
– Independent Work Report Fall 2023 –

Tigerverse: An AI-powered Q&A System for Decentralized Organizations

Aabid Ismail

Adviser: Prof. Robert Dondero

Abstract

Q&A systems are popular systems in place for communities to help each other with questions

and answers that each other may know. There have been many forms of Q&A systems such as

Quora, Reddit and Stackoverflow. However, these systems often suffer from limitations such as

the need for users to indefinitely wait for a period of time until individuals with the specific

subject expertise respond to their queries. This paper addresses these shortcomings by proposing

the development of an AI-powered Q&A system tailored for the Princeton community. Our

solution emphasizes two key features: authenticated user-anonymity and the integration of

dedicated AI-powered chatbots for each organization within the community. These innovations

aim to enhance the overall user experience and efficiency of knowledge exchange while putting

minimum burden on the administrators of organizations at Princeton.

1. Introduction

In academic institutions like Princeton University, a plethora of information is managed by

smaller sub-organizations such as student groups, academic departments, sports teams, and

eating clubs. These decentralized organizations are responsible for maintaining and updating

information within their specific domains. The nature of this information is that they change

quite frequently. For example, the date for trials, deadline for applications, first day of practices,

dates for events, are all information that are different from semester to semester.

The challenge arises in the dissemination of this information, which is of significant

interest to a key demographic - students. Students, particularly new students seeking to engage

with new clubs, sports, or eating clubs, require specific, updated information about these sub

organizations. For example, a student interested in joining the Princeton Debate Panel would be

interested in knowing when their trials are, how much of a time commitment is it, and how many

tournaments do they have each year. However, the distribution of this information is often highly

inefficient, as these decentralized sub-organizations at Princeton University do not always

effectively present their information to the students. This inefficiency leads to a reliance on less

efficient communication methods, such as email or phone calls, to obtain information. There is,

however, a reasonable explanation as to why many such sub-organizations do not effectively

present their information to students.

Historically, information from these sub-organizations was centralized on the internet

through web pages. This model is effective for organizations with IT support capable of regularly

updating these pages. Yet, many sub-organizations at Princeton, like student organizations and

eating clubs, lack the resources to continuously update web pages with fresh information. The

task of maintaining these pages is often too burdensome and time consuming for the student

officers of these sub-organizations who are often busy being full-time students. As a result, many

student organizations either do not have a dedicated web page or only provide basic, unchanging

information, such as an introduction to their organization through their web pages. This

limitation forces students to directly contact these sub-organizations for specific inquiries, which

might include questions about meeting times, openness to beginners, or membership eligibility

for upperclassmen.

2

This direct contact method imposes significant overhead for both the students seeking

information and the administrators responding to inquiries. Moreover, the need to reveal one's

identity when making phone calls or sending emails, as opposed to the anonymity of web

browsing, can be a huge deterrent for students seeking information. This paper refers to the

mental effort and time invested in this communication process – ensuring professionalism,

error-free communication, and the exposure of one's identity – as 'overhead' or 'mental overhead'.

To address this problem, this paper proposes a novel solution combining an authenticated,

anonymous Q&A system coupled with a chatbot ecosystem. This approach aims to reduce the

time and effort required for administrators to respond to queries and for users to seek updated

information from these decentralized organizations at Princeton University.

2. Background and Related Work

The inspiration for this project stems from a web application, Real Talk Princeton(RTP), that I

have used immensely during my First year at Princeton to navigate specific issues such as how to

file taxes as an international student to how to go about selecting classes for a semester. While

Real Talk Princeton was a great resource, it has many obvious shortcomings.

Firstly, it is hosted on an external platform, Tumblr, which inhibits real talk princeton to

build anything bigger than a simple Q&A website. This also constrains RTP to create a good user

experience. For example, currently, users are required to fill an external Google form that is

linked to the RTP website description in order to submit a question. Being diverted to a different

website and having to log onto an external system again (Google Forms) is not the best user

experience. Furthermore, Real Talk Princeton only allows a dedicated team of admins to answer

questions. This means that if a question falls outside the scope of the admins, the question ends

3

https://realtalk-princeton.tumblr.com/
https://www.tumblr.com/

up not being answered. The reason for having a dedicated set of admins is mainly to ensure that

questions are sanitized before being uploaded to the web page. While this process of sanitizing is

important, there are modern tools that can be used to automatically filter them out as opposed to

being reliant on human filtration. Beyond Real Talk Princeton, there are other platforms students

commonly use for different types of student discourse. Some of them are discussed in the section

below.

2.1 Sidechat and Fizz

Sidechat and Fizz are two mobile applications that provide college students the ability to post

public text messages, images anonymously. The key differentiation between our project and

these platforms is that both Sidechat and Fizz are used mainly as social media platforms for

students to send playful jokes, memes and other attention-grabbing media. [1] Notably, these

platforms do not recognize any organizations within a college and are more of an open

playground where all users can say anything.

2.2 Tiger Confessions and Social Media

Tiger Confessions is very similar to both Sidechat and Fizz with the main difference being that it

is hosted on Facebook. This means that users do not need to download a new app and can use it

while browsing other things in Facebook. However Tiger Confessions face the same problem of

Real Talk Princeton as it relies on a Facebook page, having to use Google Forms for

authenticated user queries and having a singular admin for sanitizing user queries.

4

https://www.sidechat.lol/
https://fizzsocial.app/
https://www.zotero.org/google-docs/?broken=idPWug
https://www.zotero.org/google-docs/?broken=idPWug
https://www.zotero.org/google-docs/?broken=idPWug

2.3 Email

Email has been the oldest form of student communication and it provides the ability for students

and anyone affiliated with Princeton to send emails to many students at once via listservs. For

example, using Hoagiemail students can send emails to all residential college listservs at once.

While this method is quick and easy, it has the obvious shortcoming of having a reduced scope.

For example, emailing is not the best option for questions that require anonymity, as emails do

not provide user anonymity. Furthermore, emails are rarely used as a platform for student

discourse as it is mainly used for one-way communications such as notices or events.

2.4 Edstem.org

Edstem.org provides students the option to send anonymous messages. However, even when

students opt to send an anonymous message, the messages are not completely anonymous as

course staff can see who sent the messages. Furthermore, Edstem.org categorizes students based

on classes and it is meant to be a platform for questions related to courses.

Most of the platforms mentioned above serve well for some use cases. However, it is clear that

we currently do not have a platform that is meant for discourse between students and student

organizations and especially a platform that is not reliant on an external platform or on admins to

filter messages before being published on the platform. Furthermore, as discussed in the abstract

and introduction sections, all of the above platforms have an intrinsic delay in obtaining answers

to questions as they rely on someone with specific subject or domain expertise to log onto the

platform and answer questions.

5

https://mail.hoagie.io/

3. Approach

I approached the project by designing a system that achieves two goals: a) Reducing the

overhead for users to ask questions and seek information and b) Reducing the overhead for

administrators to ensure that interested users have timely, updated information about their

organization.

3.1 Reducing the overhead for users to ask questions and seek information

One point of overhead related to seeking specific information is the process of finding who is

responsible to answer a question. For example, if you need to know whether as an international

student you need to file your taxes twice a year or just once a year, you may be unsure of

whether to direct that question to Global Financial Services, Davis IC, or your Residential

College Advisor. An easier way to gather that information is to ask an upperclassman

international student who had to file taxes in previous years. However, you may not know an

upperclassman international student. A structure that could help bridge this gap is a public Q&A

forum, much like Stackoverflow. In this structure, everyone could contribute and benefit off of

the platform by creating and answering questions.

At the moment our system looks like the following:

6

https://stackoverflow.com/

Diagram 1: System Design illustrates the concept of an open exchange of questions and answers

among all users.

Now that we have a public Q&A forum to tackle the dilemma of finding the correct

person to present a question, we can move onto the next pertinent point of overhead: revealing

your identity.

Revealing one’s identity is a point of overhead that depends on the user’s personality and

the sensitivity of the question at hand. Most users would like the option for anonymity when it

comes to asking questions related to sensitive topics. For others, even when it comes to asking

generic questions, they would much rather not reveal their identity as they are uncomfortable

with the potential for public judgment. For these reasons, allowing users the option for

anonymous questions is an important feature that the system should have. This can be easily

implemented by hiding the name of the person who asked the question whenever they prompt for

an anonymous question. The same can be done for anonymous answers. However, with

anonymity comes other problems - how do we keep the community safe from trollers. At the

moment, our system looks like the following:

Diagram 2: System Design illustrates the concept of an open exchange of questions and answers

among all users with the option for anonymity amongst users.

7

There are two forms of concerns when it comes to anonymous trollers. One form of

concern is not knowing where they come from. For this, we need to ensure that all users of the

application come from the Princeton ecosystem. With this protection, we know that all

anonymous questions and answers come from within the Princeton ecosystem. The next concern

falls under the usage of foul words, toxic language, usage of politically insensitive phrases and

words. To not allow questions or answers that fall under these categories we use the Perspective

API, which uses state-of-the-art machine learning models to disallow input that contains

inappropriate language.

With these updates, our system looks like the following:

Diagram 3 illustrates a CAS-protected Q&A system with user anonymity and content protection

via the Perspective API.

At the moment, our system looks great for users. Users can ask questions with the option

for anonymity alongside safeguards for abuse. However, a user still has to wait until another

person with the required subject expertise logs into the platform and answers their question.

Additionally, what if it is a question that your peers simply do not have the answer for? In this

8

case, there needs to be a way to direct the question to the decentralized institution that is

responsible for the question, directly.

3.2 Reducing the overhead for administrators of organizations

Having a system where peers can guide each other for simple queries is great for administrators

as it will reduce the overall input of questions that end up in their inbox. For example, a student

organization will now receive less emails because the students interested in their club would be

asking a question on Tigerverse first as opposed to sending an email to them. However, we still

do not solve the fundamental problem of having a system to update and control new information

for institutions without having to maintain their own websites.

To bridge this gap, we introduce chatbots for each decentralized organization. Each

organization would have their own chatbot and each chatbot would have a knowledge base that

holds all the information related to an organization. Whenever an organization needs to make a

change to their existing information, such as weekly practice times for a sport or weekly office

hours, they can simply edit that entry within the knowledge base of the chatbot.

With the introduction of the chatbot to our system, users now have two ways to go about

getting answers to their questions. If they know which organization their question is directed

towards, they can find the chatbot of that organization and query the chatbot for an answer. If the

chatbot has the appropriate knowledge surrounding the user’s question, the chatbot will

intelligently parse the data from the knowledge base and respond to the user’s query. If the

question is beyond the scope of the knowledge base that the chatbot has access to, the chatbot

will ask the user to direct the query to the organization via their email address. The user can then

either send an email, post a question on Tigerverse so that any of their peers who have the

9

answer can answer or do both. Technical details on how the chatbot works will be addressed in

the next section of the paper.

Our overall system now looks like this:

Diagram 4 illustrates a CAS-protected Q&A system with user anonymity, content protection, and

organization-specific chatbots.

10

4. Technical Implementation

This section discusses the system architecture of Tigerverse and how each component of the

system works. We will discuss what the technical components are and how they interact with

each other. Similar to the previous section, we will break down the system architecture into four

stages. In each stage, we will introduce and integrate additional components, building upon the

previous ones.

Technical System Design 1: Q&A System

Our first system design involved an open Q&A exchange between users. We used

React.js(React) for the frontend of the Q&A system while using Express.js(Express) for the main

backend server. There were several advantages in using React and Express as the main stack.

One main advantage was that both frameworks use Javascript which allows a single developer to

easily switch back and forth while developing. The next advantage was the ability to use

Typescript and the ability to define types and interfaces that can persist between both the

backend and frontend. For example, the “question” type can be used within both the frontend and

backend. Furthermore, React and Express are very mature frameworks that are extensively used

in industry. This helps in searching for help online during debugging.

For our initial Q&A system to work we needed to build API endpoints to create

questions, get questions, create answers, and get answers by question IDs. I used the REST

architecture for the APIs as it is the most commonly used architecture in practice. Other possible

architectures include GraphQL introduced by Facebook. The frontend allows users to view the

questions in the order of the most recent to least recent. It also allows users to create a new

question and answer questions that have been created. Beyond these basic capabilities, a feature

11

https://react.dev/
https://expressjs.com/
https://www.ibm.com/topics/rest-apis#:~:text=the%20next%20step-,What%20is%20a%20REST%20API%3F,representational%20state%20transfer%20architectural%20style.
https://graphql.org/

that we implemented that is novel in industry and increasingly common in consumer web

applications is infinite scrolling.

4.1 Infinite Scrolling

The traditional method of presenting very large lists of data to users involved using page

numbers. In this approach, there was a fixed window height, and at the bottom of the window,

page numbers were displayed.

Diagram 5 shows a picture of page numbers bar used as the method for pagination in traditional

web applications

However, in modern web applications, there is a growing trend towards implementing infinite

scrolling to load new content. For example all modern web applications such as Facebook,

Instagram, Twitter (Now, X.com) all use infinite scrolling as opposed to page numbers. From the

user's point of view, as they scroll down a screen that consists of a list of data, new information

loads at the bottom of the window, creating the illusion of an infinite scrolling experience.

To enable infinite scrolling in Tigerverse, we had to make use of the Intersection

Observer API of Javascript. The MDN web doc introduces it as “a way to asynchronously

observe changes in the intersection of a target element with an ancestor element or with a

top-level document's viewport.” [3] For a detailed explanation of how to use the Intersection

Observer API for infinite scrolling and how to use the Intersection Observer API specifically in

React.js head over to Appendix A.

12

https://www.facebook.com/
https://www.instagram.com/
https://twitter.com/home
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/

Technical System Design 2: Adding the option for Anonymity

The improvement we make during this stage is the addition of the option for anonymous

questions and answers. The option for anonymity can be achieved by modifying the database

schema for questions and answers. At the moment when a question or answer is created, we

record the user id of the question creator inside the question model that is created. As such, when

we retrieve a list of questions and answers we need to follow the user id and retrieve the netid of

the user who created the q&a and display it alongside the question or answer. We need to modify

this workflow to enable anonymous questions and answers.

One way to achieve this is to have one boolean value per question and answer created.

Whenever a user decides to create an anonymous q&a, the boolean “isAnonymous” will be

marked true. Afterwards, whenever we retrieve a list of questions and answers, for each question

and answer we can check whether its “isAnonymous” field is marked true. If it is set to true,

instead of returning the netid of the user who created it we can return “anonymous”. While this

method works to achieve user anonymity, it unfortunately does not work very efficiently as it

requires a comparison operation to be done in the order of O(n) for every piece of question and

answer that is retrieved.

An important observation is that in Q&A systems, the number of GET requests to

retrieve questions and answers are significantly higher than the number of POST requests to

create questions and answers. The infamous 1% rule states that if you let 100 users online then

only one will create a new piece of content while 89 will just view content. [2] We can use this

observation to put most of the burden of handling anonymity when a question or answer is

created as opposed to when retrieving them. Following that train of throught, we can have a new

13

https://www.theguardian.com/technology/2006/jul/20/guardianweeklytechnologysection2

string field called “displayName'' for each question and answer created. We will populate the

“displayName” whenever a new question or answer is created. We default the displayName to

the user’s netid. However, if a user elects their question or answer to be anonymous, we replace

the field, displayName with “anonymous” instead. This way, whenever we retrieve a list of

questions or answers we do not need to do a foreign-key lookup to search for the user who

created it and nor do we need to check all isAnonymous booleans per question or answer - we

simply retrieve the list of questions and answers and the list of displayNames associated with the

questions and answers. Therefore, we have now achieved a more efficient and scalable version of

a Q&A system with the option for anonymity.

At this point, our technical system architecture looks like the following:

Diagram 6 illustrates a technical system architecture design for a Q&A system

14

Technical System Design 3: Adding Authentication and Content Moderation

We have now implemented the basic functionality of our Q&A system. However, we still have

not added authentication and content moderation to it. In terms of Authentication, we use the

Central Authentication System to authenticate a user during Login. For authorizing each

subsequent request, we use JSON web tokens (JWT). [4]

4.2 Stateful vs Stateless Authorization

JWT-based authorization is a relatively new concept. The way industry used to perform

authorization requests was through session tables that store each user session on the server. The

problem with the use of session tables was that it a) takes up memory or database storage to store

the session tables and b) it becomes increasingly difficult to implement microservices as every

microservice will now need to copy the session table in order to authorize requests to its server.

JWTs eliminate this problem by shifting the burden of authorization to the client.

Whenever a user is first authenticated(via CAS), the server will issue a JWT that is signed by a

secret key located safely in the server. The signed JWT has information about the user such as

the netid, and when the token expires. The client will then store the JWT securely via an

http-only cookie or via local storage. Whenever a client makes any request (other than the initial

login request), the client needs to attach the token to the Authorization Header field. Whenever a

JWT expires or is close to expiring, the server prompts the user to authenticate themselves with

CAS again to issue a new token. If the user already has a valid CAS session, this request will

automatically be fulfilled. There are several other mechanisms to prolong user sessions securely

via refresh tokens, however, that is outside the scope of this project.

15

https://datatracker.ietf.org/doc/html/rfc7519

Notably, the usage of JWTs eliminates the necessity to maintain an additional sessions

database. Furthermore, it is faster than session tables as a database lookup is slower than

decrypting a token. Furthermore, if we need to horizontally scale the server by adding more

server instances or if we need to add a microservice, we can simply share the secret token with

the microservice and allow the microservice to do its own authorization of requests.

4.3 Content Moderation

Content moderation for answers and questions is done via the Perspective API, an external

service that provides a scoring system for content based on several parameters such as toxicity,

identity theft, profanity and many more. Whenever the server receives a piece of content such as

a question or an answer, it passes the piece of content through the Perspective API and if it

returns a high score for either of their parameters we return a 400-level error. (specifically, a 422

error for unprocessable content).

At this point, our technical system architecture looks like the following:

16

https://perspectiveapi.com/how-it-works/
https://httpwg.org/specs/rfc9110.html#status.422
https://httpwg.org/specs/rfc9110.html#status.422

Diagram 7 illustrates a CAS-protected Q&A system with content moderation

Technical System Design 4: Chatbots for Organizations

Our technical architecture looks robust for a question and answering system. In many levels, the

system we have designed surpasses alternate Q&A systems that currently exist for Princeton

students such as Real-Talk Princeton and Tiger Confessions. However, an important extension to

our system is the addition of chatbots to help with students getting instantaneous answers based

on the available knowledge uploaded by organizations. Before we explore how these chatbots

can be connected to our existing system, we need to take a quick detour to explain how chatbots

work with transformer models and how we can add a knowledge base to extend the capabilities

of a chatbot. As the main focus of this paper is the extension made to the project via transformer

models and not the transformer models itself, the following topics will be overly simplified.

17

4.4 Large Language Models (LLMs)

A large language model learns to predict the next word of a sequence of words by exposing its

large neural network to a large volume of training data. Let’s say we pass the sentence “The dog

barked at the tree” to the neural network. The neural network actively tries to guess the next

word of the sentence and compares its guess with the actual next word of the training data and

then adjusts the parameters of its network so that it guesses the correct word for scenarios like

that in the future. For example, at the end of “The dog”, the neural network might predict the

word “smiled”. But after seeing the word “barked” from the training data, it will adjust its

parameters such that the next time someone inputs “The dog”, it will predict the next word as

“barked”.

Doing this at a humongous scale allows Large Language Models to generate text with

human-like precision. For example GPT-4 published by OpenAI reportedly has close to 1.76

Trillion parameters and took more than $100 million dollars of compute power to be trained. [5]

However, it is not just a neural network that allows a LLM to spout human-like content. For

LLMs to work well it needs to understand the context surrounding its input data as well.

4.5 Transformers and Generative Pretrained Transformers (GPT)

Transformers enable Large Language Models (LLMs) to identify interdependencies between

words and sentences, playing a crucial role in understanding context and generating coherent

responses. Unlike traditional neural networks, transformers use a mechanism known as

“attention” to weigh the importance of different parts of the input data. This attention mechanism

allows transformers to focus on relevant parts of the text when making predictions, making them

18

highly effective for tasks involving natural language understanding and generation. For example

in the sentence:

“The dog barked at the tree because it was starving”, attention is what enables transformers to

learn that the word “it” references the dog and not the tree.

Generative Pre-trained Transformer models (GPTs), are a type of transformer that has

been specifically designed for generating text. The 'pre-trained' aspect refers to the initial training

phase, where the model is exposed to a large corpus of text data. The immense scale of this

pre-training, as exemplified by GPT-4's exposure to approximately 1.76 trillion parameters,

equips the model with a broad understanding of language nuances and contexts that can be used

to power chatbots for many use cases.

Companies like OpenAI have published their GPT models which allow other developers

to build on top of them. For example, if someone wants to build a chatbot for the medical

industry they have the option to fine-tune OpenAI’s GPT model on their own training dataset

which would consist of medicine-related books, articles, videos, etc. Another way to build on top

of GPT models for a specific use case is through Retrieval Augmented Generation (RAG), which

is what we use in our project to power the chatbots for organizations.

4.6 Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation is a process that allows developers to reference their own data

while using powerful transformer models such as GPTs. While GPTs have the ability to

understand the nuances and contexts of language, we might be interested in asking GPTs to

reference our own dataset to reason against a user query. For this to work, we create an

intermediate step before feeding the user query to the transformer model. This intermediate step

19

involves searching through our own dataset to find data that matches the user query and

augmenting these pieces of data to the user query before sending it to the transformer model.

This is best explained by comparing and contrasting an example that directly queries the GPT

model against an example that uses RAG before reaching the GPT model.

Let’s first look at what happens when we query a pre-trained generative transformer

model directly with a typical student query related to a student organization.

Case 1: User asks the query “How can I join the Princeton Debate Panel?” directly from a

GPT model

Diagram 8 illustrates a user directly communicating with a GPT Transformer Model

After feeding the query to the GPT-3.5 model, it responded to the query with the following

answer:

Output: “To join the Princeton Debate Panel, you should follow these steps. Research: Start by

researching the Princeton Debate Panel and their requirements. Visit their official website or

contact them directly to gather information about their application process, eligibility criteria,

and any specific guidelines they have. Prepare: Once you have a clear understanding of their

requirements, prepare your application. This may include filling out an application form,

submitting your academic records, and providing any necessary recommendations or essays.

Attend Meetings: If the Princeton Debate Panel holds regular meetings or events, attend them to

20

get a sense of the group's dynamics and culture. This will also allow you to connect with current

members and express your interest in joining. Showcase Your Skills: Highlight your debate or

public speaking skills, if you have any. Prepare a persuasive argument or presentation that

demonstrates your abilities. This can be useful during interviews or auditions. Apply: Submit

your application following their specific instructions. Make sure to meet all deadlines and

provide all required documents. Interview/Audition: Some debate panels may require an

interview or audition as part of the selection process. Be prepared to discuss your interest in

debate and your relevant skills. Stay Engaged: While waiting for a response, stay engaged with

the debate community at Princeton. Attend events, join discussions, and continue to show your

passion for debate. Follow Up: If you don't hear back within a reasonable timeframe, consider

following up with the panel to express your continued interest and inquire about the status of

your application. Remember to check the Princeton Debate Panel's specific requirements and

procedures, as they may vary from year to year. Good luck with your application! If you need

more detailed information or specific guidance, feel free to ask.”

As you can notice, the output of the GPT is grammatically correct and contextually

relevant. However, it spouts incredibly wordy and vague information such as calling the user to

“research the club”, and also provides misleading facts such as “prepare a presentation that

showcases your talents”. This phenomenon is known as AI Hallucination. IBM defines AI

Hallucinations as “a phenomenon wherein a large language model (LLM)—often a generative AI

chatbot or computer vision tool—perceives patterns or objects that are nonexistent or

imperceptible to human observers, creating outputs that are nonsensical or altogether

inaccurate.” [6] The main reason behind hallucinations is that GPT models were not exposed to

knowledge that provides answers to specific queries such as how do I join the Princeton Debate

21

https://www.ibm.com/topics/ai-hallucinations

Panel during its training phase. In fact, it is likely that GPT models in the future will not be able

to answer such queries because information such as “how do I join the Princeton Debate Panel”

is often not public data and it also changes from semester to semester.

Case 2: User asks the query “How can I join the Princeton Debate Panel?” from a GPT

model via RAG

In this case, there are several things that happen once a user types the query and clicks enter.

Step 1: Embedding the user query into a vector via an embedding model.

Step 2: Comparing the user vector against all vectors in the knowledge base and retrieving the

words or sentences associated with the closest vectors in the knowledge base.

Step 3: Attaching the words or sentences associated with the closest vectors to the user query via

prompt engineering.

Step 4: Querying the GPT transformer model with the augmented query.

We will walk through each of these steps in the context of our example query. A diagram

that represents the workflow of these steps is depicted below:

22

Diagram 9 illustrates a user communicating with a GPT Transformer Model via Retrieval

Augmented Generation

Using our previous example, let’s assume that a user sends the query “How can I join the

Princeton Debate Panel (PDP)?”. Let’s also assume that the PDP administrators have entered the

sentence “We hold trials during the first weekend of each semester at the Oak Lounge at Whig

Hall” into the knowledge base of the chatbot.

Step 1: Embedding the user query into a vector via an embedding model

During the initial step, the sentence “How can I join the Princeton Debate Panel?” will be

converted to a vector via an embedding model. If we use the BAAI-base embedding model, the

output vector will have 767 dimensions. We will call the converted vector, the “user query

vector”.

23

https://huggingface.co/BAAI/bge-base-en-v1.5?text=How+can+I+join+the+Princeton+Debate+Panel%3F

Step 2: Comparing the user query vector against all vectors in the knowledge base

We will now take the user query vector and find the closest vectors to it from the knowledge

base. We can use either the cosine distance or the dot product to measure the distances. In our

case, if we had the sentence “We hold trials during the first weekend of each semester at the Oak

Lounge at Whig Hall” encoded as a vector in our knowledge base (with the same embedding

model), then it would be ranked first amongst the closest vectors. We will call the piece of text

retrieved from the knowledge base as “context data”.

Step 3: Attaching the words or sentences associated with the closest vectors to the user

query via prompt engineering

We will now create a new prompt to send to the GPT transformer model. We cannot simply

attach the context data to the user query as we need to provide explicit instructions to the GPT

model on what to do with the context data. For example, we need to tell the model what to do in

the case that the context data does not answer the user query. The following prompt template was

used for our project:

“

You are a representative for the [Organization Name]. I will provide a user query to you

delimited by triple quotes ```. Your task is to answer the user query using the context data

delimited by triple exclamation marks !!!. Do not make up new information. If the user query is

outside the scope of the context data, respond by saying “Your question is outside the scope of

my knowledge at the moment. Please contact the organization administrators at

[organization_email]”.

24


``` [user query] ```

!!! [context data] !!!

”

Step 4: Querying the GPT transformer model with the augmented query.

Now that we have our new prompt, we can send this to the GPT model to seek an answer. Using

GPT-3.5 we received the following answer from the chatbot:

Output: “To join the Princeton Debate Panel, you can participate in the trials that are held during

the first weekend of each semester at the Oak Lounge at Whig Hall. This is where you can

showcase your debating skills and potentially become a member of the panel. Good luck with

your application! If you have any more specific questions about the process, feel free to ask.”

This answer is clearly more accurate, and concise compared to the previous example, and

it provides clear instructions on what the student has to do next.

4.7 Vector Databases

A vector database is a database where we store the knowledge base of an organization. Unlike

traditional database systems, vector databases do not have schemas. Whenever an organization

adds new sentences about that organization, the text that was entered gets embedded into vectors

and those vectors are stored in a vector database so that they can be compared against user query

vectors. We used the Pinecone vector database for our project. Pinecone provides the option to

add metadata to each vector, and also the ability to search vectors amongst namespaces.

Namespaces are isolated subgroups within a vector database. This fits our project very well as

we can define a namespace per organization so that we only search for vectors within a given

namespace/organization per user query.

25

https://www.pinecone.io/


4.8 Connecting RAG Chatbots to Tigerverse

An important step before adding chatbots to Tigerverse is uploading the knowledge base for each

organization. In a real world setting, if an organization wants to list their chatbot on Tigerverse

they would have to upload data to their knowledge base (Data in this case simply refers to

sentences that describe information relevant to their organization such as when do they convene

weekly, how can students join, what kind of events they have, etc.). Assuming that the

organizations complete this step to set up their knowledge bases, users can search for chatbots

that they want to interact with and carry on a conversation. Our final technical system

architecture design looks like the following:

Diagram 10 illustrates the final technical system architecture of a Q&A system coupled with a

chatbot ecosystem for organizations

26



4.9 Additional components not shown in the final system architecture diagram

There are several other components that were omitted from the final system architecture above in

order to preserve its simplicity. Firstly, there are two other user interfaces - namely, the super

admin interface and the chatbot admin interface.

The super admin interface is a client that has privileges to delete any question or answer

and add chatbot accounts to Tigerverse. The super admin interface directly interacts with the

main Express.js server.

The chatbot admin interface is the interface where organization admins login to manage

their chatbot. They can edit existing data of the chatbot, or add new data to the chat bot. The

chatbot admin interface is created using Next.js, a powerful framework made on top of React.js.

The chatbot admin interface too directly interacts with the main Express.js server. However, the

actions performed by the chatbot admin interface such as adding, updating or deleting data from

their knowledge base causes the main server to perform those operations by invoking API

endpoints of the python microservice which has access to the Pinecone vector database where the

knowledge base for organizations live.

The reason to use a different microsystem written in Python is two fold: a) For better

system isolation, and b) The Python ecosystem is more mature and capable at handling

ML-related functions such as vector computations, and tokenizations.

27

https://nextjs.org/


5. Evaluation

Evaluation for this project was done in two stages. One was a pre-development evaluation to

assess the need for a platform like Tigerverse and the second was a post-development evaluation

to test the platform and receive user feedback.

5.1 Pre-development User Survey

A survey was sent out via Hoagie Mail to all residential college listservs with a short survey on

what students think of a new platform for student discourse and activism. Highlights of the

survey are mentioned below:

Diagram 11 illustrates that most students believe that a new platform for student discourse and

activism is crucial at Princeton

The student survey also inquired about students' usage of Real Talk Princeton (RTP) and Tiger

Confessions. According to the results, a significant 71.7% of students indicated that they had

28



never heard of Real Talk Princeton.Further, a staggering 90.6% of students reported that they had

never asked a question on RTP. Similar findings were observed for Tiger Confessions where

90.6% of students admitted to never having asked a question through the platform. You can find

additional charts related to the survey in Appendix C.

5.2 Post-development User Interviews

We conducted five user interviews so that users can test out Tigerverse and describe their user

experience. Four of the five students were Computer Science majors from Princeton University,

while the other user was a student at Columbia University. The user interviews were qualitative

in nature. They were given a task list (see Appendix B), and were asked to speak out loud while

completing the tasks.

Overall, the users provided positive feedback. Especially, navigating through the task list

was very straightforward according to most of them. The process of setting up the chatbot was

also described as “very easy and straightforward”.

On the more suggestive side, some users mentioned that it was not clear whether a user

should post a question on Tigerverse or interact with a chatbot to get their answers. Providing

some guidance on the home page on when to post a question and when to use a chatbot would

have been helpful, according to them. Another user mentioned that having the ability to directly

email administrators of the chatbot via Tigerverse would add to the user experience. Most of the

feedback users provided were valid and I hope to add these improvements before deploying

Tigerverse to the campus community.

29



6. Future Work and Conclusion

Based on the feedback I received from user interviews, the immediate next step is to work on

improving the user experience. Having a simple user guide upon the initial login should be a

necessity as navigating Tigerverse is non-trivial. Furthermore, I plan to migrate the Tigerverse

client from React.js to Next.js. Relying on the authentication, routing, and server-side rendering

infrastructure that Next.js provides will make Tigerverse much more stable and easier to extend

in the future.

On the subject of chatbots, it would be great to have the functionality for users to save

their chatbot conversations so that they can reference them later. Furthermore, it would be great

for admins of organizations to also have a history of past chatbot conversations so that they can

assess how the chatbot performs, and especially, see if there are questions to which the chatbot

does not have the knowledge to answer. Furthermore, having the ability for administrators to add

data in the form of uploading pdf documents, web links and videos would make the process of

uploading data much more smoother.

Overall, the AI-powered Q&A system we have built is largely successful. The

AI-powered Q&A system we developed could be expanded to many other organizations that

have sub-organizations under it. For example, a big corporation could use it so that new

employees could navigate the different departments under the big corporation easily.

7. Acknowledgments

I would like to thank my adviser, Professor Robert Dondero for his advice, commitment and support

throughout, the staff of the Independent Work Program at Princeton, and my fellow classmates,

preceptors and professors that I have interacted with in my previous Computer Science classes. This

independent work project provided me the platform to fearlessly combine new technology and test my

30



software engineering and system design skills. I have had a highly positive experience during my

Independent Work project.

8. Bibliography

[1] “Anonymous apps Fizz, Sidechat compete for students’ attention,” The Princetonian. Accessed: Jan.
10, 2024. [Online]. Available:
https://www.dailyprincetonian.com/article/2022/09/fizz-sidechat-compete-students-attention-anonym
ous

[2] C. Arthur, “What is the 1% rule?,” The Guardian, Jul. 20, 2006. Accessed: Jan. 11, 2024. [Online].
Available: https://www.theguardian.com/technology/2006/jul/20/guardianweeklytechnologysection2

[3] “Intersection Observer API - Web APIs | MDN.” Accessed: Jan. 11, 2024. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API

[4] M. B. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” Internet Engineering Task
Force, Request for Comments RFC 7519, May 2015. doi: 10.17487/RFC7519.

[5] “Microsoft pushes the boundaries of small AI models with big breakthrough | Semafor.” Accessed:
Jan. 11, 2024. [Online]. Available:
https://www.semafor.com/article/11/01/2023/microsoft-pushes-the-boundaries-of-small-ai-models

[6] “What are AI hallucinations? | IBM.” Accessed: Jan. 11, 2024. [Online]. Available:
https://www.ibm.com/topics/ai-hallucinations

[7] “Learn Next.js | Next.js.” Accessed: Jan. 11, 2024. [Online]. Available:
https://nextjs.org/learn/dashboard-app

31



9. Appendices

9.1 Appendix A: Infinite Scrolling via Intersection Observer API

Infinite scrolling using HTML, CSS and Javascript

HTML

<div id="content">

<!-- initial content goes here -->

</div>

<div id="load-more-trigger"></div>

CSS

#content {

overflow: hidden;

}

#load-more-trigger {

height: 20px; /* Height of the space that triggers a load */

background-color: #f0f0f0; /* Set it to the color of viewport*/

}

32



Javascript

// Function to load more content

function loadMoreContent() {

// logic to fetch and append more content

const moreContent = document.createElement("div");

moreContent.textContent = "Additional Content";

document.getElementById("content").appendChild(moreContent);

}

// Intersection Observer configuration

const options = {

root: null, // Use the viewport as the root

rootMargin: "0px",

threshold: 0.1, // When 10% of the load-more-content div is visible

};

const observer = new IntersectionObserver((entries) => {

entries.forEach((entry) => {

if (entry.isIntersecting) {

loadMoreContent();

}

});

}, options);

// Start observing the trigger element

observer.observe(document.getElementById("load-more-trigger"));

How it works

We insert a <div> element with the id of “load-more-trigger” at the bottom of our data feed. In

our example, the feed is contained by a <div> element with the id of “content”. Whenever the

<div> with the id “load-more-trigger” appears visible in the viewport of the client, an

intersection event is triggered. This causes the loadMoreContent() function to be invoked, which

populates more content within the <div> element with the id “content”. When the user again

33



reaches the bottom of the updated content feed, an intersection will be detected again and the

loadMoreContent() function will be loaded which causes more content to be added to the <div>

element holding all the content. This happens repeatedly until there is no more content provided

by the server. Note that the code above currently has no mechanism to store the state. For

example, we need to keep track of the number of items loaded on the client-side so that we can

send a page number to the loadMoreContent() function. This could be done via global variables,

by instantiating a counter() object, using local storage, etc. For a practical example of how

infinite scrolling can be achieved look at the following implementation in React.js.

Infinite scrolling using React.js

Implementing infinite scrolling in react.js is non-trivial. A background knowledge of React and

the useEffect hook, useCallback hook and the useRef hook is recommended.

import { useCallback, useEffect, useRef } from "react";

import { useQnaContext } from "./Contexts/qna";

const {

questions,

loadMoreQuestions,

} = useQnaContext();

// ref to the target component to be observed for an intersection

with the viewport

const observerRef = useRef(null);

// true = we are within a window where we should not send a new

fetch request.

const loadingBuffer = useRef(false);

//-------------------------------------------------------------------

// Function: Loads more qna items while maintaining a setTimeout

34

https://react.dev/reference/react/useEffect
https://react.dev/reference/react/useCallback
https://react.dev/reference/react/useRef


//-------------------------------------------------------------------

const loadMoreItems = useCallback(async () => {

if (loadingBuffer.current) {

return;

} else {

loadingBuffer.current = true;

// questions, and loadMoreQuestions are a list of questions and

a function to load more questions. These are provided by a Context

Provider. We access these two state variables via the useQnaContext

hook.

await loadMoreQuestions(Math.ceil(questions.length /

10).toString());

// Timeout to avoid multiple calls between a 200ms window

setTimeout(() => {

loadingBuffer.current = false;

}, 200);

}

}, [loadingBuffer, loadMoreQuestions, questions]);

useEffect(() => {

// Initialize the Intersection Observer

const options = {

root: null, // The viewport

rootMargin: "0px",

threshold: 0.1, // Trigger when at least 10% of the target is

visible

};

const observer = new IntersectionObserver(([entry]) => {

if (entry.isIntersecting) {

// Target is in the viewport, load more items

loadMoreItems();

}

}, options);

// Start observing the intersection

if (observerRef.current) {

observer.observe(observerRef.current);

}

35



// Clean up and disconnect the observer when the component

unmounts

return () => observer.disconnect();

}, [questions]);

….

return(

<>

<div id=“content”>

<div ref={observerRef}>

</>

)

How it works

Similar to the example with HTML, CSS and Javascript, we declare an intersection observer.

Instead of passing down the id of a div to the Observer.observe() function, we pass a ref. To

declare a ref we use the useRef() hook, and we pass the result of useRef() to the component we

want to reference. In our case, we passed the observerRef to the final <div> element that is

below the content feed. Whenever an intersection is observed between this <div> element with

the observerReg and the viewport, the loadMoreItems() function is executed. The

loadMoreItems() function is wrapped under a useCallback() hook to prevent redefining the

function whenever rerenders occur. Furthermore, whenever we call loadMoreItems(), it executes

the function loadMoreQuestions() and sets a timeout until which the loadingBuffer ref is going to

hold the value True. If loadMoreItems() is called again while the loadingBugger is true, the

loadMoreQuestions() function is not executed. This is done to prevent, users from scrolling too

36



fast and to avoid cases with browser malfunctions where the scrollbar automatically scrolls to the

bottom.

9.2 Appendix B: Task List for User Interviewers

Task 1: You are a student wanting to know whether international students have to file taxes

on their own or whether the university files on behalf of them.

Step 1: Log into Tigerverse with your netid.

Step 2: Click on the button “Ask a Question”.

Step 3: Type out your query in the title section and optionally, add context in the content section.

Step 4: Click submit.

Step 5: Observe that your new question was automatically added to the feed of Questions in your

home page.

Task 2: You are another student who has filed taxes before as an international student. You

log in to Tigerverse and see that a student has asked a question concerning taxes to which

you know the answer. However, you want your answer to be anonymous.

Step 1: Log into Tigerverse with your netid.

Step 2:Click on the expand button on the right side of the question card to expand the question.

Step 3: Type out your answer on the text box dedicated for answers.

37



Step 4: On the left side of the text box, there is a selection box. The default option of the

selection is “not anonymous”. Click on it and toggle the option to “anonymous”.

Step 5: Click submit or press enter.

Step 6: Observe that your new answer was added as an answer under the question. Your netid is

not visible on top of your answer. Instead, it says “anonymous”.

Task 3: You are a student founder who wants to raise money for your student startup. You

have heard of the Princeton Entrepreneurship Council (PEC) but you have no idea how

they can help you with your startup.

Step 1: Log into Tigerverse with your netid.

Step 2:Click on the discover menu item on the navbar on top of the webpage.

Step 3: Click on the PEC Chatbot icon to enter the PEC chatbot.

Step 4: You can see the chatbot interface for PEC. Type “I am a student founder. How can the

PEC help me?’ on the textbox visible.

Step 5: Wait for the chatbot to answer, and follow up the conversation with a response of your

choice!

38



Task 4: You are the president of the Princeton Debate Panel (PDP). You have been

authorized by the administrators of Tigerverse to set up a chatbot for PDP. You have been

given a username and a password for the PDP chatbot.

Step 1: Log into the Tigerverse admin interface using the username and password given to you

via the superadmin.

Step 2: You will initially see the dashboard page which should say that you have zero projects

uploaded to your chatbot. A project is a name that holds a piece of data about your organization.

For example, “How to join the club” could be the name of a project and you would have

sentences describing the process to join the club as data under the project.

Step 3: Go to the manage datastore page by clicking on that tab from the sidebar, and click on the

button “Add Data”.

Step 4: Type the project name: “how to join PDP”, a link to a website or a blog if it exists and the

data of your project: “We hold trials at the start of every semester. An email will be sent to all

listservs at the start of each semester including the details of the trials and a Google sheet to

register for trials. Stay tuned for our Spring term trials.”.

Step 5: Click on submit.

Step 6: Log back on to Tigerverse.

Step 7: Go to the discover section, and click on the PDP chatbot.

Step 8: Ask the question: “How do I join PDP”.

39



9.3 Appendix C: Charts Related to the Pre-development Survey

40



41



42


