
Name: Joshua Gardner

Class: 2020

Project Title: Thrive, A Computer Aided Goal-Setting and Time Management System

Advisor: Robert Dondero

Introduction

Thrive is a web application created to teach time management skills to first generation

low-income college students participating in the Freshman Scholars Institute program at

Princeton University. The FSI program is a seven week intervention for these at-risk students the

Summer before their freshman year. It has been found repeatedly that first-generation college

students struggle with time management and goal-setting . Thrive was motivated by a 1

conversation with Dean Khristina Gonzalez of Princeton University's program for Access and

inclusion. Dean Gonzales requested that an application be created that will help students to break

down their larger projects into manageable subgoals and then to plan and allocate their time

accordingly. The project was originally worked on in Princeton University’s Computer Science

333 course bya team consisting of Josh Gardner, Justin Tran, Victoria Zlatanova, and Hamza

Mahmood. Initial requirements gathering took place in September and October of 2018.

Dean Gonzalez specified that the system needed to allow users to create goals and subgoals of a

major task and vaguely that the failure to correctly estimate the amount of time needed for

projects is a major problem that she wanted solved. However, she provided no suggestions for

specific features. Since the initial requirements were relatively vague, I set out to explore

1 Byrd, Kathleen L., and Ginger MacDonald. "Defining college readiness from the inside out:
First-generation college student perspectives." Community College Review 33.1 (2005): 22-37.

psychological literature related to goal setting and task performance. In particular, Edwin Locke

and Gary Latham’s A Theory of Goal Setting and Task Performance(1990) and Albert Bandura’s

Self-efficacy: The Exercise of Control(1997) were both highly influential in the design of the

app.

 One of the most significant findings in the literature was that breaking down large distal goals

into easily attainable proximal subgoals increases self-efficacy and the motivation to complete

the goals, consequently improving task performance. Much of this is accomplished by lowering

anxiety levels and decreasing task ambiguity, thereby eliminating much of the impetus for

procrastination. In essence, the proximal subgoals seem much more attainable than the larger

distal goal, and, because they seem more attainable, people are more willing to work on them . 2

Additionally, the proximal goals allow people to see their progress. As each goal is completed,

the person self-efficacy increases, leading to a sort of upward spiral in which they feel

increasingly competent and thus exhibit higher performance as they work towards the distal goal.

Similarly, Locke and Latham suggested goals must be specific measurable attainable relevant

and time-bound in order to be effective . Moreover, recent research has indicated that goals 3

should also provide some strategy information or should make it explicit that strategies and

information about tasks must be gathered ahead of time. They found that if individuals attempt to

2 For a more detailed discussion see pages 100-120 in: Bandura, Albert. Self-efficacy: The exercise of
control. New York: wH Freeman, 1997.
3 For a detailed discussion of goal setting theory see :
Locke, Edwin A., and Gary P. Latham. A theory of goal setting & task performance. Prentice-Hall, Inc,
1990.

complete a task prior to understanding the strategies necessary for successful task completion,

this leads to demotivation and general decreases in performance. They found that when people

set high performance goals without first knowing the proper strategies needed to achieve high

performance, this leads to burnout and failure . 4

Taking all these factors into consideration, the engineering team prioritized the creation of nested

distal and proximal goals, with clear indicators of goal completion, as well as the creation of

time tracking devices, which allow users to estimate the time needed to complete tasks as well as

the time, and to see measures of progress based on their time estimates. These requirements

guided the design of the initial version of the app which was deployed in January of 2019. The

app failed to satisfy certain basic requirements, thus motivating a major redesign. This is

discussed more extensively in the next two sections.

Related Work: Existing Commercial Applications

The related work section will start by explaining the way which related work influenced the

January 2019 version of the app. Next, we will discuss the January 2019 version as a sort of

“related work” to the current iteration, since it is sufficiently distinct from the redesigned app but

nevertheless inspired it.

4 Locke, Edwin A., and Gary P. Latham, eds. New developments in goal setting and task performance.
Routledge, 2013.

Prior to engaging in any design, the team investigated existing apps which may have some or all

of the required functionality. There were two apps with functionality relatively similar to what

we were setting out ot create. The first of these is Todoist. Todoist allows people to make a

digital todoist with time-bound goals such that the user can set specific calendar dates on which

they would like to complete goals. Notably, todoist also supports the setting of nested goals for

projects, as demonstrated here using their “projects” feature:

Nevertheless, Todoist does not contain substantial time tracking features. There is no way for the

user to input a time estimate for determining how long the project will take. moreover, todoist

does not contain substantial completion measures for specific projects. The app does keep track

of how many tasks of user completes in a given day but not necessarily for a given project.

Moreover, the indicators of progress are relatively unclear, since tasks are unweighted.

Ostensibly, this can be improved by giving the user more clear visual indicators of goal progress.

 We also examined monday.com, a project management app used for teams in the workplace.

Monday.com included many time tracking features, however it included no goal breakdown

features like todoist. Most of monday.com’s tools are intended for team use, such that team tasks

for a given day or week are shown in a grid layout and the completion status and time estimates

of each task are also displayed in the grid. In this sense, monday.com contains many of the

features that Todoist lacks, but nevertheless is clearly not designed for the purpose of individual

projects.

Related Work: Thrive Version I(September 2018-January 2019)

 I set out to design an app which has the nested hierarchical goal-setting capabilities of todoist,

the time tracking features of monday.com, and additional time estimating and completion

tracking features which exist in neither application. The first priority was to implement

hierarchical goal representation, similar to what is seen in Todoist. From the beginning, we knew

this was going to be a major logistical challenge because of the fact that most sql-based

databases do not inherently support this form of hierarchical nesting.

The project centered on the the creation of an app that supported hierarchical nesting and

completion measures via a progress bar for the overall project. We encountered significant

difficulties in implementing the database to support the hierarchical nested goals, ultimately

having to resort to using Json strings as opposed to more appropriate database formats.

Essentially, we represented each project as a Json string which could be converted back and forth

from a python object.

 The python object had a variety of attributes and functions which enabled the code to interact

with each goal in the goal hierarchy. The team was successful at creating something that

supported hierarchical nesting. Nevertheless, the resulting code was extremely buggy. Notably,

one of the core functionalities was supposed to be the ability to move goals up and down using

up and down arrows respectively. However, using the up and down arrows frequently resulted in

goals randomly jumping around in the goal hierarchy and other sorts of generally unexpected and

seemingly undefined behaviors. Moreover, upon user evaluations at the end of the semester,

Dean Gonzalez and others informed the team that the crude user interface made the app virtually

unusable. The version one user interface is displayed here:

Version one used a table to represent the goal hierarchy and created indentation by using

different columns of the table. This made for an extremely crude interface, which was described

by Christopher Moretti as being representative of “early 2000’s web programming, nothing like a

modern web app.” Furthermore, the time tracking features were minimal at best. Each individual

goal object had its own time property which was represented by a timer experienced in the user

interface. Notably, there was no interaction between the times of subgoals and their higher-order

goals. The expected and intended behavior was that the time recorded for each goal would be the

sum of the times for its sub goals. However, the team failed to implement this functionality by

the end of the semester for COS 333. At best, the team had created an app which have some of

the features of todoist as well as an additional time tracking feature for each goal, but which

failed to represent the hierarchical nature of the goals in a visually appealing way. 5

Requirements Gathering

 The failure of the previous semester’s project inspired me to spend this semester completely

overhauling the app in order to make it distinct from Todoist and to give it the functionality it

needed to meet Dean Gonzalez's requirements. In order to get the app to meet her initial

requirements, it was necessary to make substantial and overarching changes to the client side

user interface and significant but not overwhelming alterations to the server side.

The following were identified as major concerns during user evaluations: moving goals results

in unpredictable behaviors(goals moving randomly, progress statuses changing unexpectedly),

moving goals while timers are active results in unpredictable behaviors, the interactions between

times for goals and subgoals is unclear, hierarchy is poorly represented, there is no means of

5 For more details on the implementation of version one, please see the documentation created by
the project team in January 2019, available at
https://drive.google.com/drive/folders/19aAJVrmw0kuhdzZ-NFr5X1aC5SIJRR7-

https://drive.google.com/drive/folders/19aAJVrmw0kuhdzZ-NFr5X1aC5SIJRR7-

collapsing and uncollapsing goals like there is for Todoist, there is no means of sharing goal

templates with students. Prior to attempting to address these concerns, I spoke with an adviser

and software engineering specialist, Dr. Robert Dondero, to determine which issues take priority

and in which order I should proceed in rectifying the bugs and redesigning app features. Dr.

Dondero specified that first I should removing existing bugs, followed by redesigning the user

interface to make goal hierarchies more clear and collapsible. He specified that after that I should

redesign the interaction between goal times such that there is an invariant that each goal has a

time that is the sum of the times of its subgoals. After that, he stated that implementing template

sharing features such that students and instructors can share templates would make a good stretch

goal for this or future iterations of the app.

Functionality

Upon navigating to the website, the first thing the user will notice on the landing page is a login

button on the left-hand side. By clicking on the login button, the user will be prompted to enter

their net ID and password in Princeton University Central authentication system.

Once the user has logged in, they will be taken to the main Thrive page. On arriving on this page,

they will see a toolbar as well as the first project in alphabetical order if they already have

existing projects.

The toolbar supports various functionalities. There is a trash can icon for deleting the current

project template. There is a home button which will return the user to the splash landing page(i.e.

the log in screen above). There is an add-note icon(directly to the right of the trash can icon) for

adding a new project. Upon clicking on this symbol, a modal will appear asking the user to give

a title to their new project template.

 Most importantly, there's a drop-down menu button which allows the user to select which

project template they would like displayed. Clicking on this button causes a drop-down list to

appear from which the user is then able to select the template they would like to work on.

 Once a template loads, a goal tree is displayed in the left panel. On opening, the tree is simply a

single node with an arrow next to it. By clicking on the arrow to the left of the goal title, the user

can expand the tree to see subgoals of the goal, and can expand each goal to see its subgoals

respectively. The user may expand or collapse any goals they choose by clicking the triangle

icon to the left of the goal title in the left panel.

Additionally, each goal has a red up arrow and a red down arrow. Clicking the up arrow the goal

causes the goal to be moved up in the hierarchy underneath its parent goal. Clicking on the down

arrow causes a goal to move downward. In the event that the goal is already at the top or the

bottom of the hierarchy the up or down arrow respectively will not cause anything to happen.

There is a blue plus sign for each goal which the user can click on to add a subgoal for that goal.

Upon clicking on the blue plus-sign, the “add- subgoal modal” will appear:

The modal asks the user for three inputs, the first of which is the title of the new goal, the second

which at the time estimate for how long it will take to complete the goal, and the third of which

is the amount of time already spent working towards the goal. The user is asked to input the

amount of time already spent working towards the goal because adding subgoals to goals which

formerly had no subgoals will cause the time for the goal to be reset to 0. Presumably, the

amount of time spent on a goal must always be equal to the sum of the amounts of time spent

working on its subgoals. Namely, the goal is strictly defined as the sum of its subgoals.

Upon clicking on the name of a given goal, the right-hand panel is changed to display the

information for that particular goal.

 I will start describing the right-hand panel moving from top to bottom. At the top of the

right-hand panel is an input box which contains the current goal title. In the above image, the

goal title is “third.” By double-clicking inside this box, the user is allowed to edit the goal title.

Upon the input box losing focus, the new submission for the goal title will be sent to the back

end and the goal object and corresponding front end representation will be updated accordingly.

Beneath the goal title, there are buttons for marking a goal complete and deleting a goal. These

do precisely what they say. When a goal is marked complete, the only effect is that its tile

becomes green in the left-hand panel. Moreover, there is a text box in which the goal description

is displayed. The user is able to edit the goal description simply by clicking inside of this box

typing and then clicking off of the box. In other words, upon the box losing focus, a signal is sent

to the back end, and the goal is updated to reflect its new description.

Moving further down, there is a series of features for time tracking. The first of which is a time

estimate.

 The time estimate box appears as a simple text input box which contains the current time

estimate in a string format. By clicking inside of this box and editing the text, the user is able to

update the time estimate for the given goal. Note that their input undergoes string validation first

and invalid input will result in no update to the goal.

 Beneath this, is a “timer component.” When the goal is actively being worked on i.e. once the

timer has been started, the user is not able to edit the input box and instead text is displayed such

that the user can see the timer incrementing second-by-second. Once the user pauses the timer,

the user is able to directly manually edit the time contained in the timer.

After making edits, once the user clicks outside of the timer input box, a signal will be sent to the

back end updating the time for that particular goal.

Note that time estimates and time spent or only editable for leaf nodes. In the event that a goal

has child goals, the user is not able to directly edit the time estimate or time for that particular

goal:

This is because of the fact that there is a tree invariant each parent node must have time estimates

and times equivalent to the sums of the times and time estimate of its child nodes. Therefore, in

order to edit the time estimate or time for a parent node, the user must edit the times for its’

children nodes.

Finally, each goal contains a progress bar at the bottom of its right hand panel, such that the

progress bar reflects the ratio of the time spent so far to the time estimate for the goal. When the

time spent is equal to the time estimate the progress bar is completely full and in the event that

the time spent surpasses the time estimate there is an error condition and an error message

renders directly beneath the progress bar which warns the user that they must update their time

estimate since the time spent has surpassed the time estimate.

Design and Implementation

Much of the key infrastructure of the current app was already in place as of the first version

which was released in January of 2019. Notably, there have been no major changes to the

structure of the database or to the choices of frameworks used. The database is postgres SQL, all

server side code is in python, the RESTful API uses Flask, and the front end is html and

javascript using the Vue framework.

 A postgres SQL database is being used to store Json strings representing “goal objects.” Each

goal object essentially represents a goal, it's attributes, and a list of subgoals. In essence, goal

objects are a recursive data type, which can be converted back and forth between Json strings

and python objects. The database itself merely contains a single table in which each row maps a

user ID to a json string. A substantial API was built for interacting with “goal objects” and

performing operations such as swapping goals in a hierarchy or deleting a goal and all of its

subgoals. All of the operations defined in the API automatically update the database, reducing

the workload necessary for programmers downstream. Many of the features of the underlying

representation were essentially abstracted away, such that it is possible to change the underlying

representation in the future without having to make any changes to the RESTful API or to the

frontend.

Every goal object is essentially a tree. A project template can essentially be thought of as a

recursive tree data structure. In essence, the root node contains all other goal nodes. This makes

certain operations more inconvenient, however generally most tasks can be accomplished

recursively.

The server-side RESTful API contains a variety of functions which use the python object

version of goal objects. Each of these functions maps to a corresponding JavaScript function on

the front end. notably, the server-side needs to convert each python object into a specialized

Json object which also includes dynamically computed features. As an example, times are only

stored in leaf nodes. The time values for all of the parent nodes must be computed by summing

over the times for their child nodes. Moreover, the vuetify treeview component has very

specific requirements for the format of Json strings that it can represent. There's a special

mapping function on the server side that converts goal objects into the required format.

Additionally, it is simpler to perform operations such as converting integer times in milliseconds

into human legible string time formats on the server side as opposed on the client side.

Accordingly, such computations are performed and the results are stored in the Json strings

which are sent to the front end.

 Once these Json strings are sent to the front end, they are fed into a vuetify treeview component6

. The values sent from the backend are then easily accessed as properties of the treeview

component.

 On the front end, updates are handled by event handlers. In the majority of cases, I've designed

the system such that whenever a field loses focus any updates to that field are sent to the back

end. This applies for altering goal titles, altering goal descriptions, and altering times. When

values are altered, function calls are made to the RESTful API, sending the new values to the

back end and causing updates to the underlying goal objects stored in the database. Whenever

there is an update, the server side is designed such that it forces the front end to re-render by

sending a new Json string and updating the treeview component.

 Evaluation: Cognitive Walkthrough

In order to evaluate the app, a cognitive walkthrough was performed done with Dr. Dondero. He

was asked to complete the following tasks:

1. Delete the current project

2. Create a new project

6 For more information on this component please visit: https://vuetifyjs.com/en/components/treeview

https://vuetifyjs.com/en/components/treeview

3. Create a subgoal

4. Create a second subgoal with time estimate 02:00:00 and actual time 00:40:00

5. Create a second level nested subgoal

6. Mark that second level subgoal complete

7. Swap goals up and down

8. Give one of your goals a detailed description

9. Start the timer for one of your goals

10. Pause the timer for one of your goals

11. Manually change time elapsed for one of your goals

12. Delete a goal

13. Change the title of an existing goal

The instructions were deliberately vague so as to determine whether the user interface was

straightforward enough to figure out how to complete the actions.

Dr. Dondero noted multiple concerns with the app. First, on loading a template, the new project

goal tree didn’t show until he refreshed the page. He remarked that this was confusing.

Moreover, once the goals had loaded, he commented that he didn't know where to click to

modify the goal description. He said that the background color for the text input box for the goal

description was too similar to the surrounding background colors and moreover that the floating

title of “Goal description” and the line directly beneath the text input box made it confusing

where he should click to modify the goal description itself. He suggested that in future iterations

of the app the background color for the goal description box be distinct from that of the

surroundings and additionally that upon clicking inside of the box the background color change

in some way to indicate that the user has focused into the box.

Moreover, he expressed substantial concerns about the timer components, particularly the

manual updates. He noted that under some circumstances the manual updates are not persistent

and get overwritten by the previous times. Dr. Dondero stated that he would prefer for every

keystroke to hit the database and moreover that he would like it to be much more clear when the

user is actively modifying the time input box. He said that there is no color change when the user

clicks into the box and that this is a major issue in terms of ease of use.

 Furthermore, and potentially more significantly, he discovered that since the timer submits time

updates when the user clicks outside of the time input box, it is possible to create strange

behaviors by clicking on another button that sends a signal to the server side prior to making any

other clicks away from the time input box. Ostensibly, this is introducing some kind of race

condition in which multiple signals are being sent to the back, roughly simultaneously, and these

lead to inconsistent states. In order to alleviate this problem, Dr. Dondero recommended creating

a special modal for updating times. Effectively, whenever a user wants to update a time estimate

or a time they must click on the time time, thus causing a modal to appear. They will will then be

prompted to update a text box within the modal, and a signal will be sent to the back end only

when they click a submit button. This completely prevents any possibility for there to be race

conditions.

 Aside from these problems, he noted that the user interface appeared to be much cleaner and

more usable than in previous iterations. furthermore, he noted that the tooltips used for each of

the various buttons made the app relatively straightforward to use and easy to understand, with

notable exceptions for text input box issues.

 Evaluation: Nielsen Heuristics

Additionally, I evaluated the system using Nielsen heuristics. The following ten heuristics were

used: visibility of system status, match between system and the real world, user control and

freedom, consistency and standards, error prevention, recognition rather than recall, flexibility

and efficiency of use, aesthetic and minimalist design, error handling/assistance, help and

documentation.

The system satisfies the first heuristic pertaining the visibility of system status. Since there are

never any loading states, system status messages are generally unnecessary. The only times

when special statuses are necessary when there are conditions such as the time spent surpassing

the time estimate And this is handled by simple error message.

There's a strong match between the system and the real world. Most notably the use of tooltips

for all buttons makes it easy for the user to determine the functionality of various buttons.

Moreover, the choice of icons with relation to the functionality of each button makes the system

intuitive: adding a goal is a plus sign, going to the home page is a house, deleting a goal is a trash

can, moving a goal up is an up arrow, moving a goal down is a down arrow. Furthermore, the use

of colors typically associated with certain functionalities such as completion(green) and

deletion(deletion) makes the app visually intuitive and easy-to-use.

Nevertheless, the app fails to meet certain basic standards for user control and freedom. Most

notably, there is no way to undo the deletion of goals or goal templates. However, there is a

special modal warning the user when they are about to delete a goal. In general, there are no

actions which have a corresponding undo or redo button. This should be improved on future

iterations of the app.

The app has good consistency and standards. There is generally no ambiguity as to functionality.

all functionalities are made clear through tooltips. There are no cases in which similar appearing

buttons, icons, or text boxes are associated with drastically different behaviors.

The app makes appropriate use of error prevention for certain scenarios such as when users want

to swap goals with timers currently running. In this case, and error modal appears telling the user

to pause the timer prior to swapping the goal, and they are only allowed to swap once the timer

has been paused. Nevertheless, there are other errors states which only result in an error

message. Most notably when the time spent surpasses the time estimate, an error message

appears beneath the progress bar, however there is nothing in place to prevent this error state

from occurring in the first place. It is somewhat questionable whether it is even possible to

prevent this error state. Potentially, a special modal could appear when the time spent first

equals the time estimate. This modal could ask the user whether they would want to mark the

goal complete or update their time estimate and could force them to complete one of the actions

prior to closing the modal.

Throughout the app, there is no need to remember substantial amounts of information. There are

no lengthy dialog boxes or particularly complex processes. Everything is generally short and

straightforward.

There are no features in place for flexibility or efficiency of use. There is no way for an

advanced user to customize the interface of the app or to speed up certain routine processes. In

future iterations of the app, it may be desirable for the user to be able to customize the

appearance of the interface, or to reuse project templates they have already created.

The app uses aesthetic and minimalist design for the most part. Generally, the messages and

dialog box is a relatively short, with the exception of the message for adding subgoals which

informs the user that adding a sub call may cause the time for the apparent goal to be altered.

Ostensibly, tooltips may be overused, however they do make the functionality of the app

extremely clear and easy to understand.

The app helps users to recognize, diagnose, and recover from certain basic errors such as time

spent surpassing time estimate. However, certain types of system error such as failure to connect

to the database cause no message to render on the front end. In general, there is no messaging

system when server-side errors occur. In the event of a server-side error, a typical user would

have no way of knowing what is going on. This is an aspect that can be improved in future

iterations of the app.

There is no help or documentation present for the app. Nevertheless, the app is relatively simple

and compact and it is questionable whether it has any features sufficiently complicated as to

merit more detailed explanations for the user beyond the tooltips already provided.

 Overall, the app represents a major improvement over the previous iteration, however still

leaves much to be desired and leaves room for work over the Summer and potentially in future

semesters.

Conclusion: Next Steps

 The app is going to be tested on the students of the Freshman Scholars Institute this Summer. .

Accordingly, it is of the utmost priority that the app be an excellent working order prior to the

arrival of the FSI students on campus. They're currently slated to arrive on July 9th. Therefore,

the suggestions made during the user evaluation must very quickly be incorporated into the app,

and if possible the application must undergo further rounds of user evaluation and redesign.

The most significant next steps all around improving the features which Dr. Dondero pointed out

as being problematic in the current iteration of the app. First and foremost, it will be necessary to

create a new modal for entering time estimates and spent times. Particularly, this modal must be

designed in such a way that there are no major issues with user input verification. In an ideal

situation, the modal would be designed in a way such that it is impossible for it to be in an error

state. As an example, many time selection features an existing timer apps, such as the one used in

the timer on the iPhone, force the user to select values for hours, minutes, and seconds from a

drop-down list of integers. This completely eliminates the need for any special forms of string

verification. Moreover, the use of the modal completely obviates any possible race conditions,

such as those that plague the current iteration.

Once this is completed, slightly less significant aesthetic details can be focused on. Most notably,

text input boxes can be modified such that they have darker backgrounds than the surrounding

areas, and moreover that they change colors when the user focuses into the text boxes. This will

hopefully be a relatively quick fix.

Next, a new overall progress bar will be implemented such that regardless of which goal is

currently open in the right panel, the progress bar for the overall project will be visible near the

top of the screen directly beneath the toolbar. The overall progress will be based on the time

estimates for each subgoal and their completion statuses. Effectively, the estimated time for the

completed goals will be divided by the total estimated time for the project overall to compute

progress.

 After these changes have been made, the app should undergo further user evaluation. Notably,

Dr. Dondero had mentioned that he did not find the time tracking component particularly useful,

while he nevertheless found the time estimates to be highly useful. One of the key focuses of this

set of user evaluations will to be determine whether other users agree. If it is the general

consensus that the timers are not particularly helpful, the feature will be removed prior to the

start of FSI.

Moreover, at this phase, users, most likely instructors in the computer science department, will

be asked about their preferences in the design of separate accounts for students and teachers. In

the next phase of requirements gathering, one of the key focuses will be to design a system for

teachers to provide templates to students.

Conclusion: Lessons Learned

One of the key lessons this semester concerned debugging. In particular, I discovered that

sometimes it is much easier do simply prevent the user from doing something which causes

errors as opposed to trying to correct the underlying cause in the code. One of the most difficult

bugs involved swapping goals while timers were still active. This led to race conditions, which I

failed to eliminate even after a week and a half debugging, trying various techniques involving

threading and locking. Ultimately, the solution was simply to not allow the user to swap goals

until all timers were paused. It had not even occurred to me that this was an ostensible solution.

It was only after Dr. Dondero had mentioned it that I even considered it. Solving the bug in this

way took a matter of minutes, whereas I was completely unsuccessful even after weeks of trying

to solve it the other way. Consequently, in the future I will generally use the heuristic that it is

often better to simply prevent the user from doing something that causes an error condition by

modifying the user interface rather than trying to eliminate the error altogether.

Additionally, I greatly underestimated the difficulties which can arise from package

incompatibilities and poor documentation. Simply finding a compatible package which could

support the functionality I was looking for in representing hierarchical goals was frankly much

more frustrating than the actual process of coding or debugging itself. The process of trial and

error with multiple components found on the internet was frustrating. This process could have

been avoided if I had simply decided in the beginning to use the vuetify package which I

ultimately ended up using. The app already contained many vuetify components from the

previous semester, and therefore already had many of the required packages. Have I understood

this in starting out the process of looking for a package, it might have been much simpler.

Rather than play around with other packages and try to work out their compatibility issues, I

should have just simply went for the vuetify version, even if it were slightly less convenient or

feature-rich than many of the other components available online. Essentially, the time wasted on

dealing with package incompatibilities vastly outweighs any potential gains from having a

slightly superior component.

