
Hatch Tutors Web Application:
Combating Education Inequity with Free Online Tutoring

Angela Li
Advisor: Prof. Robert Dondero

May 3, 2021

Submitted in partial fulfillment of the requirements for the Princeton University Computer
Science Senior Independent Work. I pledge my Honor that this paper represents my own work
in accordance with University regulations.

Table of Contents

1. Introduction
2. Problem Background and Related Work
3. Approach
4. Implementation

a. Functionality
b. Design

5. Evaluation
6. Conclusion and Future Work
7. Acknowledgements
8. Appendices

1

1. Introduction.

In the spring of 2020, the United States began its first lockdown due to the COVID-19 pandemic.

The majority of K-12 schools had to shut down their in-person operations, and about 93% of

households with school-aged children reported some form of distance learning, which includes

“remote” learning where classes are taught synchronously online or “hybrid” learning where

students go to school in-person half of the week and participate in remote learning the other

half. By June 2020, around 94% of public school teachers reported moving their teaching

online.1 The transition of schools to remote learning in spring of 2020 due to the COVID-19

pandemic presented challenges for K-12 students everywhere in the United States. However,

the quality of online classroom learning during school closures varies significantly determined by

factors such as access to technology, the quality of remote instruction, and home support for

students. A study conducted by Mckinsey in June 2020 predicted learning loss to be greatest in

low-income, black, and Hispanic students. In particular, learning loss is exacerbated for

low-income students because they are “less likely to have access to high-quality remote

learning or to a conducive learning environment, such as a quiet space with minimal

distractions, devices they do not need to share, high-speed internet, and parental academic

supervision.”2 Data showed that around 60% low-income students surveyed would receive

low-quality remote instruction and the other 40% received no remote instruction (Fig. 1). This is

a drastic difference to the quality of remote instruction for students from higher-income families.

2 Dorn, Emma, et al. “COVID-19 and Student Learning in the United States: The Hurt Could Last a
Lifetime.” McKinsey & Company, McKinsey & Company, 14 Dec. 2020,
www.mckinsey.com/industries/public-and-social-sector/our-insights/covid-19-and-student-learning-in-the-u
nited-states-the-hurt-could-last-a-lifetime#.

1 Bureau, U.S. Census. “Schooling During the COVID-19 Pandemic.” The United States Census Bureau,
26 Aug. 2020, www.census.gov/library/stories/2020/08/schooling-during-the-covid-19-pandemic.html.

2

FIGURE 1.

To combat the widening gap in education caused by the pandemic, I founded a nonprofit

called Hatch Tutors in 2020. Hatch Tutor’s mission is to provide academic support to K-12

students from underserved backgrounds through free online tutoring. Hatch runs a

semester-long program where K-12 students are paired with a university-aged tutor for

individual tutoring. Students receive tutoring at least once a week in a subject area of their

choice, and they use online conferencing platforms such as Zoom to conduct the tutoring

session. To date, Hatch Tutors has run a Beta free tutoring program during the summer of 2020

and two more official semester-long program cycles during the Fall of 2020 and the Spring of

2021. Hatch has been steadily growing the number of students in the tutoring program, from 20

students in the beta program to 150 students in the Spring 2021 program where we are today.

3

Hatch’s rapid scaling of the tutoring program is a crucial motivation for my independent work

project as I will explain here. At the beginning of every program cycle, the Hatch Executive team

spends two weeks doing an intensive application review and manual matching process to pair

students with tutors (fig. 2).

FIGURE 2

The process is as follows:
1. K-12 students across the nation apply to the Hatch Tutors program through a Google

form application.
2. University-aged tutors apply to the Hatch Tutors program through a Google form

application.
3. The Hatch Executive team reviews all of the tutor applications by reading every Google

form response.

4

4. The Hatch Executive team manually emails out acceptance and rejection emails to every
tutor applicant.

5. The Hatch Executive team reviews all of the K-12 student applications by reading every
Google form response.

6. The Hatch Executive team manually emails out acceptance and rejection emails to every
student applicant.

7. The Hatch Executive team manually pairs K-12 students with a tutor by utilizing a
spreadsheet with every student and tutors information. Executive team members will
ensure that the subject area, grade level, and availability of the student and tutor match.

8. The Hatch Executive team notifies each student-tutor pair of their match by manually
sending an email to each individual.

Since all parts of the review process are manual, including the match creation portion, it takes a

tremendous amount of time and effort to complete. We as a team spent likely around 100 hours

to complete the process for 150 students and 150 tutors before the Spring 2021 program. With

limited people on the executive team, this process is highly inefficient and unscalable and as

Hatch continues to expand its reach to support more K-12 students, the matching will only

become more complicated. This is the motivation behind my independ work project. My goal in

creating the Web Application is to automate the exact process I delineated inHatch Tutors

order to remove a manual bottleneck for the Executive team and allow the tutoring program to

scale to more K-12 students nationwide.

2. Background and Related Work.

Since this independent work project is a web application being built from scratch and not a

theoretical project, there is not much related work of relevance. There does exist a current

website for Hatch Tutors at the domain hatchtutors.com which is a completely static website

created from Squarespace’s drag-and-drop templates. The Squarespace website has limited

customization ability, does not have a backend, and requires that I pay a monthly fee to maintain

its existence. For these reasons, I have decided to code my own web application to replace the

5

mailto:hatchtutors@gmail.com

Squarespace that will include all the functionality needed to automate the program application

review process.

3. Approach

a. Tools

I chose the following tools in developing the Hatch Tutors web application:

I will briefly describe the reasons why I chose these specific tools for web application

development.

1. inVision is a popular digital product design platform that is often used to create mockups

for web application user interfaces. My colleague in Hatch and UX / UI designer, Theresa

Salud, is familiar with inVision and was able to guide me through the usage.

2. Django is a popular web framework and I have previously used it to develop a web

application in COS 333.

3. PostgreSQL is a relational database often used with Django.

4. Bootstrap is a popular CSS framework that I chose to work with because it has broad

open-source resources online including pre-made aesthetic front end templates. I also

considered using React for the front end but chose Bootstrap because of familiarity and

ease of usage.

6

5. I chose Heroku to host the web application because Heroku provides a free 10K

database rows that I can use during development and because I am familiar with it from

COS 333.

b. Development Approach

My general approach to development was the following:

1. I created low-fidelity mockups on paper of the potential user interface for the application.

Then, I tested the mockups by interviewing Hatch Executive team members and asking

them to trace through the mockups and provide feedback on how the proposed features

reflect the real-life application review process. I continued to iterate on the mockups

based on team feedback and A/B testing versions in collaboration with my colleague

Theresa. Then, I created high-fidelity mockups of the web application user interface

using inVision that I could refer to during the development process. Refer to APPENDIX

1 for the mockups.

2. I implemented the web application step by step in the order of the application review and

matching process from Fig. 2:

a. I first implemented the homepage and the data collection portion, which includes

the student and tutor application forms.

b. Then I implemented the application review portals for students and tutors. I

included email notification functionality.

c. Finally, I implemented the student-tutor matching portal.

4. Implementation - Functionality

In this section, I will discuss the use case and functionality of each page in the web application. I

will then map each page to the steps of the application review and matching process in Fig. 2.

7

Homepage

8

The homepage is the first web page that users will see when they navigate to the Hatch Tutors

website. The homepage is meant to give general users an overview of the Hatch Tutors

organization. The general sections of the homepage from top to bottom include: 1) the mission

statement at the very top plus buttons leading to the student application and tutor application, 2)

a video and explanation of the Hatch program and community, 3) a selection of tutor profiles.

Now, I will begin giving a step-by-step mapping of the process to the web pages.

STEP 1: Students Apply

I will walk through this section as a user who is a K-12 student seeking to participate in the

Hatch tutoring program. First, I navigate to the homepage for Hatch Tutors and I see a large

orange button on the bottom left that says “Student Apply.”

9

I click on the “Student Apply” button which brings me to this page titled “Student Application.”

The Student Application page includes instructions at the top that tell me the deadline for

submitting the application, links to rules that determine my eligibility for the program (ref.

FUTURE WORK), and information about assistance filling out the application. I scroll down and

directly fill in the application form with my answers. The large titled sections of the application

include: Applicant Information, Caregiver Information, Family Information, other Student

Information, 3 choices of Tutoring Subjects, and Tutoring Session Logistics such as availability

and access to technology. At the bottom of the application form there is a Submit button. I click

the submit button after filling out my information, and then I am brought to this application

submission confirmation page. It tells me to check my email for notifications from

hatchtutors@gmail.com in the next two weeks.

10

mailto:hatchtutors@gmail.com

STEP 2: Tutors Apply

11

I will walk through this section as a user who is a university-aged individual seeking to be a tutor

in the Hatch tutoring program. First, I navigate to the homepage for Hatch Tutors and I see a

large orange button on the bottom left that says “Teaching Fellow Apply.” I click on the “Teaching

Fellow Apply” button which brings me to this new page titled “New Teaching Fellow Application.”

At the top of the New Teaching Fellow Application, there are instructions that tell me the

deadline for submitting the application, a link to the tutor role description, and information about

how to get help filling out the application. I scroll down and directly fill in the application form

with my answers. The large titled sections of the application include: Applicant Information,

Short Answer Questions that assess my fit with the program, and Tutoring Logistics. At the

bottom of the application form there is a Submit button. I click the submit button after filling out

my information, and then I am brought to this application submission confirmation page. It tells

me to check my email for notifications from hatchtutors@gmail.com in the next two weeks.

12

mailto:hatchtutors@gmail.com

STEP 3: Team Reviews Tutor Applications

13

I will walk through this section as a Hatch Executive team member who is reviewing tutor

applications two weeks before the tutoring program begins. First, I navigate to the homepage

for Hatch Tutors and I click the login button at the top right which then allows me to login using

Google authentication. When I am logged in, I am authenticated as an Executive team member

and the navigation bar on the homepage shows a dropdown labeled “Executive.” I click on

“Fellow Application Review” from the “Executive” dropdown. This redirects me to a portal where

I can review tutor applications.

The portal includes a search and filter bar at the top of the page with which I can use to search

for or filter certain tutor applications. I can search by the applicant name or university and filter

14

by application status, timezone, technology, and grade levels that applicant is willing to tutor.

Below the search bar is a table that displays a single tutor application per a row. The information

displayed in the columns for each tutor application is: 1) Name of applicant, 2) Application

Status, 3) Review application button that displays a modal with all of the application information,

4) Approve and Reject buttons, and 5) Send Email button. I will explain the steps that an

Executive team member would take to fully review a tutor application:

1. When an application is submitted by a prospective tutor, a new row will be shown in the

table with a status of “Needs Review” (i.e. 4th row “annie” in picture)

2. I as an Executive member will click on the purple “Review” button which brings up a

modal where I can see all of the application information for that applicant. I will read the

answers and determine the eligibility of the applicant using our predetermined standards.

3. I decide that the applicant is a good fit for Hatch and want to approve the application. I

click the green “Approve” button. Now a green “Send Approve” button shows up in the

last column of the row. (i.e. 5th row “kim” in picture). At this point, I can decide to retract

my approval and instead reject the applicant by pressing the red “Reject” button if I wish.

4. I decided to finalize my approval and I want to send an email to the applicant notifying

them that we have accepted them as a Hatch tutor. I press the green “Send Approve”

button and now all the buttons become disabled because no other changes can be

made from the portal. (ie. 2nd row “imran”) This is the end of the review process for the

applicant.

STEP 4: Team Emails Tutor Acceptances & Rejections

15

This step was done manually in past program cycles by sending out individual emails to every

applicant from our inbox. In the web application, the email notification is integrated within the

application review portal. Executive team members can send the email by simply clicking the

“Send Approve” button after approving the applicant, as explained above.

STEP 5: Team Reviews Student Applications

I will walk through this section as a Hatch Executive team member who is reviewing student

applications two weeks before the tutoring program begins. I click on “Student Application

Review” from the “Executive” dropdown. This redirects me to a portal where I can review

student applications.

16

The portal is very similar to the tutor application review portal. It includes a search and filter bar

at the top of the page with which I can use to search for or filter certain student applications. I

can search by the applicant name or caregiver name and filter by application status, grade level,

returning students, qualification for free and reduced lunch which is a standard we use to

determine eligibility. Below the search bar is a table that displays a single student application per

a row. The information displayed in the columns for each student application is: 1) Name of

applicant, 2) Application Status, 3) Review application button that displays a modal with all of

the application information, 4) Approve and Reject buttons, and 5) Send Email button. I will

explain the steps that an Executive team member would take to fully review a student

application:

5. When an application is submitted by a prospective student, a new row will be shown in

the table with a status of “Needs Review” (i.e. 2nd row “yong” in picture)

17

6. I as an Executive member will click on the purple “Review” button which brings up a

modal where I can see all of the application information for that applicant. I will read the

answers and determine the eligibility of the applicant using our predetermined standards.

7. I decide that the applicant is a good fit for Hatch and want to approve the application. I

click the green “Approve” button. Now a green “Send Approve” button shows up in the

last column of the row. (i.e. 3rd row “taylor” in picture). I can decide to retract my

approval and instead reject the applicant by pressing the red “Reject” button if I wish.

8. I finalize my approval and I want to send an email to the applicant notifying them that we

have accepted them as a Hatch student. I press the green “Send Approve” button and

now all the buttons become disabled because no other changes can be made from the

portal. (ie. 1st row “leslie”) This is the end of the review process for the applicant.

STEP 6: Team Emails Student Acceptances & Rejections

As with tutors, this step was done manually in past program cycles by sending out individual

emails to every applicant from our inbox. In the web application, executive team members can

send the email by simply clicking the “Send Approve” button after approving the applicant, as

explained above.

18

STEP 7: Team Matches Students & Tutors

One week before the Hatch tutoring program begins, the Hatch Executive team will have made

a decision to accept or reject all student and tutor applicants. Now, the Executive team needs to

match students with tutors. To do this, I will assume the role of an Executive member again and

navigate to the homepage and click on the “Matching Portal” from the “Executive” dropdown.

19

This brings me to the Matching Portal page:

There is a search bar and filter at the top of the page. I can use this to search for student

names, tutor names, and filter by Program Cycle, Match status, Subject taught, and Grade level

of the student. Below the search and filter is a table. Each row represents one student that has

been accepted to the Hatch tutoring program. Per each row, the columns are 1) the student

Name, 2) the Match Status, 3) the matched Tutor’s name, 4) the subject to be tutored, 5) Match

approval status, 6) Sending email notification about match, 7) manual match edit button. I will

describe the process that Executive members will follow to create matches:

20

1. I will click the “Match All” button and this will run the matching algorithm in the back end

that will pair students with tutors based on heuristics such as subject area, grade level of

student, tutoring platform, and availability. The output of the matching algorithm will be

rows in the table filled in with a matched tutor and subject. The status of the rows will be

changed to “Needs Approval” and the green “Approve” button will appear.

2. I decide to approve the match that the algorithm outputs for the student named leslie.

After pressing “Approve,” the “Send Email” button appears allowing me to send an email

to leslie and imran notifying them of their match for the Hatch program.

21

3. Sometimes the algorithm is unable to match a tutor to a student based on the

programmed heuristics. Or, sometimes an Executive member wishes to manually edit a

match output by the algorithm. Then, I as an Executive team member can press the

purple “Edit” button and select a tutor and a subject for the student. I can also clear the

match completely and the row will return to a state of “Unmatched.”

22

STEP 8: Team Matches Students & Tutors

As with the application approval portals, the manual emailing has been converted to a “Send

Email” button in the matching portal. Executive members can send an email notification to

students and tutors about their pairing after approving the match, as previously shown.

23

4. Implementation: Design

In this section I will describe the design and code structure of the web application. I will discuss

the database schema, the matching algorithm, the general structure of the code, and a few

design challenges.

Database

FIG: Database Truncated (ref. Next page for full tables)

This is a PostgreSQL relational database. The high-level relationship between the database tables are as

such:

1. Tutee Application: represents a student application. Created upon student app submission.

2. Tutee: represents a student accepted into the Hatch program. Inherits from “Tutee Application.”

3. Fellow Application: represents a tutor application. Created upon tutor app submission.

4. Fellow: represents a tutor accepted into the Hatch program. Inherits from “Fellow Application.”

5. Match: represents a student-tutor pair in Hatch’s program. Match objects have a Tutee & Fellow.

6. Cycle: represents a tutoring program cycle. Tutee, Fellow, and Match objects have a cycle.

24

FIG: Database Full

The general structure of the database tables:

1. Tutee Application table

Application_id = primary key
Approval_status = Needs Approval, Approved, Rejected, Accept Email Sent, Reject Email Sent
Name = name of the student
…(remaining fields correspond to student application answers)

25

2. Tutee
Tutee_application = primary key. One-to-one relationship with Tutee Application and thus

inherits all fields from Tutee App
Tutee_ID = Needs Approval, Approved, Rejected, Email Sent
Name = name of the student
Cycle = most current tutoring cycle of participation
Matched_status = Unmatched, Needs Approval, Approved, Email Sent
TF_candidate = potential tutor match (many-to-one relationship)
Subject_candidate = potential subject in tutoring

3. Fellow Application
Application_id = primary key
Approval_status = Needs Approval, Approved, Rejected, Accept Email Sent, Reject Email Sent
Name = name of the tutor applicant
…(remaining fields correspond to student application answers)

4. Fellow
Fellow_application = primary key. One-to-one relationship with Fellow Application and thus
inherits all fields from Tutee App
Name = name of the tutor
Cycle = most current tutoring cycle of participation
Tutee_capacity = remaining capacity for students

5. Match
Match_id = primary key
Cycle = tutoring program cycle
Tutee = student
Fellow = tutor
Subject = subject tutored

6. Cycle
Cycle_id = primary key
Name = Name of the cycle
Season = Spring, Summer, Fall

Tutee Application and Fellow Application objects are created upon submission of the respective

applications. Tutee and Fellow objects are created when an Executive member clicks on the

“Approve” for an application. Match objects are created when an Executive approves a match.

Cycle objects are currently created in the back end.

26

Matching Algorithm

The matching algorithm is coded to represent the real-life procedure that Hatch uses to pair a

student with a tutor:

1. A student can successfully be paired with a tutor if the following criteria is met 1) tutor is

comfortable with requested subject area for tutoring, 2) tutor is comfortable tutoring

grade level of student, 3) tutor and student align in at least one available time, 4) tutor

and student align on access to tutoring platform (online laptop conferencing, phone

conferencing, voice call). The algorithm obtains these criteria from the tutor and student

application answers.

2. The algorithm will try to pair a student with a tutor that does not have any students

before pairing with a tutor that has previously been assigned a student.

3. The algorithm will attempt to pair students with lower confidence in their subject area

with tutors that have highest tutoring capacity. (i.e. all else equal in (1) and (2), if Tutor

Rachel has capacity for 3 students and Tutor Nathalie has capacity for 2 students,

Rachel will get matched with a student that has lower confidence in their subject)

4. The algorithm attempts to match students with their 1st choice subject first, then their

2nd choice, and lastly their 3rd choice.

5. The algorithm attempts to pair students first who want tutoring in the subject with the

least amount of tutors available. (i.e. if 3 tutors can do middle school math and 10 tutors

27

can do high school English, then the algorithm will pair students who need tutoring in

middle school math first.)

I implemented the algorithm using a python script and wrote tests using tutor and student

application data imported from a CSV file. The code is available at:

https://github.com/Angelali98/hatch-matching. After testing the python script, I implemented

the algorithm in the web application by following the same structure with modifications. For

example, instead of using a python dictionary to hold application data as I did in the script, I

used Django QuerySet to filter data from the Tutee table and Fellow table in the database.

Structure of Code

Github: https://github.com/Angelali98/hatch

I will describe the structure of the code with reference to this diagram. The blue gradient icons

are folders. The plain blue icons are files. The icon at the top is the user. The legend shows a

solid black line which says “Direct code.” This means that files or folders connected by a solid

28

https://github.com/Angelali98/hatch-matching
https://github.com/Angelali98/hatch

black arrow directly references code. For example, there is a solid black line from

matching_algo.py to views.py. This is because view.py directly calls a function written in

matching_algo.py. The dashed arrow refers to files that the Django framework automatically

connects. The box surrounding executive and account represents their parent folder called

templates.

If you open the Github link you will find:

1. Generated Files: requirements.txt (list of dependencies), manage.py (Django

command-line utility), Procfile and .DS_Store (configuration for OS and Heroku).

2. Folder: hatch.

a. settings.py - auto-generated Django file I modified with installment settings

for Postgres, Heroku hosting, authentication, and the main application.

3. Folder: executive - code for the application. All of the files and folders in the

diagram except settings.py are in this folder. (Not to be confused with the sub-folder

shown in the diagram also called executive)

a. models.py - Model is a class that represents database tables. Each

attribute / field is a table column

b. migrations - django generated records of changes to models

c. static/assets - holds the images used in the application

d. account - imported code from Django allauth package for Google

authentication. I modified some of the base templates to fit the application

aesthetic.

e. forms.py - back end code for the student and tutor application. The class

ModelForm converts the models (database tables) TuteeApplication &

FellowApplication into a Django form object.

29

f. executive - folder containing all the HTML templates I created for this

application. The templates include Django template language for looping and

accessing database objects. The notable HTML templates are:

i. landing-page.html (homepage)

ii. tuteeapp.html (student application),

tuteeapp_confirmation.html (app submission confirmation)

iii. applications.html (student app review portal),

iv. fellowapp.html (tutor application),

fellowapp_confirmation.html (app submission confirmation)

v. fellow_applications_review.html (tutor app review portal)

vi. matching.html (matching portal)

g. matching_algo.py - code for the matching algorithm. Includes a function

clearMatches that will clear the matches given Tutee objects

h. decorators.py - used to restrict executive portals to certain users

i. views.py - a view function takes a Web request and returns the HTML

response. Filtering and making updates to database objects happens here, along

with email sending and table pagination.

j. urls.py - maps view functions to URLs that the user can access

Approximate metrics on the code I implemented:

● Lines of HTML: 4300

● Lines of python

○ App: 1520

○ Matching algorithm script: 800

● Lines of code total: 6620

30

Design Challenges

1. The database required careful design. The tables must be set up properly in

consideration for how the web application might expand to accommodate the future

expansion of the Hatch program. One major decision I made was to make a Tutee table

separate from the Tutee Application table and same for Fellow and Fellow Application.

This is because students and tutors may return to the Hatch program multiple times and

their information may change. Having a separate Tutee object means that the original

application data can remain unaltered. In addition, the Tutee object can inherit fields

from the Application object to reduce redundancy, and I can also add fields to the Tutee

model in the future to inherit information from a “Returning tutee” application if need be.

Similarly, I decided to make a separate Match table instead of just having a “matches”

field on Tutees and Fellows because this will allow for easier tracking of analytics and

metrics, which is important information for Hatch.

2. Designing the matching algorithm was challenging at the start because I had to choose

the proper python data structures to use for storing information from the CSV files in the

python script. Dictionaries and lists were very handy choices because they allowed me

to map a student name to a list of information. Python was a good choice because its

syntax allows for easy manipulation of tuples, list, and dictionaries. When I integrated the

algorithm into the web application, it was actually significantly easier to implement than

in the script. This is because Django QuerySet allows for filtering functionality and the

Tutee database objects allow me to directly access information about a student from the

object fields. This eliminated the necessity for data structures such as dictionaries.

3. I also ran into an implementation challenge with the Application Review Modal in the

Student application review portal. The modal was showing one student’s application

information for every row instead of showing the correct application information for each

31

different student. With the help of my advisor, I was able to figure out that this was a

naming problem within the HTML that displayed the table. Django template language

allows me to iterate through a list of database objects (Tutee Applications) in an HTML

template. For each iteration, I implemented code to display a table row including the

Review modal. The modal must have a unique name referring to each student’s

application object.

5. Evaluation

I conducted evaluations with users from the beginning of the development process to the end.

1. I interviewed Hatch executive members to help iterate on the hi-fi inVision mockups

2. I conducted a total of 5 user interviews evaluating the web application in production. I

used the task list in APPENDIX 2 to guide the users through the application. Feedback

gathered from the interviews is in APPENDIX 3. Here is a summary:

○ Midpoint user interview with my advisor Robert Dondero (no task list, evaluated

up through application review portals)

■ It was useful to see a user who is not intimately familiar with the review

process try the application. The user seemed to smoothly understand the

flow of the application and the review portal usage. Constructive feedback

pertained to issues such as state of the system alerts (submission confirm

etc.), form logic, and some UI changes.

○ 2 interviews with Hatch Executive team members in charge of application review

■ These two interviews were with Hatch members that work with the

application review process. They also found the approval flow intuitive

and mainly had future scope suggestions for the review portals such as

ability to add notes, initials, and email template additions.

32

○ 2 interviews with Hatch team members: UI/UX engineer and a software engineer

■ These individuals also work with the review process. One was very

detailed with testing edge cases and managed to catch a bug in the

matching algorithm that I then fixed. They also had specific future scope

suggestions such as a static single source of truth for matches since the

matching portal is editable and not well-fitted for this purpose. The UI

engineer also had suggestions about leveraging icons for clarity.

3. I self-evaluated the application using Jakob Nielsen’s UI Heuristics.3 Here is a summary

of my evaluation:

○ Visibility of system status:

■ The student and tutor applications both contain sections with descriptive

headers for the user. The system alerts the user with a “submission

confirmation” page after a user submits an application.

■ In the Student Approval, Fellow Approval, and matching portals the filter

in the table header alerts the user to how many rows were filtered. The

buttons in the table become disabled after they are pressed. The “App

Status” column alerts the user of the application status.

○ Match between system and the real world:

■ The application review and matching portals are a 1-to-1 mapping of the

real-world process that Hatch uses. The terminology in these portals,

such as “Tutee” and “Fellow” and the filter and status terms, is language

used by Hatch.

■ The homepage uses language familiar to general users. It says “student”

in lieu of “Tutee” and it explains what “Teaching Fellow” is upfront.

3 https://www.nngroup.com/articles/ten-usability-heuristics/

33

https://www.nngroup.com/articles/ten-usability-heuristics/

○ User control and freedom

■ The application review portals allow the user to freely switch between the

reject and approval button until the email is sent. The user should not be

allowed to make changes in the portal after the email is sent. The

”Review” modal has a clear close button.

■ The matching portal contains an “Edit” button for every row which allows

the user to freely edit the match and clear the match.

○ Consistency and standards

■ The navigation bar and social media icons are consistent throughout the

web application.

■ The call to action buttons are consistent colors - redirections are orange,

submits are purple, approvals are green, rejections are red.

■ The portals are consistent in their status terminology and table flow.

○ Error prevention

■ The student and fellow applications contain form validation.

1. * must be filled in
2. Used dropdowns if possible to eliminate free-form text
3. Email validation, numerical range validation

■ Review and matching portals require a separate “Send email” action after

approval and rejection. Send email does not appear until an approval or

rejection is made. A good future scope addition would be to require two

member signatures before allowing the Send Email button. Undo actions

are supported: approval, rejection, and clear match options. After email is

sent the user is no longer able to make any edits so the buttons are

disabled.

○ Recognition rather than recall

■ Buttons and columns are labeled in every table in the application portals

34

■ The application review button in the approval portals allow the user to

look at application information

■ It would be worthwhile to see if Executive members can benefit from

having an application Review modal for rows in the Matching portal

○ Flexibility and efficiency of use

■ The application review and matching portals allow for flexibility using the

filters and the ability to edit each row. It would be beneficial to add bulk

actions for efficiency such as Approve all, Send Email to all approved, etc.

○ Aesthetic and minimalist design

■ I leveraged a very well-made free Bootstrap 4 template for minimalist

design: Material Kit

○ Help Users Recognize, Diagnose, and Recover from Errors

■ The application form validation will alert the user with a description of an

error if the user tries to submit with an invalid answer.

■ The approval and matching portals have many error prevention tactics as

discussed previously. There are no error alerts because the approval

process depends on the human intention and the system cannot know if

an “Approval” was an error.

○ Help and Documentation

■ There currently is not much documentation in this application as it was not

within the scope of the independent work. I will soon be implementing

pages that describe the Hatch program and eligibility criteria. Another

feature that may help Executive members is documentation on how to

use the portals. Perhaps at the top of the table columns, there can be a

popup that briefly describes each column or perhaps a separate page

with a step-by-step might be helpful. I will test this with the team.

35

https://demos.creative-tim.com/material-kit/index.html?_ga=2.260697358.2021831609.1620070563-2139595444.1612311381

6. Conclusion and Future Work

In conclusion, the Hatch Tutors web application is designed to now replace and automate the

tedious application review and matching process for the Hatch Executive team. This will be of

tremendous benefit in alleviating the bottleneck for scaling the tutoring program and I look

forward to using the web application in production. The user interviews I conducted suggest that

the design of the web application is an intuitive mapping of the manual review process. The

basic functionality is in place, and the work that must be done before we use the application in

production is: designing the Hatch student and tutor program description pages and other

informational pages such as About Us and Testimonials, finalizing text and visuals on the

landing page, finalize email templates, and a thorough web-security testing potentially with

outside help. I plan to put the web application in public use by the fall of 2021 and recruit other

volunteers to collaborate with in further building the application. There are many exciting

opportunities for future work, such as a portal for tutors to track sessions and resources or

advanced matching, that will benefit the Hatch Tutors organization!

7. Acknowledgements

I would like to thank all the people who have supported me throughout the completion of this

Independence Work project. First, I would like to thank my advisor Prof. Robert Dondero for

providing me with guidance weekly over Zoom from pre-project planning to evaluation. I would

like to thank Theresa Salud, my Hatch colleague and UI/UX engineer for helping me learn the

design process. I would also like to thank the Hatch team members for volunteering their time

with me in building the Hatch organization, defining the review process, and helping me with the

web application user interviews. I also want to acknowledge the individuals whose online

resources I referenced in building my web application. In particular, I give credit to Creative Tim

36

for creating Material Kit, the free Bootstrap template that I leveraged for my web application

aesthetics. I also would like to acknowledge StackOverflow, Dennis Ivy Django tutorials on

YouTube, all the other resources I have referenced to build my project. Lastly, I would like to

thank the Princeton Independent Work Program.

8. Appendices

Appendix 1: inVision Mockups

37

https://demos.creative-tim.com/material-kit/index.html

38

39

40

Appendix 2: User Interview Task List

You are a Student

1. Learn about the Hatch community.
2. Apply to be a tutee. Check free-and-reduced lunch

You an executive member
1. Login
2. Check if tutee is in tutee app review portal

41

3. Review the tutee application
4. Accept all free-and-reduced lunch applications
5. Reject Johnny Kim (improper application)
6. Send acceptance & rejection emails to applicants

Student
1. Check in your email for acceptance or rejection email

You are an aspiring Teaching fellow
1. Find out about some of the current teaching fellows.
2. Apply to be a fellow.

You an executive member
7. Check if fellow is in fellow app review portal
8. Review the fellow application and accept or reject the application
9. Send email to an accepted applicant
10. Accept all Princeton university applications

11. Run the matching algorithm
12. Manually assign a teaching fellow and subject to a tutee
13. Approve the match and notify them by email of the match

Appendix 3: User Interview Task List

Homepage
Prof. Dondero

● Hide login except for executive team members
● Apply summer fellow button
● Change text to "Meet some of our fellows!"
● Take off links that don't work or instead just put "page coming soon"

Leslie, Rachel

● Meet our teaching fellow - have a brief description of what teaching fellow is
● Have a display where the metrics goes up
● Footer with contact

Tutee Application
Prof. Dondero

● Have a confirmation page for after submitting an application

42

● Darken the text
● Dynamic form for the returning students also the tutoring subjects
● Check that the navbar links are correct
● Form validation
● Explain asterisk
● Explain selection criteria
● More indicative dropdown

Leslie, Rachel

● Check spelling

T, Cathleen
● Future Scope: Application for Students is a tad long if goal is to increase applications

and make it as accessible as possible
○ maybe split up into sections to make processes more engaging with progress bar

● Suggestion: confirmation email. “Here’s your application, thanks applying, etc”

Fellow Application
Prof. Dondero

● Have a confirmation page for after submitting an application
● Darken the text
● Form validation
● Explain asterisk
● More indicative dropdown

Leslie, Rachel

● FELLOW app -- have returning app

Student Application Review Portal
Prof. Dondero

● Badge → change to colored text
● Sustain search query
● Filter indication

Leslie, Rachel

● Add the onboarding survey to the email send out
● Email waivers for families to fill out
● People take notes on portal on each application
● add information for executive member initials after reviewedl
● Change some of the form inputs

43

● “Caregiver NAME contains”
● Tutee and fellow review -- send all email to reject and accept

T, Cathleen
● Suggestion: Student Application review page - date of application should be here, order

by last edited
● Suggestion: Colors on page should be changed. Perhaps use of icons.
● Suggestion: There should be a free and reduced Lunch column perhaps
● Future: Ability to edit application information and application flow for returning

TFs and Students who are already in our database

Fellow Application Review Portal
Prof. Dondero

● Badge → change to colored text
● Sustain search query

Leslie, Rachel

● people take notes on portal on each application
● add information for executive member initials after reviewed

Same as Student review portal

Matching Portal
Prof. Dondero

● Badge → change to colored text
● Ability to clear all matches
● Unclear whether it matches on the filtered or not filtered part
● Sustain search query

T, Cathleen
● Future: source of truth for finalized match information
● Check spelling
● Overall info button with usage details

44

