.

Please see section 4.2 Real Use at the 2023 UVM Tournament for a detailed description of the

bugs and their solutions, as well as how the real use of the system went.

The rest of this section will describe particular design choices or challenges that I faced.

3.1 Database Schema

I used a PostgreSQL relational database for storing data in the system. This section describes the

table schemas and their relationships.

3.1.1 Global State

There were some pieces of information that were global to the entire system, such as the service

account used to access Google Spreadsheets (see section 3.2 Reading from Google

Spreadsheets), the Mailchimp API, the last used template for sending a notification email, etc. To

store this, I decided to use a table called GlobalState that had a single row with many

columns, essentially acting as a symbol table of the “global variables” of the system. Whenever I

7 Due to the limitations of the free tier of a PostgreSQL database on Render, my production database will expire on
June 23, 2023. Although the web service will still be live, it won’t have a database to connect to and will therefore
be pretty useless. My users have expressed interest in using the system again in the future, so the system may move
to their own domain, but this link will not be valid for long after this paper is written.

https://render.com/
https://github.com/josephlou5/ectc-tournament-app
https://ectc-notifications.onrender.com

25

needed to get this global state, I fetched the first row of the table; if it did not exist, I created one.

In this way, only the first row of this table was used. See Figure 19 for the full schema.

Figure 19: Schema for the GlobalState table.

3.1.2 Admins

For authorization, I used an Admins table (see Figure 20). To identify Super Admins, there is an

additional boolean column is_super_admin.

Figure 20: Schema for the Admins table.

3.1.3 Roster Tables

To store the roster, I used a Schools table, a Users table, and a Teams table. Each user belongs

to a school. Each team belongs to a school and is composed of multiple users. See Figure 21 for

the full schema.

26

Figure 21: Schema for the roster tables: Schools, Users, and Teams.

I also supported different roles for each user. Specifically, I supported having coaches,

athletes, and spectators in the roster. Only athletes could be on a team (there is no database

constraint for this, however). Coaches and spectators are not necessary for the system to work.

Each team can also be composed of zero or more alternate members. I could have created

a TeamAlternates table with a team_id and user_id column, where each row represents a

user being an alternate on a team, but I decided to have the alternates be represented as a

comma-separated list of user ids in the Teams table instead. Because of this workaround, there is

no formal relationship between the Teams.alternate_ids column and the Users.id

column.

Whenever the roster was fetched, these tables would be wiped by dropping them and then

adding them again, which would effectively reset the internal id counters back to 1. Since the

rest of the application doesn’t depend on any of these ids (they are only dependent on each

other), this operation was safe to do.

27

3.1.4 Matches Status

As mentioned above, whenever the matches are being fetched, their statuses from the TMS

spreadsheet are saved to be displayed on the Matches Status page. The TMSMatchStatuses

table simply saves these statuses for each seen match number, as well as when each status was

last updated (see Figure 22).

Figure 22: Schema for the TMSMatchStatuses table.

3.1.5 Emails Sent

The EmailsSent and BlastEmailsSent tables store the necessary data for the Matches

Status page and the Emails Sent page. See Figure 23 for the full schema.

In the BlastEmailsSent table, at most one of the division or tag columns should

be set, indicating the recipients of the blast email. If neither is set, the email is understood as

being sent to the entire audience that was selected at the time (which is not saved in this table).

Figure 23: Schemas for the EmailsSent and BlastEmailsSent tables.

28

3.1.6 Team Subscriptions

The team subscriptions are saved in a table called UserSubscriptions (each row is the

subscription of a user to a team, which is a justification for the slightly misleading name) (see

Figure 24). Each row saves the unique team identifier of the school, division, and team number.

The school is saved as the school name instead of the school id for two reasons: 1) subscriptions

can theoretically carry across tournaments (if a Super Admin doesn’t wipe them); and 2) if the

roster is fetched again and a school’s id changes, the subscriptions would break if there was a

dependency on the Schools table.

Figure 24: Schema for the UserSubscriptions table.

3.2 Reading from Google Spreadsheets

Since all the information I needed was in the TMS spreadsheet, and I didn’t want to make users

duplicate information by manually entering the roster and match team names into my system, I

needed to be able to read from a Google Spreadsheet. In addition, minimizing the amount of

work that the end users would have to do to enable me to read data from a spreadsheet would be

ideal.

29

Through other work, I have become familiar with a Python package called gspread

(https://docs.gspread.org/en/latest/) that allows a client to use either their own Google account or

a service account to create, view, and edit Google Spreadsheets. However, to use your own

Google account, you must go through a process of getting some API credentials, which isn’t

entirely straightforward, and then you must be continuously re-authenticated whenever your

session expires. To use a service account, you must go through a similar process to get API

credentials, but there is no need to re-authenticate. Since this option required users to have some

sort of credentials file that would need to be inputted into and saved by the system, I wanted to

consider some alternatives.

I found an API service called SheetDB (https://sheetdb.io/). I would need to create an

API key, then call their API methods with a spreadsheet id as a query argument. Importantly,

nothing else would be required, so I could create my own API key and pass it as an environment

variable to the server, removing the need for the end user to even think about how to access

Google Spreadsheets. I also only needed to read data for the purposes of my project, so this

seemed like a promising solution. However, the free plan only allowed for 500 requests per

month, which definitely wouldn’t be enough, and the next tier was $29.99 for 10k requests per

month, which might be enough but seemed like it wouldn’t be worth the cost.

In the end, I decided to go with the slightly complicated but free option with full

functionality. Because of the drawbacks mentioned above, I decided to have the end user use a

service account rather than their own email. This would also mean the system could be more

flexible, since the account accessing the spreadsheets would not be tied to a particular user email

address. Please refer to Appendix A for more information about service accounts, including how

to create one.

https://docs.gspread.org/en/latest/
https://sheetdb.io/

30

3.3 Sending Notifications

This project was inspired by an issue I saw with email notifications, but there was no need to

also constrain myself to emails. My users suggested the possibility of expanding the notification

system to mobile push notifications, for example. However, since I only had a semester to work

on this and I was very familiar with web services and very unfamiliar with mobile applications, I

decided to stick with the email notifications that were currently being used rather than learn how

to create a mobile app so that I could add push notifications. Thus, I needed a service that could

send emails.

I initially looked for my own email service that I could use. I considered options such as

Twilio SendGrid (https://sendgrid.com/); Mailgun (https://www.mailgun.com/); Flask-Mail

(https://pythonhosted.org/Flask-Mail/), a Flask extension that allows you to send emails via

SMTP; and Yet Another Mail Merge (YAMM) (https://yamm.com/). However, there were always

drawbacks to them, such as the price or email quotas. Eventually, I decided to piggyback on the

service that the TC was already using, Mailchimp (https://mailchimp.com/). I discovered that

Mailchimp had a Marketing API8 and a convenient Python client library9, so this was a very

good choice.

3.4 Mailchimp

3.4.1 Templates and Campaigns

As mentioned above, I had some issues with a bug in the Mailchimp API which prevented me

from implementing the ideal flow that I wanted and that would be easiest for the users to

understand. Specifically, the ideal flow would be to ask the user to create Mailchimp templates

for each email body content that they wanted to use, then present them with a dropdown of those

9 https://github.com/mailchimp/mailchimp-marketing-python
8 https://mailchimp.com/developer/marketing/api/

https://sendgrid.com/
https://www.mailgun.com/
https://pythonhosted.org/Flask-Mail/
https://yamm.com/
https://mailchimp.com/
https://github.com/mailchimp/mailchimp-marketing-python
https://mailchimp.com/developer/marketing/api/

31

templates when sending a notification. On the server side, I would then need to create a

campaign and set its content to be the selected template, as a user would do on the Mailchimp

UI.

When creating (POST /campaigns10) or updating (PATCH /campaigns/

{campaign_id}11) a campaign using the Mailchimp API, there is a body parameter

settings.template_id that you can set to specify the template you wish to use for the

campaign. I tried to create a campaign with a test template id, but when I checked the campaign

on the Mailchimp UI, it had no content. I then tried to create a campaign on the Mailchimp UI

and use the update endpoint to set the template id, but that again had no effect. There were no

indications of why these steps did not work, and it was a pretty serious issue because my entire

project depended on being able to send notifications with content.

Next, I tried the “set campaign content” endpoint (PUT /campaigns/

{campaign_id}/content12), where you could either provide a template id or some raw

HTML to set the content of the specified campaign. I tried the template id again, and this time

received a response with a perplexing error: “A deep, internal error has occurred during the

processing of your request. Please contact support.” This was very surprising, but I tried the

other method of setting the raw HTML, and that worked. This left me with two options: 1)

extract the HTML of the selected template, then set the HTML of the campaign; or 2) instead of

using Mailchimp templates, have the end user create their own HTML templates on my site,

which I would save, then allow them to select from a dropdown of their created templates, and I

could use the content of those to set the HTML of the campaign. Obviously, option 2 seemed

overly complex, and there were no guarantees that the users would know HTML (Mailchimp

12 https://mailchimp.com/developer/marketing/api/campaign-content/set-campaign-content/
11 https://mailchimp.com/developer/marketing/api/campaigns/update-campaign-settings/
10 https://mailchimp.com/developer/marketing/api/campaigns/add-campaign/

https://mailchimp.com/developer/marketing/api/campaign-content/set-campaign-content/
https://mailchimp.com/developer/marketing/api/campaigns/update-campaign-settings/
https://mailchimp.com/developer/marketing/api/campaigns/add-campaign/

32

provides a very nice template builder which requires no coding knowledge). It would also

introduce the unnecessary complexity of dealing with HTML, including parsing, XSS protection,

and validation to name a few, not to mention I didn’t know Mailchimp’s expected format of

HTML or supported tags, for example. Option 1 seemed like the way to go, until I realized there

was no endpoint to get the HTML content of a template.

Finally, I discovered the replicate endpoint (POST /campaigns/{campaign_id}/

actions/replicate13), which would allow me to replicate an existing campaign, including its

content. In this way, I wouldn’t need to deal with setting any content. Unfortunately, this meant a

worse tradeoff for my users, since they would have to create all the “template campaigns”

beforehand, and if they wanted to change the content of one of these “templates”, they would

need to edit the content of a campaign. This forced me to have to clearly explain this in the

system, since it was a very important part of being able to select the proper templates to use

when sending emails.

I also contacted Mailchimp Support about the internal error when trying to set the content

of a campaign using a template id. They were not able to immediately identify the problem, and

they said they would have to move the conversation to email when they found the issue. After

three and a half weeks, they finally replied and said that the new builder templates are not

supported by the API, and the best solution would be to use the Classic Builder when creating

the template14. When creating user-defined templates, the Mailchimp UI automatically uses their

new template builder (which is in beta at the time of writing), so the existing templates on my

users’ Mailchimp account were all built with the new template builder, not the Classic Builder.

At this point, my project was near completion, and it didn’t seem good to ask my users to do

14 See Appendix D for the full transcript of my conversation with Mailchimp Support.
13 https://mailchimp.com/developer/marketing/api/campaigns/replicate-campaign/

https://mailchimp.com/developer/marketing/api/campaigns/replicate-campaign/

33

extra work to respond to the shortcomings of the Mailchimp API, so I opted to stick with the

workaround I described above.

3.4.2 Custom Email Content

Since the goal was to personalize the emails for certain recipients, it would also be good to be

able to customize the email body content as well. For example, my users suggested that perhaps

the subject could contain the match number and the body could contain the team member names

as well as the opposing team name and members. However, looking into Mailchimp to figure out

how to do this, I ran into a few obstacles.

Unfortunately, there didn’t seem to be a way to edit the content of a template through the

API. As mentioned above, editing the content of a campaign would also be a hassle, even

through raw HTML. Mailchimp does have a concept of “merge fields”15, which are fields

associated with each contact that can be injected into the body of an email with the syntax

|FIELDNAME|, such as addressing each recipient by their first name when sending a single

campaign. However, in order for this to be useful for me, I would have to edit the merge fields of

each recipient of a campaign to be the data that I wanted to display for all of them (e.g., I would

edit the merge fields called *|TEAMMEMBER1|*, *|TEAMMEMBER2|*, *|TEAMMEMBER3|*, etc.

for each recipient of a match email in order to properly show all the team members). However,

this seemed like a waste of time and resources with all the repeated information, not to mention

the uncertainty with some teams not having three members and some teams having alternates. It

did not seem like I could take advantage of this feature in an efficient or simple way.

I tried finding out if there were any other options for dynamically changing the content of

a template on a per-campaign basis, but did not find anything. There seemed to be something

about customizing the content of a template, but templates weren’t working for me, and this

15 https://mailchimp.com/developer/marketing/docs/merge-fields/

https://mailchimp.com/developer/marketing/docs/merge-fields/

34

seemed like a paid feature that the Mailchimp account didn’t have access to. Not having this

feature wasn’t too much of a drawback for the overall system, but it definitely would have been

nice to be able to implement this for the users.

3.4.3 Sending Batch Notifications

When sending a notification for a match, I needed to create a campaign with the proper

recipients. To set the recipients of the campaign, I had to put all the contacts into a segment (or

tag), then direct the campaign to send to that segment. After using the send campaign endpoint

(POST /campaigns/{campaign_id}/actions/send16), Mailchimp would need to prepare

the campaign, then send it. Because of this, the time I triggered the send wouldn’t necessarily be

when the emails were actually sent to the contacts, but this was a minor issue that I wasn’t very

bothered with.

Thus, when sending a notification for multiple matches at once (which the “Send

Notifications” button supports), I had to create one campaign per match, setting the segment with

the proper recipients for each one. Since segments are actually created objects on Mailchimp and

stick around even if I only wanted to temporarily use one for the purpose of a single campaign, I

decided to reuse a singular segment called “[TNS] Email Segment” that would be edited for

every created campaign. Whenever a notification was triggered, I would look for an existing

segment with that name, and if it didn’t exist, I would create it. Then, for every match, I would

create a campaign (by replicating the selected template campaign, for the workaround), replace

the contacts in the segment with the intended recipients for this match, direct the campaign to

send to the segment, then trigger a send for the campaign. Importantly, I was reusing a single

segment for every single campaign that was being sent. This proved to be an issue later; see

section 4.2.3 Campaigns and Segments Issue for what happened.

16 https://mailchimp.com/developer/marketing/api/campaigns/send-campaign/

https://mailchimp.com/developer/marketing/api/campaigns/send-campaign/

35

3.4.4 Batch Operations

The Mailchimp API has a set of batch operations endpoints17 that allow the user to run many

operations at once and asynchronously. This seemed like an ideal feature to take advantage of,

especially for large operations such as adding all the new contacts to Mailchimp or sending a

large batch of match notifications. However, when I tested this with a small batch of adding three

contacts to the Mailchimp audience, it did not seem to work. I checked the status after 20

minutes and it was still pending, so I decided that this would not be a reliable feature to use. It

would be bad for the users to have to wait so long for even a simple operation to finish, and I

would also have to implement some way for my server to save the batch id and continuously

check its status until it finished. In the end, I did not use batch operations.

3.5 AJAX

Although there are many inputs in this system, as seen in section 2.2 The System, I did not use

any forms. Instead, I made heavy use of AJAX requests to GET, POST, and DELETE endpoints.

The responses returned by these AJAX endpoints were usually JSON data with the format

{“success”: True} or {“success”: False, “reason”: “error message”}. Upon a

success, I would sometimes trigger a page refresh so that new data would be shown (e.g.,

accepted inputs on the Global Settings and Admin Settings pages), or I would display a

“Success” message somewhere on the page that would disappear after some time (e.g.,

dropdowns on the Admin Settings page; subscribing to a team on the Subscriptions page). Upon

an error, I would usually be able to trigger a visual validation error through Bootstrap’s

.is-invalid class on <input> elements. This scheme was used on almost every page with

user interaction and in every endpoint meant to be called with AJAX.

17 https://mailchimp.com/developer/marketing/api/batch-operations/

https://mailchimp.com/developer/marketing/api/batch-operations/

36

3.6 Frontend

I used the Bootstrap framework for styling. I copied my Bootstrap boilerplate and template code

from a previous project I had made which used Bootstrap 5.0. At the time of creating this project,

Bootstrap 5.2 had already been released, with a few nice updates such as more colors. However,

by the time I realized this, I didn’t want to go back through all my pages and figure out what

needed updating, so I stayed on the lower version.

3.6.1 Responsiveness

Bootstrap is developed “mobile first” with responsiveness built in. Since my project is meant to

be used in a tournament context, in which the users of the system may have to be mobile for

various reasons, sometimes without a laptop handy, I also decided to try to make the frontend

responsive to different window and screen sizes. One example is in Figure 15: at a certain point,

the main title in the navbar will shrink from “Tournament Notification System” to “TNS”.

Sometimes the components on the page were weirdly positioned and hard to work with,

especially when elements started to wrap to the next line, but I’m pretty satisfied with how

everything turned out. There are a few exceptions, such as the matches queue table on the

Notifications page: when the members of each team are shown, the result is a little squished,

especially with long email addresses, and when the screen size gets smaller the table starts to

really look awful. To fix this, it might require some design changes of the table layout.

3.6.2 Success and Error Messages

In order to make using the system as clear as possible for users, I made sure to display

descriptive and appropriate success and error messages for almost every action performed by the

user. For example, Figure 25 shows a success message after sending a match notification. These

37

Figure 25: A success message after sending a match notification.

were achieved either through Flask’s flash() function18 or through messages returned in the

response of AJAX calls (see section 3.5 AJAX). Bootstrap’s alert components19 were very nice

for this purpose. I also used JavaScript’s setInterval() function to make these alert messages

disappear after some time.

3.7 Code

3.7.1 Organization

I mostly organized my code by purpose, then by permissions of the type of user who that code

was for. All the database models and helpers are grouped into the src/db/ folder, such that I

can simply “import db” in other files and access my database getter and setter methods. I have

19 https://getbootstrap.com/docs/5.0/components/alerts/
18 https://flask.palletsprojects.com/en/2.3.x/api/#flask.flash

https://getbootstrap.com/docs/5.0/components/alerts/
https://flask.palletsprojects.com/en/2.3.x/api/#flask.flash

38

a src/static/ folder with logo files, shared global JavaScript functions, and global styles.

(This folder also stores the public changelog, which I started after fixing the bug described in

section 4.2.3 Campaigns and Segments Issue.) The fetch roster logs, which are saved in a JSON

format, are also located in the static folder when it is created. The src/templates/ folder is

grouped by user permission or page, with a few shared templates such as layout.jinja,

navbar.jinja, and macros.jinja. The src/views/ folder is similarly grouped, using a

custom helper class to add all the routes into the main Flask app in src/app.py20. I also have a

src/utils/ folder for utilities that serve a certain purpose, such as those for fetching from the

TMS spreadsheet, those for communicating with the Mailchimp API, and general server utilities

like generating an HTML response from a rendered template. As the main bulk of the server

code, the src/views/notifications.py file was getting so long (over 1500 lines) that I

had to create a separate src/utils/notifications_utils.py file just to contain any

helper functions that weren’t directly related to a route, such as a handwritten parser for match

number queries and a subject placeholder validator.

In the root directory of my code, I also added the scripts build.sh and start.sh for

deployment. In the past, I had often put the build and start commands directly into the

deployment service, but doing it this way will allow me to better understand what I need to do

the next time I make a web service (and also make it easier to deploy the system elsewhere). In

the same spirit, I also created a local runserver.sh script that launches a local development

server with all the proper environment variables set, which was mostly for my own convenience.

(Because this included sensitive environment variable values such as those for Authentication

through Google, I could not commit this to the repo.)

20 An alternative to my custom helper class would be to use Flask Blueprints. However, this is a concept that I was
not familiar with and did not research for use in this project.

39

3.7.2 Statistics

Language Total Files Total Lines

Python 48 7781

Jinja
(not including <script> tags)

21 3319

JavaScript 11 2081

CSS 1 87

ALL 81 13,268

Folder / File Language Files Lines

Database Migrations Python 20 939

src/db/* Python 9 1836

src/static/shared.js JavaScript 1 332

src/static/style.css CSS 1 87

src/templates/* Jinja + JavaScript
(in <script> tags)

21 5076
(3319 + 1749)

src/utils/* Python 8 2546

src/views/* Python 8 2269

3.8 Deployment

I deployed the application as a web service on Render. In the free tier, web services spin down

after 15 minutes of inactivity, then are spun back up upon the first new request, which could lead

up to an initial response delay of 30 seconds21. This didn’t seem ideal to me, especially in the

context of a tournament needing to handle a lot of things. I had received funding from the School

of Engineering and Applied Science (SEAS) for a subscription to an email service, but since I

was using my users’ own paid Mailchimp account and therefore wasn’t using the funds for

21 Source: https://render.com/docs/free

https://render.com/docs/free

40

anything, I decided to upgrade to the Render starter tier for $7/month. The application therefore

did not have any downtime, and every request was handled immediately.

4. Evaluation

4.1 Formal Evaluations with Users

I performed formal evaluations with three users, student volunteers from the Princeton

Taekwondo Team that had the appropriate knowledge and tournament experience to understand

(and appreciate) the purpose and goal of the system. Through these evaluations, I was able to

pinpoint some potentially confusing parts of the system and additional gain some insights on

how real users figured out how the system worked and what it did.

For each of the users, I asked them to perform a list of tasks that would generally step

them through using the system as an Admin user. (I did not evaluate the Super Admin role

because the Manage Admins page and Global Settings page are pretty straightforward and are

not used regularly.) Throughout the evaluation, any general comments or suggestions were

noted, as well as any issues with the tasks.

The tasks were:

1. Given the TMS spreadsheet link (a testing spreadsheet), complete all the admin settings

2. Send a match notification for matches 701-705 to report to holding

3. Send a match notification for matches 701 and 801 for final call to holding

4. Send a blast notification to the Women’s A division for Women’s A team to start

warming up

5. Send a blast notification to everyone about a lost item

6. Check whether Match 702 received an email

7. Check the list of all emails sent

41

The most prominent issue that came up during these evaluations was how to define a match

notification subject. Since my backend was in Python, I used the style of Python format strings

for the subject placeholders, allowing me to use existing language features to inject variables into

a string. I explained a bit on the frontend what these placeholder variables were for and what

their values would be replaced with. However, the users in my evaluations did not immediately

understand how they worked.

In the subject of match notifications, you must include the placeholder {match} so that

the email subject contains the match number that it is being sent to. There is some help text

underneath the subject input box which says as much, and the help page also states this.

However, the evaluated users either did not read the small help text or did and still didn’t

understand it. They tried inputs such as “Match {701}”, “Match {701-705}”, and “Match {match

701}”, all of which received errors due to unknown placeholder variable names. I either had to

step in and explain that the {match} text itself was required (as it appears; no editing necessary

on your own) or the user eventually discovered the correct format through trial and error.

Based on this feedback, I changed the help text so that it was clearer in explaining that

the user should input the text {match} and that it would be automatically populated when the

emails were sent, implying that the user did not need to type any match numbers themselves.

However, I asked the real users after they used the system if they experienced any problems with

this, and none of them did. This could have been because I hosted a training session for them, so

the tricky parts of the application were already explained to them. The evaluated users did say

that once they understood, it made sense, but before that it was unclear.

Another common request from my evaluations was to have the subject automatically

populate based on the selected template. I explained the issues with this, namely that it would

42

override a subject that the user already typed, which they may have wanted to keep. I do

understand the appeal of not having to type a different subject for each template, especially in the

blast notification section where the subject may very well be exactly the same as the template

name, but this would be something that requires a bit more thought. For example, a button could

be added next to the subject input box that would replace the text with the template name,

thereby leaving it up to the user if they would like to automatically set the subject to the template

name (which cannot be copied and pasted, since it is in a dropdown).

Some positive feedback I received from my evaluations was that the system generally

seemed easy to use and useful for its purpose. One user really liked that there were very clear

confirmation messages that told you when an action was performed successfully, as discussed in

section 3.6.2 Success and Error Messages. Someone also said that there was enough text on the

main pages so that it wasn’t overwhelming but always answered whatever they were wondering;

a memorable quote from their evaluation was, “It would be nice if you had examples – oh you

do.”

Please see Appendix E for the full notes from these three evaluations.

4.2 Real Use at the 2023 UVM Tournament

One of the main goals of the project was to be able to use the system in a real tournament. In the

Spring 2023 semester, there were only two ECTC tournaments: one at Princeton on February 26,

2023 and one at the University of Vermont (UVM) on April 22, 2023. The Princeton Tournament

was definitely too soon for my project to be fully working, so we aimed for the UVM

Tournament, which had really good timing anyway because it was only a week before this

written report was due, which meant that the project should be pretty much finalized by that

43

time. Unfortunately, I was unable to make it to this tournament in person, but I gave out my

contact info to my users so that they could call or message me with any potential issues.

4.2.1 Training Session

We first hosted a training session for the specific volunteers that were going to be using the

system at the tournament. I spent an hour walking through the features of the system and

explaining the relevant aspects of how each part worked. I answered any questions they had, but

they seemed to understand it quite well, and were excited to be using it at the tournament. I got

into a few technical details with one of my users to explain the limits of what they had to do;

previously, all the emails of the tournament participants were imported manually into Mailchimp,

but I explained that the “Fetch Roster” button would automatically do that, so now there was no

work needed on Mailchimp other than the setup of the “template campaigns”.

Speaking of which, I was afraid that the Mailchimp template workaround would be the

hardest thing to understand (I didn’t go over it with the evaluated users because they were not

familiar with Mailchimp), but fortunately the users seemed to understand it well enough, and on

the system frontend, the workaround presents itself as if it were the actual flow that they would

understand.

4.2.2 Scaling Issue

Early in the morning, I received a call that the roster didn’t seem to be fetching. While looking at

the system, I also noticed that there was no link to the fetch roster logs, which would only

happen if the entire fetch failed in some way. Curious, I checked the server logs, and saw that

while trying to add new contacts to Mailchimp, the server was crashing with a timeout error

(triggered by Render, it seems). I realized that I was performing a redundant and expensive

operation while adding the contacts to Mailchimp. Essentially, I was blindly adding all emails

44

that I saw in the roster to Mailchimp. However, this is unnecessary because if the roster was

fetched before then all these contacts would have been added to Mailchimp then. My quick fix

was to take a set difference between the current emails seen in the roster and the previous emails

currently in the roster, and only add the new emails seen to Mailchimp. Since I was making one

API call per added user (see section 3.4.4 Batch Operations for why I couldn’t add them all at

once), this was a scaling issue when there were too many new contacts.

After the franticness of fixing bugs as soon as possible, I came up with an even better

solution to this problem. By making a few additional (paginated) API calls to Mailchimp, I could

easily figure out exactly who was already a contact in Mailchimp without having to rely on the

previous state of my saved roster. I then would only need to add the missing contacts. This also

has the added benefit of not doing additional work for users spanning multiple tournaments.

4.2.3 Campaigns and Segments Issue

Later in the day, I received a message that school coaches seemed to not be receiving any

notification emails. I checked my Sent Emails page, which said that the coaches were receiving

the emails. I further investigated on Mailchimp itself, and here I discovered a huge bug. Emails

being sent in batch were really all being sent to only one set of recipients, while all the other

recipients were not receiving any emails.

Recall the way that I reused a single segment for all created campaigns, as mentioned in

section 3.4.3 Sending Batch Notifications. When specifying the recipients of a campaign, you

give the campaign the segment id, which is reasonable. After triggering the campaign to send,

Mailchimp prepares the campaign for sending, which may take a few moments, and then at some

point, looks up the recipients in the specified segment and sends the email to them. However,

since I was creating campaigns, setting the contacts in the shared segment, and triggering

45

campaign sends in such quick succession, the campaigns internally must have looked up the

recipients from the segment after I had already finished “sending” all the campaigns. This meant

that all the campaigns were actually using the recipients list only meant for the last campaign,

since that was the most recent contacts list in the segment when it was queried.

This was obviously a huge issue, since most emails were not being sent to the intended

recipients, and a small subset of users were getting a bunch of emails they weren’t supposed to.

Fortunately, the fix for this was pretty simple: instead of reusing a single segment for every batch

of n matches, use one segment per match, resulting in n segments for a single batch of n matches.

I changed the name of the shared segment I was using to include an index at the end, so

campaign i would use a segment with name “[TNS] Email Segment {i}”. This ensured that

the campaigns in a single batch were all distinct, resulting in all of them reaching the proper

recipients. However, this still left the possibility of the segments clashing with each other if two

batches were sent in quick succession, but I just had to warn my users to not do that. A few

possible fixes for this last issue include:

1. Create temporary segments, then delete them after the campaign using it is sent;

2. Pre-tag each contact on Mailchimp with the appropriate teams they are on, then send

campaigns to those predefined segments (i.e., if all the segments are predefined, I won’t

need to change the contacts in a segment, and there would be no fear of sending a

campaign to a segment whose contacts changed between triggering the send and

Mailchimp actually sending the email); or

3. Create a segment for each match number, which should always have the same teams and

therefore the same recipients.

46

4.2.4 Survey

After the UVM Tournament, I sent a survey to the users of the system to ask about their

experience and perform a mini-evaluation of the system in a real setting.

The overall consensus seemed to be pretty positive; they all said they would love to use

the system in the future. Anyone who used the system was happy with the ease of using it and

how it simplified the process of sending notification emails, but the bugs that we ran into during

the day definitely made the experience a little rocky. Thankfully, the tournament still ran

smoothly despite the setbacks (at least from what I could tell, there weren’t any huge issues on

the tournament side).

I also made a point of asking these users whether they found the subject placeholders

confusing or hard to understand, as my evaluated users had experienced. I had done a training

session with them, but at that time I didn’t really think that I had to bring special attention to how

the placeholders worked. However, all of them said that at least the {match} placeholder was

clear to them, but they didn’t try using any of the other available ones.

A pain point that was brought up multiple times (and even during the tournament itself)

was the handling of when certain information is missing from the roster. Currently, fetching the

roster will ignore any invalid rows, which includes when a user’s email is missing. A

consequence of this is that if this person was the only member of a team, then that entire team

wouldn’t be added to the roster, which could lead to issues later on because one of the teams for

a match wouldn’t be found, and then the entire match would be invalid, meaning the other team

wouldn’t be able to receive the notification either (the match would be skipped when sending

notifications). However, making the fetcher more lenient could lead to other potential issues as

well, since I use a person’s email to unique identify them; if a row is missing the email, there

47

would be no way for me to accurately connect the row with another person, since I don’t want to

assume that rows with the same first and last name necessarily represent the same person. This

also introduces the possibility of a team not having any valid emails to send to, which would also

need to be handled. In summary, I didn’t think I would be able to fix this within this semester,

but after more thought is put into it, perhaps future work could be done to address this very

important issue.

Another thing that someone mentioned was a bit of confusion around the subscriptions

feature. Apparently some people at the tournament had come up and asked how to subscribe

themselves to other teams, but couldn’t find the subscriptions page even when they logged in.

That would probably mean that the email they logged in with wasn’t in the roster, but I wasn’t

aware of this until I saw the survey results, so there was nothing I could have done about that

specific instance. Perhaps making the instructions and restrictions on the subscriptions page

clearer would aid in future understanding of it.

Please see Appendix E.4 for the answers to the survey.

5. Conclusion

5.1 Future Work

There are still a few things in the system that could be worked on. As of this writing, I have 3

issues open on the GitHub repository:

● Only missing contacts should be added to Mailchimp (discussed at the end of section

4.2.2 Scaling Issue)

● Fetching the roster may result in missing teams if the team is composed of invalid rows

(discussed in section 4.2.4 Survey)

48

● Admins do not receive emails for subscribed teams

○ Admin users have access to the Subscriptions page and therefore may subscribe to

team notifications, but they might not be added as contacts in the Mailchimp

audience, which means any campaigns sent to them will simply ignore those

email addresses.

There was also another requested feature from the survey after the UVM Tournament to have the

ability to send an email with custom body content. That is, there would be a text box input where

the user would be able to type in exactly what they want the body of the email to say. This

feature would mainly be to completely remove the need to use Mailchimp during a tournament at

all, since it would cover pretty much all the cases where my users would need to use Mailchimp

to send an email. This is somewhat related to section 3.4.2 Custom Email Content, but more so

about completely setting the body content rather than customizing it on a per-match basis.

In addition to these, there is also potential to expand the system by adding more features

beyond notification sending. The users that I regularly met with had also expressed interest in

other features that I did not have time to implement, such as live school ranking results. This is

definitely something I would have liked to work on if I had more time.

5.2 Lessons Learned

While I have created web services in the past (even with the same technologies and tech stack), I

still learned a lot throughout the creation of this particular project. This was on the larger side of

any projects I had done, so code organization and modularity were very important throughout.

Since I was also integrating with multiple other sources (Google Spreadsheets and Mailchimp),

having all the utilities split between different files was very useful. I also experimented a lot

49

more with Bootstrap and Jinja2 macros, which helped me achieve a modularly-built frontend that

I was happy with, though UI/UX design is not my strong suit.

5.3 Project Self-Assessment

Overall, the project went very well. I created a system to organize the team information of a

tournament and send personalized emails. I was able to add many features to simplify the life of

the Communications Manager at an ECTC tournament, and it was (mostly) successfully used at a

real tournament. Although there were a few issues keeping it from the perfect application,

reactions to the system were very positive, and the users have expressed interest in continuing to

use the system in the future.

50

Appendices

A. Service Accounts

A service account is a special type of Google account intended for non-human users that can be

authorized to access data using Google APIs. Just like any other Google account, documents

must be shared with it for it to have access, and it can also view any publically accessible

document. It can create, view, edit, and delete documents, but for the purposes of my project, I

only needed one with read scopes.

There are some nice instructions in gspread’s documentation about how to create a

service account (https://docs.gspread.org/en/latest/oauth2.html#for-bots-using-service-account). I

also put this link on the Global Settings page for the Super Admin who needs to create it. Going

through the steps will result in a credentials JSON file, which the Super Admin should upload on

the Global Settings page.

B. Roster Spreadsheet Specifications

These specifications are also available to the user through a help link on the Notifications page.

In the given TMS spreadsheet in the Admin Settings page, there should be a worksheet

called FULL ROSTER with the full teams roster. The first row should be a header row with the

following headers:

● First Name: The first name.

● Last Name: The last name.

● Email: The email. Must be unique in lowercase.

● Role: The possible roles are “Coach”, “Athlete”, and “Spectator” (case insensitive).

● School: The school.

● Team Code: The team code (e.g., “PA1”, “Women’s B2”, etc).

https://docs.gspread.org/en/latest/oauth2.html#for-bots-using-service-account

51

● Fighting Weight Class: The possible weights are “Light”, “Middle”, “Heavy”, and

“Alternate” (case insensitive).

The headers themselves are case insensitive and must be unique in the headers row. The other

columns will be ignored.

The email, role, and school columns are required for each row, and at least one of the

name columns are required for each row.

Coaches and spectators (technically not required) should be specified with values in the

required columns. Since they aren’t on any teams, the “Team Code” and “Fighting Weight Class”

values will be ignored for those rows.

Athlete rows represent the athlete’s role on a single team, so the same athlete may have

multiple rows if they are on multiple teams. The “Team Code” value is required, and the

“Fighting Weight Class” value is required for sparring teams. Poomsae teams should not have a

“Fighting Weight Class” value unless it is “Alternate”.

When the “Fetch Roster” button is clicked, the roster will be fetched as specified. Logs

will be generated for each event that happens, such as adding a school, user, or team. Errors and

warnings will also appear for invalid rows, which may be helpful to check; for example, if a row

is missing an email, if a school doesn’t have any athletes or teams, etc. The existing saved roster

is also wiped so that roster changes will be reflected.

After the fetch, all the contacts will also be added to Mailchimp so that they can receive

notification emails. If an audience tag was given on the Admin Settings page, these contacts will

also be tagged with that tag.

C. Subject Placeholders

These specifications are also available to the user through a help link under the subject input.

52

The email subject for match notifications can be customized on a per-match or per-team

basis by using placeholder variables. These placeholders will be automatically replaced with

their corresponding values in the subjects of the sent emails. The available placeholders are:

● {match}: The match number (required in the subject).

● {division}: The division (as seen in the TMS).

● {round}: The round (as seen in the TMS).

● {blueteam}: The name of the blue team.

● {redteam}: The name of the red team.

● {team}: The name of the team receiving the email (will be different for both teams).

○ This will cause two campaigns to be sent for each match so that each campaign

can have different subjects. Any additional recipients (such as coaches, spectators,

or team subscribers) will receive the email for only the relevant team.

Placeholders are case insensitive and may be given multiple times. Invalid placeholders will be

rejected.

For example, a simple subject could be “Match {match}: Report to Holding”. If sent for

matches 701 and 702, this would result in the actual email subjects “Match 701: Report to

Holding” and “Match 702: Report to Holding”.

To prevent XSS attacks, and because I wasn’t sure what the valid character set for a

Mailchimp subject was, the subject is restricted to letters, digits, spaces, and any of the following

characters: -_+.,!#&()[]|:;’”/?.

On the server, I used a handwritten parser to go through a given subject and validate the

placeholder values and valid characters. I then used the Python str.format() method to inject

the proper values for each team’s subject. If the subjects were the same for a match, then the

53

recipients were combined and it was sent as a single campaign. Otherwise, two separate

campaigns were created and sent.

D. Conversation with Mailchimp Support

I contacted Mailchimp Support for help with a “deep, internal error” when trying to set the

content of a campaign using a template id. If they could resolve this issue, I would be able to

implement the ideal flow I wanted for my users. Unfortunately, they were not able to. Here is the

full conversation I had with Mailchimp Support, with the issue finally being resolved three and a

half weeks (25 days) after initially bringing up the issue.

2023-03-23 13:17:41 Me: Hello. I am trying to create a campaign with a saved template
through the API, but upon trying to send it says that the campaign is
not ready to send, and looking at the campaign on the website shows
that there is no content (and no template) for the campaign. I tried
using the `set_content` endpoint with the template id and got an error
message "A deep, internal error has occurred during the processing
of your request. Please contact support." I can share the exception
and instance in the error message too if that would be helpful. A
workaround I've considered is using `set_content` to set the html
myself (but I haven't figured out how to get the html content of a
template), but I would prefer to go with attaching a Mailchimp
template to a campaign.

2023-03-23 13:18:42 Mailchimp Support: Thanks for contacting Mailchimp Support. You
may experience longer than average chat wait times. Thank you for
your patience, and we look forward to assisting you.

2023-03-23 13:22:42 Mailchimp Support: We apologize for keeping you waiting. We’re
making every effort to assist our customers as quickly as possible,
and we look forward to helping you as soon as we can.

2023-03-23 13:27:42 Mailchimp Support: We appreciate your patience while we experience
an increase in support requests. We’re working as quickly as we can,
and one of our agents will be with you soon.

2023-03-23 13:32:55 *** Dragutin joined the chat ***

2023-03-23 13:34:10 Dragutin: Hello! Thank you for contacting Mailchimp Support. I
understand you're chatting in for assistance with errors you're getting
as you're trying to create and send a campaign with the API; is that
correct?

2023-03-23 13:34:16 Me: Yes

54

2023-03-23 13:34:53 Dragutin: Thank you! I am happy to help as much as I can.

How long have you been getting that alert about the deep internal
error?

2023-03-23 13:35:29 Me: Since yesterday. Other endpoints work fine. It seems to only be
related to trying to add a template id to an existing campaign. Also,
once I get this error, trying to view the campaign on the website
shows an error page as well.

2023-03-23 13:36:43 Dragutin: Thank you! I am monitoring the API on my end right now.
Can you try to add the template ID to the existing campaign now?

2023-03-23 13:37:12 Me: Sure! I’ll create a test campaign.

2023-03-23 13:37:59 Dragutin: Thank you! Let me know when you get that done and we'll
go from there.

2023-03-23 13:38:07 Me: (Sorry, my environment is taking a bit to start up.)

2023-03-23 13:38:17 Dragutin: Not a problem at all!

2023-03-23 13:41:04 Me: The campaign id is "b7d47f1f51". I successfully created it without
a template id. I then used the `set_content` endpoint to add a
template with id 31379 (a user template). I got the following error:
{
'detail': 'A deep, internal error has occurred during the processing of
your request. Please contact support.',
'exception': '7fae68ac464d695af8336d3ae84f253e',
'instance': 'b57755cf-3c76-63ba-ad5f-5552f843e744',
'status': 500,
'title': 'Internal Server Error',
'type': 'about:blank'
}

2023-03-23 13:41:30 Me: (I am using the `mailchimp_marketing` Python package.)

2023-03-23 13:42:56 Dragutin: Thank you so much! I am reaching out to an internal
specialist on this for you right now. Please stand by.

2023-03-23 13:43:04 Me: Thank you!

2023-03-23 13:44:16 Dragutin: Quick question, do you have the full timestamp on that error
on your end?

2023-03-23 13:45:12 Me: Sorry, no... I'm using a Google Colab Notebook and it says the
execution finished at 13:40 pm Eastern, if that helps

2023-03-23 13:46:21 Dragutin: It does indeed! Please stand by.

2023-03-23 13:57:50 Dragutin: I am still here and awaiting a response from the specialist. I

55

appreciate your patience!

2023-03-23 13:58:00 Me: Thank you very much for your help

2023-03-23 14:09:50 Dragutin: Do you see anything else on your end about any other kinds
of errors?

2023-03-23 14:10:12 Me: This is the only error I've seen throughout my testing

2023-03-23 14:13:26 Me: I just tried viewing the campaign I created on the website and I
saw these errors in the console. Maybe this could help?

2023-03-23 14:13:44 Me: Uncaught SyntaxError: missing) after argument list (at
activityi;dc_pre=CN6v6sTT8v0CFQ2inwodLa0Hfg;src=9894771;type=
klp;cat=entir0;match_id=182378926;ord=1678932409004.3ikqgtd;gtm
=45fe33k0;gcs=G111;auiddc=23738992.1678570977;u1=182378926;
u10=undefined;u11=en;u12=undefined,undefined,undefined,undefine
d;u22=admin;u3=undefined;u4=1842491818.1678570977;u5=167893
2409004.3ikqgtd;u6=2023-03-23T14:12:35.218-04:00;u7=page_view;
u8=campaigns;u9=edit;gdid=dYWJhMj;~oref=https://us21.admin.mail
chimp.com/campaigns/edit?id=442940:21:68)

2023-03-23 14:14:00 main-VNTK3OYP.js:1 GET
https://us21.admin.mailchimp.com/i/campaigns/edit/?id=442940 500

2023-03-23 14:14:24 Dragutin: Thank you! I will relay that to the internal specialist as well.

2023-03-23 14:14:32 Me:

2023-03-23 14:14:58 Me: Thank you

2023-03-23 14:34:23 Dragutin: I am still here and working with the specialist right now!

2023-03-23 14:34:34 Me: Thanks for the updates!

2023-03-23 14:42:39 Dragutin: Can you tell me exactly where you're placing the call?

2023-03-23 14:42:52 Me: What do you mean by "where"?

2023-03-23 14:43:25 Dragutin: Are you using an integration or are you doing it directly in
Python?

2023-03-23 14:43:35 Me: Directly in Python

2023-03-23 14:44:14 Dragutin: Thank you! So we're going to need to go ahead and take
this case to email, so our specialists can investigate further.

56

2023-03-23 14:44:36 Dragutin: I will reach out at xxxxx@gmail.com as I get updates.

2023-03-23 14:44:55 Me: Here is the code I used that resulted in the error:
create campaign
subject = 'Error Test (with template)'
response = client.campaigns.create(
{
"type": "regular",
"recipients": {
"list_id": AUDIENCE_ID,
},
"settings": {
"subject_line": subject,
"preview_text": subject,
"title": subject,
"from_name": from_name,
"reply_to": from_email,
},
"content_type": "multichannel",
}
)
campaign_id = response['id']
client.campaigns.set_content(campaign_id, {'template': {'id':
TEST_TEMPLATE_ID}})

2023-03-23 14:45:03 Me: Okay, sounds good.

2023-03-23 14:45:15 Dragutin: Thank you! I will pass that along as well.

2023-03-23 14:45:36 Dragutin: I'll go ahead and end our chat session now; thanks for
contacting Mailchimp Support. Have a great day.

2023-03-23 14:45:40 *** Dragutin left the chat ***

2023-03-23 14:45:42 Me: Thank you for all your help!

2023-03-28 08:59 Me: Hello,

Good morning! I was wondering if there were any updates on this
issue. I can provide more information if needed.

Thank you!

2023-03-28 11:48 Dragutin: Hi,

Thanks for writing!

I am still awaiting a reply from our internal specialists; I will reach out
with updates as soon as possible.

Dragutin

57

2023-04-01 12:22 Me: Hi again,

Sorry to keep pushing. I was wondering if there were any updates
now? I have a project that is depending on this feature to work, and
I'm currently having to try some other undesirable workarounds. Any
more information would be greatly appreciated!

2023-04-03 15:23 Dragutin: Hi,

Thanks for writing! I have reached out to our technical specialists and
am awaiting a response.

Dragutin

2023-04-14 18:03 Mailchimp Support: Hello,

We wanted to reach out one last time regarding the ticket (10868720).
Since we have not heard back, we will go ahead and close this ticket.

We hope you resolved the issue successfully. If you still need help,
reply to this email within the next few days and your ticket will reopen
automatically. As always, you can open a new support request via
your paid Mailchimp account.

Thank you,
Mailchimp Support

2023-04-16 09:58 Me: My issue was never resolved. I was told I would receive updates
but it's been two weeks and I haven't heard anything.

2023-04-17 12:35 Wyatt: Dear Valued User,

Thank you for contacting Mailchimp Support. Hope your weekend
was a good one.

Let’s jump back into the issue. I apologize for the very long delay.
We just received information about the error, “A deep, internal error
has occurred during the processing of your request. Please
contact support,” when using the set_content endpoint with the
template id.

After some testing was completed, our Mailchimp engineers have
concluded that the new builder templates are not supported by the
API. The engineers stated the system is unable to interpret which
template type it is, thus the error message is being received. Since
this is the case, the best work around would be to use the Classic
Builder templates instead.
https://www.screencast.com/t/Y5tXG6nLPFN8

I've included the article on how to switch email builders below:

58

https://mailchimp.com/help/design-an-email-classic-builder/?_gl=1*1d
mluor*_up*MQ..*_ga*MTMwNjE4MDczNS4xNjgxNzQ4ODg2*_ga_N5
HD1RTH6E*MTY4MTc0ODg4NS4xLjAuMTY4MTc0ODg4NS4wLjAuM
A..#Choose_the_classic_builder

Thank you for being so patient during the troubleshooting process.
Please let me know if there is absolutely anything else I can assist
with. I am always here to help.

Wyatt

E. Evaluation Notes

E.1. Evaluation with Cecilia Kim, 4/21/2023

Task: Given the TMS spreadsheet link (my testing spreadsheet), complete all the admin settings

● Went to Admin Settings page

● Pasted the spreadsheet url

● Selected the test audience

● Set the audience tag

● Selected the template folder

Task: Send a match notification for matches 701-705 to report to holding

● Went to Notifications page

● Saw the “roster not fetched yet” error

● Fetched the roster

● Fetched matches 701-705 (ignore the warnings)

● Selected the proper template

● Tried to set subject without placeholders, resulting in validation errors

○ Used actual match numbers {701-705}

○ Tried {701}

○ I explained the placeholders

● Sent the notification email

Task: Send a match notification for matches 701 and 801 for final call to holding

● No issues

Task: Send a blast notification to the PA division for Women’s A team to start warming up

59

● Was initially confused about the PA division

○ That’s my bad; I didn’t have the Women’s A division in my test data, but the

templates only ask sparring teams to warm up. In future evaluations, I will add a

Women’s A team for this task.

● Selected the proper template

● Set the subject

● Sent the blast notification email

Task: Send a blast notification to everyone about a lost item

● No issues

Task: Check whether an email was sent for Match 702

● Went to Sent Emails page

● Went to Matches Status page

● Reported no (correct)

Task: Check the list of all emails sent

● Went to Sent Emails page

Any thoughts / comments / suggestions / complaints?

● Subject placeholders is not clear (that the user needs to use them)

● Would be nice if subject auto-populated based on selected template

● “It looks beautiful”

● Very easy to use besides the subject

E.2. Evaluation with Yolian Lao, 4/21/2023

Task: Given the TMS spreadsheet link (my testing spreadsheet), complete all the admin settings

● Went to Admin Settings page

● Pasted the spreadsheet url

● Opened the url, just to see what it does

● Selected the test audience

● Left the audience tag blank (“I don’t know what this is, so I’ll leave it blank”)

● Selected the template folder

Task: Send a match notification for matches 701-705 to report to holding

● Went to Notifications page

● Saw the “roster not fetched yet” error, so fetched the roster

60

● Fetched matches 701-705

● Selected the proper template

● Entered subject without placeholder

○ Tried {701-705}, {match 701}

○ Eventually got {match} through trial and error, but was surprised that it worked

● Checked “Send to School Coaches”

● Sent the notification email

Task: Send a match notification for matches 701 and 801 for final call to holding

● Entered match numbers, but didn’t fetch yet

● Tried sending, but got an error “No matches”

● Fetched matches, then sent the email with no issues

Task: Send a blast notification to the Women’s A division for Women’s A team to start warming

up

● No issues

Task: Send a blast notification to everyone about a lost item

● No issues

Task: Check whether Match 702 received an email

● Went to Sent Emails page

● Went to Matches Status page, then back to Sent Emails page

● Looked for “Match 702” in list of Sent Emails, and reported no

● I explained the Matches Status page

Task: Check the list of all emails sent

● Went to Sent Emails page

Any thoughts / comments / suggestions / complaints?

● “If this were my grandma doing this, she would not be able to figure this out” “But then

again she’s not like tech savvy”

● When choosing the division for blast notifications, should add an “everyone” button so it

makes more sense

○ In response to this, I changed the “Division” selection to a “Recipients” selection,

which includes an option to send to either the entire audience (if no audience tag

was set) or the given audience tag.

61

● “It’s a very nice system. It’ll help on the operating end.”

E.3. Evaluation with Elise Kim, 4/22/2023

Task: Given the TMS spreadsheet link (my testing spreadsheet), complete all the admin settings

● Went to Admin Settings page

● Pasted the spreadsheet url

● Selected the test audience

● Set the audience tag

● Selected the template folder

Task: Send a match notification for matches 701-705 to report to holding

● Went to Notifications page

● Fetched the roster

● Entered each match number individually (701, 702, 703, 704, 705)

○ “It would be nice if you had examples – oh you do”

○ Saw that a range was possible, so changed to “701-705”

○ Fetched the matches

● Selected the proper template

● Entered a subject, then saw the help text and added “{match}”

● Sent the notification email

Task: Send a match notification for matches 701 and 801 for final call to holding

● No issues

Task: Send a blast notification to the Women’s A division for Women’s A team to start warming

up

● “I wouldn’t need to select matches because it’s a blast notification, right?”

● Sent the blast notification email

Task: Send a blast notification to everyone about a lost item

● No issues

Task: Check whether Match 702 received an email

● Went to Matches Status page

● Reported no (correct)

Task: Check the list of all emails sent

● Went to Sent Emails page

62

Any thoughts / comments / suggestions / complaints?

● Auto-populate subject from selected template

● “Very sleek”

● There is enough text that it’s not overwhelming but it always answers whatever I wanted

to know

● User can always see whether something worked or not (confirmations are nice)

E.4 Survey after UVM Tournament

Name (optional)

● Vi Belt

● Laney Flanagan

● Rae

How was the overall experience using the system?

Could you briefly expand on why you chose the rating you did?

● It worked well for me! I was one of the people directly assigned to communications, and

it sent the majority of emails I had asked it to. I didn't have any major problems, but I

also don't really understand the intricacies of the program and so I didn't have real

expectations

● I couldn't give it a literally perfect because we did not need to call to address some errors

we saw. Once those were fixed, it was fine!

63

● When all of the rosters were properly loaded for poomsae and minor bugs fixed, it

worked perfectly and was super easy to use. I literally did not even have to think when

sending out match reports. However, I can't speak to how it worked in the afternoon,

since the sparring rosters had not been loaded into the TMS and we couldn't use it :(

● When we were able to use the TNS, it seemed to work great! However, we struggled to

find a way to 1)include coaches in emails and 2) to re-fetch the names once the sparring

brackets were created and were unable to use it for the second half of the day (sparring).

So, explicitly when using the TNS, I would probably give it a 4 rating but lowered that in

terms of overall experience since we were unable to use it for a portion of the day.

Besides the known bugs that I attempted to fix during the day (fetch roster timing out and emails

not sending to proper recipients), did you have any other issues using the system?

● Nothing that is unique, just the not sending emails to coaches/spectators

● We weren't able to fetch the rosters in the afternoon but I think that was a consequence of

something Will didn't have time to do....so I don't think this was a problem with your

system.

● This was mainly a problem when the coaches hadn't been loaded into the roster yet, but if

a team had no valid emails (i.e. 1 person team with a bad email, and no coaches either) or

one team dropped out of the tournament, the entire match was invalidated. We assumed

that the email would still send to the valid team, but the whole match was scratched. In

that situation, it would've been preferable to still be able to send the email (or a modified

one--like "representative report to head table") so that the team could be notified.

● I think those were it. I’m not exactly sure what the issue was with being unable to get the

proper names fetched to use for sparring.

Were there any features that caused a bit of confusion when trying to learn how they worked? Or

were confusing in general?

● Not really! I found it very straightforward

● N/A

● A few people asked how to subscribe themselves to other teams and ran into trouble. The

person I spoke to logged in successfully and could see match statuses, but couldn't find

the subscriptions tab. I could see it on mine as an admin account but not on theirs. Not

sure what the problem there was?

64

● Nope, the features were pretty clear once explained/demo-ed.

I have found that the subject placeholder variables (such as "{match}") were confusing for

people to understand. In particular, they didn't immediately understand that the placeholders

should be typed as-is into the subject input box, and they would be automatically populated for

each match email that was sent (e.g., the subject "report {match}" would turn into "report 701"

for match 701 and "report 702" for match 702, etc).

Did you also find the use of these placeholder values confusing? If so, what change to the

interface / instructions / help text would have made it easier for you to understand its usage?

● I did not find them confusing to be honest

● The simplest case of {match} was perfectly fine for me, especially since that was the

example in the text box. However, I wasn't confident enough to try any more complicated

placeholders. The help box with keys and examples was helpful but it opens over the

window--as in, I couldn't easily simultaneously look at the instructions while typing the

email. I think that would be nice, especially for someone who doesn't know the syntax

well, but the explanations were clear enough.

● I think “match number” would be more clear or maybe “match ###” but also I think I’d

like the emails to say “Match 701 report” rather than the above - that’s largely personal

preference to match how we actually speak at tournaments.

Would you use the system again in the future?

4 responses: 4 for Yes, 0 for No

If yes, do you have any other feature requests, now that you've used the system? If no, why not?

● I don't, mainly because I didn't have any real issues with it

● not yet because we didn't use the system as it's currently built for the full day.

● It would be nice to clarify under which circumstances the coaches are emailed. We

clicked send to "School Coaches" for all of our announcements, and coaches received

them fine. Otherwise I'm not sure how coaches would get the emails, since no team

specifically has 1 coach assigned to each one (i.e. every athlete has a Team Code like PA1

or something, but no coach would have a Team Code). I'm not sure if I misunderstood it

but making that more clear would be a good thing I think.

65

● I’m wondering if there’s a way when a match is considered invalid to still send to the

other recipients… for instance if match 701 is loading the blue team info incorrectly, it

would be helpful to still be able to send the match to the red team. Also, I don’t think it’s

easy, but a “free text” option would be great.

Do you have any other comments, suggestions for improvement, feedback, words of

encouragement, etc?

● Nope! Thank you so much for working on this and making our jobs a bit easier. I hated

getting all of the emails all day but had no real way of changing it (other than just

unsubscribing outright), and this seems like a great solution to that.

● Thank you so much for your time and effort building this system. It definitely makes

communications much easier and the morning was a breeze. Ideally we'd be able to

continue using this system and troubleshoot issues on our own.

● I tried to give a lot of feedback for your project! Overall, the system was super easy to

use--almost foolproof once it was going. I wish the roster problem could have been

solved faster so we could use it more! Most of the problems we experienced were on the

TC side when it came to rosters/TMS/appropriate templates. Thanks for all your hard

work!!!

● This was really cool, thank you for creating it!

