
– Independent Work Report Fall, 2015 –

A Cross-Platform Programmer’s Calculator

Brian Rosenfeld
Advisor: Robert Dondero

Abstract

This paper details the development of the first cross-platform programmer’s calculator. As users

of programmer’s calculators, we wanted to address limitations of existing, platform-specific options

in order to make a new, better calculator for us and others. And rather than develop for only one-

platform, we wanted to make an application that could run on multiple ones, maximizing its reach

and utility. From the start, we emphasized software-engineering and human-computer-interaction

best practices, prioritizing portability, robustness, and usability. In this paper, we explain the

decision to build a Google Chrome Application and illustrate how using the developer-preview

Chrome Apps for Mobile Toolchain enabled us to build an application that could also run as native

iOS and Android applications [18]. We discuss how we achieved support of signed and unsigned 8,

16, 32, and 64-bit integral types in JavaScript, a language with only one numerical type [15], and

we demonstrate how we adapted the user interface for different devices. Lastly, we describe our

usability testing and explain how we addressed learnability concerns in a second version. The end

result is a user-friendly and versatile calculator that offers value to programmers, students, and

educators alike.

1. Introduction

This project originated from a conversation with Dr. Dondero in which I expressed an interest in

software engineering, and he mentioned a need for a good programmer’s calculator. Dr. Dondero

uses a programmer’s calculator while teaching Introduction to Programming Systems at Princeton

(COS 217), and he had found that the pre-installed Mac OS X calculator did not handle all of his

use cases. When Dr. Dondero wanted to subtract a larger hexadecimal number from a smaller one

(as his students do in one of their programming assignments) the calculator would return a bad

result.1 Instead of using the OS X calculator, he continued to use his handheld Casio CM-100

calculator, which was first introduced in 1986 [9]; however, with COS 217 switching from a 32-bit

architecture to a 64-bit one this year, the 32-bit calculator was no longer sufficient. As a result,

Dr. Dondero wrote “bobcalc,” a postfix, stack-based, command-line calculator that he considered

to be a “temporary hack.” While Dr. Dondero found it easier to implement the calculator with

postfix notation, he noted that his students “think” using infix notation. He thought a well-designed

programmer’s calculator would be both useful for students working on this assignment and as an

educational tool for teaching students how computers represent numbers.

Unable to find a calculator that ran on multiple platforms and wanting more out of existing

applications, we decided to build our own programmer’s calculator (Sections 2 and 3). To ensure that

our application was user-friendly, we employed a rigorous human-computer interaction approach.

In this paper, we describe the development process of the calculator:

• We introduce cross-platform development and we explain the decision to build a Google

Chrome Application (Sections 4 and 5). We illustrate how using the developer-preview

Chrome Apps for Mobile Toolchain enabled us to build an application that could also run as

native iOS and Android applications.

• We show the usability techniques that led to the development of a prototype (Section 6).

• We discuss how we achieved support of signed and unsigned 8, 16, 32, and 64-bit integral

types in JavaScript, a language with only one numerical type (Section 7).

• We demonstrate how we adapted the user interface for different devices (Section 8).

• We present the calculator’s functionality and report back on our initial distribution efforts

(Sections 9 and 10).

• We describe our usability testing and explain how we addressed learnability concerns in a

second version (Sections 11 and 12). We compare this calculator to existing options and we

assess its usability (Section 13).
1Subtractions that should produce a negative result (ex. 0−1) always yield a 64-bit number with all ones, except

the highest-order bit, which is set to 0.

2

2. Background

As the name indicates, a “programmer’s calculator” is intended for programmers and others who

work with computers. While there is no formal definition of a programmer’s calculator, we loosely

use the term to refer to calculators that model their behavior after that of a computer. As do

some scientific calculators, a programmer’s calculator should support different numerical bases;

however, unlike scientific calculators, programmer’s calculators should also use at least one kind of

integral data type and offer operators that work with the numbers’ underlying bits. In addition to

programmers and systems engineers, computer-science students and educators can make valuable

use of programmer’s calculators.

During the 1980s, Hewlett-Packard and Casio each sold physical programmer’s calculators. The

HP-16C, released in 1982 by Hewlett-Packard, was designed for debugging programs [24]. It

used reverse Polish notation and was programmable. It supported arbitrary word sizes up to 64

bits and worked with 1’s complement, 2’s complement, and unsigned numbers. This calculator

was discontinued in 1989 (presumably due to poor sales) and remains HP’s only programmer’s

calculator. Decades later, some programmers still use their original HP-16Cs [22]. Four years after

the release of the HP-16C, Casio released its own programmer’s calculator, the CM-100, which it

referred to as a “computer math calc” [9] and is still used by Dr. Dondero today.

Unlike these early programmer’s calculators, current options take the form of software applica-

tions rather than physical devices; instead of purchasing new hardware calculators, users prefer to

run software calculators on the devices that they already own. Each of these software calculators,

however, is platform-specific, running on only one of Windows, Mac OS X, Linux, Chrome OS,

Android, iOS, or the web. Moreover, these calculators feature various limitations. Through our

new, cross-platform programmer’s calculator we sought to address these issues while creating an

application that could be available to users on all of their devices.

3

3. Existing Programmer’s Calculators

3.1. Computer calculators

The Mac OS X, Windows, and Linux operating systems come with pre-installed calculators that

include a “programmer” mode [5] [29] [16].2 All three operating systems’ calculators feature

some degree of binary, octal, decimal, and hexadecimal input and output and each provides a

comprehensive set of operators. However, the OS X and Linux calculators only support 64-bit,

unsigned numbers, and the Windows calculator, despite offering four different word sizes, only

supports signed numbers. Meanwhile, the Chrome OS calculator, which can also be run as a Chrome

Application on computers with the Chrome browser, includes neither a programmer mode nor any

other programming-related functionality [21].

3.2. Mobile and web calculators

Independent developers have also written programmer’s calculators for mobile and the web. A

search for “programmer’s calculator” in the Google Play Store,3 shows one calculator that has

surpassed 50,000 downloads and three others that are in the 10,000 to 50,000 range [17]. The top

calculator—billed as a calculator for developers—fails our earlier, loose criteria for a programmer’s

calculator since it does not support any bitwise or logical operators [3]. Moreover, it is limited to

32-bit, signed numbers. Meanwhile, the other popular calculators, despite offering bitwise and

logical operators, also fail to offer a complete set of integral modes. For example, one calculator only

allows signed integral types [26] while another only supports 32-bit numbers [30]. Nevertheless, a

less-popular (but well-designed) Android calculator features individual bit toggling, a floating point

mode, and offers signed and unsigned 8, 16, and 32-bit integers; yet, for 64-bit integers, it only

supports unsigned numbers [8]. On iOS, we found a useful, paid ($2.99) programmer’s calculator

that supported 8, 16, 32, and 64-bit signed and unsigned numbers [14]; however, the free offerings

on iOS were disappointing due to limited options for modes. For example, the calculator with the

2For Linux we are referring to the GNOME Calculator (gcalctool) that is included with some distributions of Linux.
3The market for Android applications.

4

highest number of reviews (and presumably the most downloads), only supports 64-bit numbers

and does not allow for binary input [43]. Lastly, Penjee.com, a website for learning how to code,

includes an online programmer’s calculator that supports signed and unsigned numbers up to 128

bits [39]; however, as a web-based calculator, this calculator cannot be used offline, and on mobile,

it renders poorly and is difficult to use.

4. Cross-Platform Development

4.1. Overview

Cross-platform software refers to “software that exists in different versions so that it is available

on more than one platform” [6]. An example of cross-platform software would be an email client,

like Microsoft Outlook or Gmail, that is available as a web application and as native applications

on Android and iOS (among other platforms). On the contrary, an application like the Windows

calculator would be considered platform-dependent, for it can only run on Windows computers.

Clearly, the advantage of cross-platform software over platform-dependent software is the multi-

platform availability. For applications like an email client, this wide-spread availability is almost

essential. Meanwhile, for calculators and other similar applications, this availability makes the

application more useful to existing users and accessible to new ones.

In the absence of cross-platform tools or frameworks, developing for multiple platforms would

consist of writing native code for each target platform. In many cases, these platforms require

different skill sets. For example, iOS applications are written in Objective-C and C while Android

applications are written in Java. Charland and LeRoux (2011) describe the skill sets needed to

develop software for nine mobile operating systems [11]. To approach this process with a small

team would be both difficult and time-intensive while using a large team with varied skill sets

would be expensive.4 Nevertheless, there are advantages to using native code. Notably, native

4In 2009, Google’s engineering vice president Vic Gundotra predicted that aided by economic reasons, the browser
would become the dominant platform and would surpass app stores. He said, “What we clearly see happening is a move
to incredibly powerful browsers. Many, many applications can be delivered through the browser and what that does for
our costs is stunning. We believe the web has won and over the next several years, the browser, for economic reasons
almost, will become the platform that matters and certainly that’s where Google is investing.” [36]

5

applications have better performance and provide access to lower-level APIs. Moreover, creating

a unique application for each platform allows the developer(s) to customize the user interfaces to

match platform conventions.

Because of the difficulty, cost, and time involved in developing a unique application for each

platform, developers have turned to approaches that allow them to work with one development

process and shared source code. Aside from the time and cost savings of writing less code, a

smaller code base is frequently easier to maintain [11]. The simplest approach for cross-platform

development is to write a web application. The mobile web is inherently cross-platform, for, as

Charland and LeRoux5 explain, “The only thing [mobile operating] systems have in common is

that they all ship with a mobile browser that is accessible from the native code” [11]. In fact, using

“open Web technology” was the initial plan for third-party iPhone apps until the mobile Web fell out

of favor due to the superior performance of native apps. Charland and LeRoux argue that such a

comparison is unfair, highlighting two problems: first, the expense of writing a native app for each

platform, and second, the “negligible or unnoticeable performance penalty in a well-built business

application using Web technology.” They foresaw hybrid applications as the likely outcome of the

native-vs.-web debate, and we sought such an approach in developing our application.

4.2. Options

Ohrt and Turau (2012) and Marius (2013) provide overviews of cross-platform mobile development

frameworks [37][28]. One approach, PhoneGap, produces an interpreted, hybrid application by

running a JavaScript web application within a native shell. Meanwhile, other approaches run

natively and/or make use of native user-interface elements. For example, Xamarin uses shared C#

business logic but makes use of native user interfaces by requiring different user-interface code for

5At the time of publication, Charland was the co-founder and CEO at Nitobi Inc., and LeRoux was Nitobi’s lead
architect. LeRoux also led Nitobi’s PhoneGap project. As the two explain, “Phone Gap is an open source framework
that provides developers with an environment where they can create apps in HTML, CSS, and JavaScript and still call
native device features and sensors via a common JS API. The PhoneGap framework contains the native-code pieces to
interact wth the underlying operating system and pass information back to the JavaScript app running in the Webview
container” [11]. Later that year, Nitobi was acquired by Adobe, and the two companies jointly donated the PhoneGap
code base to the Apache Software Foundation where it became Apache Cordova. Today, PhoneGap refers to Adobe’s
distribution of Apache Cordova [7]. The Chrome Apps for Mobile toolchain used to build the calculator in this paper is
also based on Apache Cordova [18].

6

each platform. We refer the reader to these papers and vendor websites for more information on

mobile development frameworks.

4.3. Academic Work

Lastly, researchers have proposed domain-specific languages (DSLs) for cross-platform develop-

ment. For example, Heitkötter, Majchrzak, and Kuchen (2013) introduced md2, “an approach for

model-driven cross-platform development of apps” [23]. Intended for business applications with

form-based user interfaces, md2 uses a high-level DSL to describe the applications. Code generators

then transform the high-level description into source code for Android and iOS, which the developer

can them compile and run normally. Similarly, Macos and Solymosi (2013) proposed ScaMo, a

DSL for cross-platform development that consisted of the programming language Scala along with

a DSL defined in Scala [27]. ScaMo would make use of the Scala compiler to produce the mobile

applications. Because these approaches were not as well-developed as those referred to in the

previous section, they were not considered viable approaches for our project.

5. Approach

The key idea behind our calculator was developing it as a Google Chrome Application and using the

developer-preview Chrome Apps for Mobile Toolchain. Chrome Apps are built with HTML5, CSS,

and JavaScript [20]. They are installable through the Chrome Web Store and can run anywhere that

Google Chrome runs, including Windows, Linux, and Mac OS X. Chrome Apps also run as native

applications on Chromebooks—laptops that run Chrome OS. Unlike traditional web applications,

Chrome Apps run in their own windows (outside of the browser), can be used offline, and can access

the file system.

The developer-preview toolchain enables developers to run Chrome Apps on Android and

iOS. Based on Apache Cordova, the toolchain wraps the application’s web code within a native

application shell, producing hybrid applications that can be distributed through Google Play and/or

7

the Apple App Store [18].6 Moreover, because our calculator does not make use of the file system,

we can take the HTML, CSS, and JavaScript source code and host it as a web-application, making it

available through a browser as well. Figure 1 presents a high-level view of how the calculator will

be targeted to different platforms.

Chrome Apps for Mobile Toolchain

Chrome Web Store

Web Hosting

Google Play

Apple App Store

Chrome
App

Figure 1: Built as a Chrome App and using the Chrome Apps for Mobile Toolchain, our calculator
can also be used as a webpage and hybrid Android and iOS apps.

Existing, platform-dependent programmer’s calculators are presumably written as native appli-

cations and implemented in languages like C, Objective-C, and Java. We, however, by building a

Chrome Application, chose an approach that involves using web technologies like HTML, CSS,

and JavaScript. At first consideration, this approach does not seem conducive to developing a

programmer’s calculator, for JavaScript only includes one numerical type—a double-precision

64-bit format IEEE 754 value [15]. However, once we achieved support of variable-length, signed

and unsigned integral types, we were able to take advantage of the mobile web’s portability, sharing

the entire source code across platforms and writing an adaptive user interface.

As explained earlier, some alternative approaches to cross-platform development use platform-

specific user interface code, resulting in applications with native user-interface elements. Because

6On August 10, a member of the Mobile Chrome Apps team updated the README in the mobile-chrome-apps
Github repository, adding that “[the toolchain] is no longer being actively developed. We intend to keep it functional
but do not intent on adding any new features.” In response to a developer’s request for more information, the author
of the commit explained, “Most of the Chrome Apps for Mobile enhancements have been upstreamed to Cordova
itself, and most chrome app plugins work with plain Cordova projects” [4]. As long as the toolchain is kept functional,
our approach will continue to work. Even with a non-functional toolchain, the upstreamed enhancements mean our
approach should work with Apache Cordova substituted for the toolchain. In our case (and for similar projects), it would
definitely work because we do not use any plugins. As speculated at https://groups.google.com/a/chromium.
org/forum/#!topic/chromium-apps/EFnfQur6Beo, I suspect the decision to suspend development is related to
Google’s plans to run Android apps on Chrome OS, which must have won out over running Chrome Apps on Android.

8

https://groups.google.com/a/chromium.org/forum/#!topic/chromium-apps/EFnfQur6Beo
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-apps/EFnfQur6Beo

we are not using tabs, menus, or other built-in widgets, we did not think a native user interface was

necessary for our calculator. Instead, we liked the cross-device consistency that came with shared

user-interface code. Moreover, we did not consider performance to be critical, for a calculator is

inherently limited by the processing speed of its human users. While adding two 64-bit integers may

be time-intensive for a human, such an operation (assuming it’s implemented properly) requires

relatively little effort for a computer. Accordingly, we felt that the speedup achieved with a native

application would be negligible from the perspective of the user, for both native and web-based

implementations would appear instantaneous and equally responsive.

6. Implementation

In developing the calculator, we emphasized usability and software robustness. We used the human

computer interaction techniques presented in Rogers, Sharp, and Preece (2011) [41] and also

followed software-engineering best practices like unit testing. Below, we present a high-level

overview of the development process. Later, we will explore areas of interest in more depth.

6.1. Evaluating Requirements

First, we sought to identify our users’ needs and prepare a list of requirements for the calculator.

We surveyed existing calculators, spoke to students, and drew on our own experiences taking and

teaching systems courses at Princeton. Using this information, we created scenarios (Appendix A)

to describe specific tasks users would like to accomplish with the calculator. A sample scenario

reads:

A COS 217 student is working on the buffer overrun assignment. He wants to calculate

the hexadecimal offset needed for a jump. He takes the destination address and subtracts

the address of the instruction following the jump. Because the destination address is

earlier in memory, this calculation gives a negative jump offset and causes difficulties.

We then prepared a detailed list of functional requirements (what the system should do) and non-

functional requirements (constraints on the system and its development) [41]. For example, a

9

functional requirement would be that the calculator must add two numbers, and a non-functional

requirement would be that the calculator must run on both Android and iOS. While the full list

of requirements is included in Appendix B, the highest-priority functional requirements were as

follows:

• Standard, non-programming functionality: add, subtract, times, divide

• Bitwise operators: and, or, not, xor

• Bit shifts: left and right shifts

• Binary, decimal, and hexadecimal input and display

• Clear, accumulator clear, and delete

• 64-bit support

• Signed and unsigned support

Although some of the other calculators we mentioned earlier only support numbers up to 32-bits,

we set 64-bit support as a high-priority requirement. At a minimum, we wanted to accommodate the

architecture used in COS 217. We placed a requirement for supporting 8, 16, and 32-bit numbers in

the next-highest priority category. We also included lower-priority requirements like keyboard input

and shortcuts in a “time-permitting” category.

6.2. Prototyping

Next, we used the requirements to develop prototypes of the calculator so that we could choose

between user-interface alternatives. Starting with low-fidelity prototypes that were quick and easy to

produce, we sketched various options for the calculator’s mode bar, display, and keypad (Appendix

C), and we prepared storyboards (Appendix D). After we evaluated these designs, we prepared a

high-fidelity prototype (Appendix E), writing a user interface with HTML, CSS, and JavaScript.

6.3. Application Structure

We wrote both the calculator and view logic in JavaScript. The calculator logic consists of a

calculator class and number utility methods that use the open-source BigInteger.js library [40].

10

Although our final application only offers 8, 16, 32, and 64-bit numbers, the calculator logic

supports integral types of any length. Moreover, the calculator can be configured for arbitrary bases.

The calculator logic is completely independent of the view and could be used to support multiple

different user interfaces.

The view provides an interface for manipulating the calculator’s state. Upon user input, the view

makes the appropriate call to the calculator and then updates the interface. The view consists of

a view class and utility methods that use JQuery for DOM manipulation. To adapt the view to

different screen sizes and resolutions, we used the CSS3 Flexible Box layout mode and CSS3 media

queries.

In all, we wrote roughly 1,100 lines of JavaScript, 400 lines of CSS, and 160 lines of HTML. The

source code can be viewed at https://github.com/brosenfeld/calculator.

6.4. Unit Testing

In addition to manual testing, we used unit testing to verify the core calculator functionality, reaching

100% code coverage. Because we wrote our own code for working with integral types in JavaScript,

we wanted a quick, reliable way to write new tests and do regression testing. We worked with

QUnit, a JavaScript unit testing framework and Blanket.js, a JavaScript code coverage library that is

compatible with QUnit.

7. Integral Types in JavaScript

7.1. Problem

As noted earlier, JavaScript only includes one numerical type—a double-precision 64-bit format

IEEE 754 value [15]. This data type can represent integers with magnitude up to 253; however,

bitwise operators and shifts only work with numbers in the range [−231,231 −1].7 Accordingly, we

could have simply implemented a fixed-length, 32-bit calculator using JavaScript’s built in Number

7According to the ECMAScript Language specification (the standard for JavaScript), “Some ECMAScript operators
deal only with integers in specific ranges such as −231 through 231 −1, inclusive, or in the range 0 through 216 −1,
inclusive. These operators accept any value of the Number type but first convert each such value to an integer value in
the expected range” [15].

11

https://github.com/brosenfeld/calculator

type; however, because 64-bit support was one of our high-priority requirements this was not a

viable option.

7.2. Alternative Solutions

We looked into working with Google’s Native Client,8 which would have enabled us to use compiled

C code as part of a Chrome Application. As introduced in C99, the stdint.h header file provides

a set of typedefs for exact-width integer types [47]. Using these types for signed and unsigned

integers would have let us take advantage of C casts. However, the Native Client feature of Chrome

Apps is not available to the mobile apps built with the Chrome Apps for Mobile Toolchain [20].

Because we were aiming for mobile support and had included running on Android and iOS as a

non-functional requirement for the calculator, we chose not to pursue the Native Client approach.

Another approach could have been to write a new library that did exactly what we wanted (and no

more). Since we planned to work with integers no larger than 64 bits, and because performance was

not critical, this implementation did not need to be efficient or optimized. A possible implementation

could have used an array where each index corresponded to that number bit. While this approach

would have worked, it would have required implementing and testing each operation. Rather than

start from scratch, we decided it would be more time-efficient and practical to use a BigInteger

implementation and modify or extend it as needed.

7.3. Solution: Using a BigInteger library

In the end, we used the open-source BigInteger.js library [40], which supports arbitrary-length

integers. As compared to the exact-width integers declared in C99’s stdint.h, these integers have

seemingly infinite width. Additionally, these integers are represented with separate sign flags and

values, and the library does not differentiate between signed and unsigned integers. The advantage

to using this BigInteger library was that it included almost all of the operators we wanted. So while

significant development work was needed to support signed and unsigned, exact-width integers,

8As explained on its welcome page, “Native Client is a sandbox for running compiled C and C++ code in the
browser efficiently and securely, independent of the user’s operating system” [19].

12

using the library would save significant development time on the operators. To achieve this support:

• We wrote an instance method for changing the calculator’s bit length and another for changing

the calculator from signed to unsigned and vice versa. In addition to updating the calculator’s

configuration, these methods cast the accumulator and the operand. 9

• We wrote a method, keepInBounds, for handling overflow and underflow. We call this method

internally on the result of every operation.

• We handled signed input by using the concept of a signed upper bound—the maximum, positive

signed number for that bit length. When the user enters the bit representation of a signed

number, the calculator checks the input against the signed upper bound. Once the signed bound

is reached, the calculator converts the operand to the appropriate negative value. For example,

in 8-bit signed mode, after the user enters ‘F’, the hex display will show F, and the decimal

display will show 15. Upon entering the second ‘F’, the hex display will show FF, and the

decimal display will show -1 rather than 255.

• We combined our casting code and the BigInteger library’s toString method in order to

generate hexadecimal and binary representations. While, the BigInteger library does not

include methods for getting the binary or hexadecimal representation of a number, there is a

toString method that accepts a base as an argument. This toString method converts the

value to the appropriate string and then appends a minus sign to the front if the sign boolean

is true. Accordingly, x.toString(2) and x.toString(16) will only produce correct bit

representations for positive numbers.10 So, to get the correct bit representation for a negative

number, we could convert it to the positive number with the same bit representation and then

use toString with that positive number. For example, we could convert the 8-bit signed value

-1 to 255. This transformation is equivalent to casting a signed number to an unsigned number,

allowing us to reuse our our existing casting code.

9The second argument in a binary operation.
10To clarify, this is how the toString method should work. It is not a bug. Rather, x.toString(2) and

x.toString(16) are not aliases for toBinary and toHex.

13

Lastly, in addition to the operators we used from the library, we implemented logical right shift and

rotate left operators. The library already supported a left shift and an arithmetic right shift, so we

used these operators in implementing our new ones.

8. Building a Flexible User Interface

8.1. Problem

In developing our calculator, we wrote one user interface to be used across all devices. This meant

that phones, tablets, and computers would all run same user interface code. As shown in Table 1,

these devices vary greatly in physical size, resolution, and density. For example, a Google Nexus 9

tablet has a higher resolution than a MacBook Pro despite the latter’s larger screen. Moreover, we

planned to allow our users to resize the Chrome App so that they could work with a window size of

their choice. Prioritizing usability, we wanted our interface to resize gracefully and to adjust to the

different dimensions of phones, tablets, and computers.

Device Display (inches) Width (pixels) Height (pixels) Density (pixels / inch)
iPhone 6s 4.7 750 1334 326
Google Nexus 9 8.9 2048 1536 288
MacBook Pro 13.3 1280 800 113

Table 1: These are sample display sizes and dimensions for an iPhone 6s, a Google Nexus 9 tablet,
and a 13-inch MacBook Pro (without Retina) computer [44]. In addition to varying in physical screen
size, these devices have different pixel densities.

Because of these differences, we could not use fixed font sizes: while a 12 px font may be

appropriate for an iPhone 6s, it would occupy only a fraction of the space available on a MacBook

Pro. Moreover, we needed the calculator’s displays, buttons, and keypads to adapt to the different

screen sizes, precluding the use of fixed widths, heights, margins, and padding.

8.2. Alternative Solutions

A potential solution could have involved using the Bootstrap grid system. Bootstrap is a free,

open-source front-end framework for web development, and it offers a responsive, 12-column grid

system for creating page layouts [48] [1]. We decided against this option because we wanted more

14

flexibility and finer granularity than a 12-column system. Another option involved using JavaScript

to listen for resize events and to calculate and set new layout and text sizes. This option would have

been messy to implement and error-prone, so we did not pursue it.

8.3. Solution: Flexible Box Layout Mode

To adapt the calculator’s layout to various resolutions, we used the CSS3 Flexible Box layout mode

defined in the CSS Flexible Box Layout Module specification.11 A flex container alters its children’s

widths and/or heights to fill the device’s available space, expanding them to fill unused space and

shrinking them to prevent overflow. By setting an item’s flex-grow and flex-shrink (or the

shorthand flex property), a developer specifies how the item should resize [32][12]. For example,

if all items have the same flex-grow value, they will equally split the remaining space in the parent

container; alternatively, if an item has a flex-grow property of 1 and all of the others have a value

of 0, then that item will receive all of the extra space.

We used flex layouts throughout the application, specifying how we wanted the interface to

use device space. For example, when the screen has extra vertical space, the displays and keypad

divide it equally. Among the displays, the binary display receives twice the additional space of the

decimal and hexadecimal displays, and within the keypad, extra space is distributed evenly among

the buttons.

8.4. Solution: Media Queries and Viewport Units

While flex layouts helped to manage the calculator’s layout, we still needed to resize text. For

this, we composed CSS3 media queries into piecewise, continuous functions over a screen’s width

and height, such as the one in Figure 2. Media queries let developers specify custom styling for

11This specification has the status of a “Last Call Working Draft” and is supported by recent versions of Firefox,
Chrome, Internet Explorer, Opera, and Safari. Some older browser versions use a previous draft of the specification, so
we included redundant CSS styles to address those as well. For example, Chrome versions from 21.0 (inclusive) to 29.0
(not inclusive) prefixed flexbox styles with -webkit. [32]

15

0 200 400 600 800

16

18

20

22

Viewport Width (px)

Fo
nt

-S
iz

e
(p

x)

Figure 2: A plot of how font-size could resize with changes in the viewport width, using a piecewise,
continuous function.

media (ie. screens or devices) that meet certain criteria [2].12 We queried on the screen’s width

and height, dividing the input space into ranges and setting a fixed or dynamic font-size for each

range. To dynamically resize text, we used viewport units, which express size as a percentage of the

viewport’s (window’s) width and height or their minimum or maximum [13]. To allow for smooth

text resizing, we ensured that font-size was continuous across ranges. We provide example code in

Figure 3.

We also used media queries to control when to show a number’s binary representation as four

16-bit lines (narrower screens) or two 32-bit lines (wider screens), and we used viewport units for

buttons’ padding in order to increase button size on larger screens. We present an example of two

different size windows in Appendix H.

9. Functionality

We achieved all of the high and medium-priority functional requirements identified in our previously-

mentioned requirements analysis (Appendix B). We also satisfied two of our “time-permitting”

12As explained in the Media Queries W3C Recommendation, “A media query consists of a media type and zero or
more expressions that check for the conditions of particular media features. Among the media features that can be used
in media queries are ‘width’, ‘height’, and ‘color’. By using media queries, presentations can be tailored to a specific
range of output devices without changing the content itself” [2].

16

@media a l l and (max−wid th : 400 px) {
. t e x t { f o n t−s i z e : 15 px ; }

}

@media a l l and (min−wid th : 400 px) {
. t e x t { f o n t−s i z e : 3 . 7 5vw ; }

}

@media a l l and (min−wid th : 600 px) {
. t e x t { f o n t−s i z e : 2 2 . 5 px ; }

}

Figure 3: In this simplified, three-case example, we implement the function shown in Figure 2. First,
we set a minimum font-size to be used for viewport widths up to 400px. Then, over the range
between 400px and 600px, we set the font-size using viewport units so that the font-size will be
3.75% of the viewport’s width and increase linearly from 15px to 22.5 px. Lastly, for viewports wider
than 600px, we set a fixed font-size of 22.5px so that the text would not grow to be too large.

goals: circular shifts and keyboard input and shortcuts.13 Moreover, we added a logical right shift

in addition to the arithmetic right shift. In all, the calculator:

• Supports 8, 16, 32, and 64-bit signed and unsigned numbers

• Features 17 operators (Appendix I).

• Offers keyboard input and shortcuts on computers.

• Accepts binary, decimal, and hexadecimal input, helping the user by disabling invalid digits

for the active mode.

• Simultaneously displays binary, decimal, and hexadecimal output, showing both the accumula-

tor and operand for binary operations.

• Handles user errors like divide by zero or shifting by a number larger than the bit-length,

providing the choice of resetting the calculator or undoing the error-causing operation.

10. Distribution

On December 1, we made the calculator available to students in COS 217 for their buffer overrun

assignment, which involved hexadecimal calculations and inspired the first scenario listed in

13For circular shifts, we added a rotate-left shift that becomes a rotate-right shift when given a negative operand.

17

Appendix A. We published the calculator as a webpage and listed it publicly in the Chrome Web

Store. Between December 1 and January 4, the calculator was installed 55 times.14 We provide

access instructions in Appendix F.

11. Initial Usability Evaluation

As defined in the ISO 9126 standard for evaluating software quality, usability is “the capability of

the software to be understood, learned, used and attractive to the user when used under specified

conditions” [25]. In order to identify usability problems with the calculator, we employed a three-

part usability evaluation, conducting a streamlined-cognitive walkthrough, a thinking-aloud study,

and a heuristic evaluation. In Appendix G, we include a screenshot of the interface at this time.

11.1. Streamlined Cognitive Walkthrough

A streamlined cognitive walkthrough is a structured approach to evaluating a software interface’s

learnability—a factor of usability, formally defined as “the capability of the software product to

enable the user to learn its application” [25]. The evaluator completes sample tasks, and at each

step answers two questions intended to assess the application’s learnability and usability [42]:15

1. Will the user know what to do at this step?

2. If the user does the right thing, will they know that they did the right thing, and are making

progress towards their goal?

In our cognitive walkthrough, we used four tasks that were designed to cover the calculator’s full

functionality and to do so as efficiently as possible. We found that the interface satisfied the second

question for all steps, always keeping users informed of the system’s status; however, we noticed

the following learnability issues when answering the first question:

14During this period, I was contacted by a classmate who had been looking for a programmer’s calculator for his
Chromebook and discovered our application, which was the first one to show up. Only after installing it, did he see my
name on the listing and contact me. He explained that for COS 375 (Computer Architecture), he was looking for the
value of a specific bit in a 32-bit number and did not want to do the math by hand.

15A standard cognitive walkthrough involves four questions rather than two. Spencer (2000) proposed streamlining
this process to two questions in order to accommodate the time constraints on teams that were working on large software
projects. He concluded that this new version achieves the same goals while requiring less time [42].

18

1. Changing bases was not fully intuitive.

2. We thought the difference between the arithmetic and logical right shift operators (initially >>

and >>> respectively) might be unclear to some users. These were the same operators used in

Java and JavaScript, but we suspected that not all users would be familiar with them.

3. We thought some users might expect the shifts to be unary operators rather than binary

operators. That is, a user might try to double click >> to shift right by two rather than entering

an operand of two after the initial click.

4. The calculator catches user errors (like a divide by zero) and displays the error message. While

it was clear how to exit the error mode (by clicking AC or C), the difference between the two

ways was not clear.

We provide the full walkthrough report in Appendix J.

11.2. Thinking-Aloud Study

While the streamlined cognitive walkthrough produced valuable insights, it was limited in that

we, the developers of the application, were the ones doing the evaluation. Because we designed

the calculator, our prior knowledge of its interface may have masked additional usability issues.

To address this concern, we conducted a thinking-aloud study involving potential users.16 We

presented five CS upperclassmen at Princeton with the same four tasks used in the walkthrough, and

we instructed them to think aloud while completing the tasks, so we could observe their thought

processes. While a participant completed the tasks, we answered yes-or-no questions about his or

her behavior and recorded his or her thoughts. Following each task, we asked the participant if it

was clear how to use the calculator to complete the task. At the end of the evaluation, we asked

the participant to share any other comments on the interface and suggestions for the calculator.

We refer the reader to Appendices K and L for the participant and evaluator versions of the tasks.

Through this study, we confirmed the suspected learnability problems identified in the walkthrough.

16Nielsen (1993) suggested that thinking aloud is the “single most valuable usability engineering method,” for it
lets us understand how users view a system, and it provides “a very direct understanding of what parts of the dialogue
cause the most problems” [33]. Nielsen (2012) provides a more detailed analysis of the benefits and disadvantages of a
thinking-aloud study [35].

19

Respectively,

1. Users were confused when changing bases, and some hesitated before clicking the decimal

box to switch to decimal for the first time. Users were particularly confused about switching to

binary because unlike the hexadecimal and decimal boxes, the binary box lacked a label. At

the end of the task, users said they thought the way of switching bases made sense and would

be clear for future use despite the initial confusion.

2. Although each user used the correct shift operator for an arithmetic right shift (>>), only one

actually knew the difference between the arithmetic right shift (>>) and logical right shift (>>>)

operators. One user went off “intuition,” two others guessed (with one stating, “This is where I

go to Google”), and the last user did not notice that there were two right shift operators.

3. Only two out of the five users expected the right shift to be a binary operator. One user double

clicked the operator to shift right by two and said, “That’s not what I expected.”

4. Four users used C to exit the error mode and undo the last operation, correctly explaining the

difference between the C and AC operators. The user who used AC said he always clicks AC,

and when prompted, did not know what the difference would be.

We also discovered that users had trouble switching bit lengths and between the signed and unsigned

modes because they did not realize that the mode text at the top of the calculator was clickable.

Users were also unfamiliar with the ROL operator. We include a full writeup of the the study in

Appendix M.

11.3. Heuristic Evaluation

Following the streamlined cognitive walkthrough and thinking-aloud study, we conducted a heuristic

evaluation with the heuristics (Appendix N) and methodology described in Nielsen (1994) [34].17

In a heuristic evaluation, an evaluator (or team of evaluators) inspect(s) the user interface and

compare(s) the elements to a list of “recognized usability principles” (the heuristics); any usability

17Due to their quick and low-cost nature, heuristic evaluations are one of the main forms of “discount usability
engineering” [34].

20

problems are listed along with the heuristic(s) they violated. In our evaluation, we classified the

usability problems from the cognitive walkthrough and thinking-aloud study in addition to new ones

we discovered. In all, we identified 13 usability problems. These problems were mostly concerned

with learnability, primarily violating the “consistency and standards” and “help and documentation”

heuristics. For example, the “signed” and “unsigned” labels violated the “consistency and standards”

heuristic because they did follow the platform conventions for buttons. This caused users to have

trouble learning that they could change the calculator’s mode by clicking the appropriate label. We

provide a full list of usability problems, heuristic(s) violated, and possible solutions in Appendix O.

12. Version Two

Figure 4: A side-by-side comparison of Version 1 (left) and Version 2 (right).

To address the learnability issues discovered in our usability evaluation, we created a second version

of the calculator. In doing so, we focused on consistency both within the user interface and with

21

standard web-design practices. We present a side-by-side comparison of the two calculator versions

in Figure 4. For Version 2, we made the following changes:

• We placed borders and shadows around the mode and base names, making them look more

like buttons. We also made only the base name clickable rather than the entire display, further

reinforcing the notion of base names as buttons.

• We added a BIN label, making the binary display consistent with the other ones.

• We underlined the active base’s name. This makes it clearer that the orange display marks the

active base rather than serving an aesthetic purpose.

• We moved NOT to be with the other unary operators, increasing consistency.

• We renamed the ROL operator to RoL, matching its naming on other calculators and making its

abbreviation more reflective of its full name (“rotate left”).

• We changed the cursor to use a standard arrow rather than a pointer when hovering over a

Figure 5: Version 2 in the middle of a binary operation (left) and after catching a user error (right).
Figure 10 in Appendix Q shows a side-by-side comparison of Version 1 and Version 2 in these states.

22

disabled operator, such as C or DEL in Figure 4. This cursor better suggests that the operator is

no longer clickable.

• We extended the keyboard shortcuts to cover all functionality and created a list of shortcuts

(Appendix P) to be included in the listing on the Chrome Web Store.

• We zero-padded the hexadecimal display and split the number into its bytes. This better reflects

the use of hexadecimal as an abbreviation for binary, and it makes the hexadecimal display

consistent with the zero-padded binary one.

• As shown in Figure 5, we displayed the binary operator next to the accumulator when the

calculator was in the middle of a binary operation. This emphasizes that the operator is binary

and provides redundant signaling to the highlighted button.

• As shown in Figure 5, we used the hexadecimal field to show instructions after the calculator

has caught a user error. This text clarifies the difference between the AC and C operators.

13. Final Evaluation

13.1. Comparison with Past Work

We compared our calculator’s availability and functionality to 15 known alternatives—the Windows

8 calculator, the Mac OS X calculator, a pre-installed GNOME calculator on a Debian Linux

machine, a web calculator, six Android calculators, and five iOS calculators (Appendices R and S).

Our calculator is:

• The only calculator to run on multiple platforms and the only calculator to run on Chrome OS.

• The only free calculator with offline support for 8, 16, 32, and 64-bit signed and unsigned

integral types.

• The only calculator to include both arithmetic and logical right shifts. This is significant

because in the C programming language, the result of a right shift on a negative signed integral

type is implementation-defined [38]. That is, implementations can use either an arithmetic or

a logical right shift. We wanted to accommodate both of these options, so we included both

23

types of shifts.

Additionally, we noticed the following features that were offered by other calculators but not ours.

We believe these to be valuable additions to a potential Version 3:

• Seven calculators support individual bit editing.

• Eight calculators include the octal base.

• Two calculators support floating-point numbers.

13.2. Usability Evaluation

After addressing all of the usability problems identified in our first round of evaluations, we wanted

to reevaluate our application. Due to time constraints, we could not hold a second thinking-aloud

study, so we conducted a modified heuristic evaluation—unable to identify any additional usability

problems, we instead assessed how well the application conformed to each heuristic. The calculator

performed strongly on the heuristics, satisfying all of them. In Appendix T, we include a full report

with arguments for and against why the calculator satisfies each heuristic.

14. Future Work

We are ready to list the calculator in the Google Play and Apple App Stores, and intend to so

so as our next step. Following this, future work on the calculator should focus on adding new

functionality. We believe individual bit editing and floating point support should be of the highest

priority. Moreover, we would be interested in seeing the results of a thinking-aloud study conducted

on a mobile device, for we believe the smaller screen-size and use of a touch screen could yield new

insights into the application’s usability. Lastly, given the prominence of cross-platform development

techniques and the unique challenges posed by cross-platform development, we think the opportunity

exists for academic work on evaluating the usability of cross-platform applications; an area of

interest could be developing new heuristics for this type of software.

24

15. Conclusion

In this paper, we described the development of the first cross-platform programmer’s calculator,

built using the novel approach of a Google Chrome Application and the Chrome Apps for Mobile

Toolchain. We demonstrated how we used a requirement analysis, scenarios, mocks, and storyboards

to develop an initial prototype. We explained how we adapted a BigInteger library to achieve support

of signed and unsigned 8, 16, 32, and 64-bit integral types in JavaScript. We showed how we

used the CSS3 Flexible Box layout mode, CSS3 media queries, and viewport units to develop

an adaptive user interface for a variety of devices. We described how we used a streamlined

cognitive walkthrough, thinking-aloud study, and a heuristic evaluation to identify the learnability

problems that we addressed in a second version. In all, this led to a calculator whose functionality

compares favorably to existing alternatives and whose user interface satisfies widely-accepted

usability heuristics.

16. Acknowledgements

I would like to thank my advisor Dr. Dondero for his help and guidance throughout this project. He

was an invaluable resource for topics ranging from human computer interaction and usability to

number systems and C.

17. Honor Code

This paper represents my own work in accordance with University regulations. /s/ Brian Rosenfeld

References
[1] Bootstrap grid system. [Online]. Available: http://getbootstrap.com/css/#grid
[2] “Media queries w3c recommendation,” June 2012. [Online]. Available: http://www.w3.org/TR/

css3-mediaqueries/#media0
[3] 12kk, “Hex,dec,oct,bin(dev calc),” Android Application, December 2014. [Online]. Available: https:

//play.google.com/store/apps/details?id=yumekan.android.devcalc
[4] agrieve, “Update readme.md to say the project is not getting any new features,” Code commit to the

MobileChromeApps/mobile-chrome-apps GitHub repository, August 2015. Available: https://github.com/
MobileChromeApps/mobile-chrome-apps/commit/3aaa46a94278c27521e375aba55f2c4999d8d89d

[5] Apple, “Calculator,” Pre-installed on OS X computers, 2015.
[6] J. Bishop and N. Horspool, “Cross-platform development: Software that lasts,” Computer, vol. 39, no. 10, pp.

26–35, Oct 2006.

25

http://getbootstrap.com/css/#grid
http://www.w3.org/TR/css3-mediaqueries/#media0
http://www.w3.org/TR/css3-mediaqueries/#media0
https://play.google.com/store/apps/details?id=yumekan.android.devcalc
https://play.google.com/store/apps/details?id=yumekan.android.devcalc
https://github.com/MobileChromeApps/mobile-chrome-apps/commit/3aaa46a94278c27521e375aba55f2c4999d8d89d
https://github.com/MobileChromeApps/mobile-chrome-apps/commit/3aaa46a94278c27521e375aba55f2c4999d8d89d

[7] P. Blog. (2012, March) Phonegap, cordova, and what’s in a name? Available: http://phonegap.com/2012/03/19/
phonegap-cordova-and-what%E2%80%99s-in-a-name/

[8] BrownDwarf, “Programmers calculator,” Android Application, December 2015. Available: https:
//play.google.com/store/apps/details?id=com.browndwarf.hexconverter

[9] Calcuseum, “Casio: Cm100.” Available: http://www.calcuseum.com/poc_13622.html
[10] V. Chandler, “Hexzombie-programmer’s calculator,” iOS Application, April 2014.
[11] A. Charland and B. Leroux, “Mobile application development: web vs. native,” Communications of the ACM,

vol. 54, no. 5, pp. 49–53, 2011.
[12] C. Coyier. (2015, November) A complete guide to flexbox. Available: https://css-tricks.com/snippets/css/

a-guide-to-flexbox/
[13] C. Coyier. (April, 2012) Viewport sized typography. Available: https://css-tricks.com/viewport-sized-typography/
[14] J. Eckert, “64 bit calculator,” iOS Application, April 2012. Available: https://itunes.apple.com/us/app/

64-bit-calculator/id320585695?mt=8
[15] ECMA-262 6th Edition, The ECMAScript 2015 Language Specification, 6th ed., Ecma International, Geneva,

June 2015.
[16] GNOME, “Gnome calculator (gcalctool),” Included with GNOME desktop environment. Available:

https://wiki.gnome.org/Apps/Calculator
[17] Google, “Google play store,” search for "programmer’s calculator". Available: https://play.google.com/store/

search?q=programmer%27s%20calculator&c=apps&hl=en
[18] Google. Run chrome apps on mobile using apache cordova. Available: https://developer.chrome.com/apps/

chrome_apps_on_mobile
[19] Google. Welcome to native client. Available: https://developer.chrome.com/native-client
[20] Google. What are chrome apps? Available: https://developer.chrome.com/apps/about_apps
[21] Google, “Calculator,” Available through the Chrome Web Store, 2015 September.
[22] J. Graham-Cumming, “How i love my hp-16c,” June 2006. Available: http://blog.jgc.org/2006/06/

how-i-love-my-hp-16c.html
[23] H. Heitkötter, T. A. Majchrzak, and H. Kuchen, “Cross-platform model-driven development of mobile applications

with md 2,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing. ACM, 2013, pp.
526–533.

[24] D. Hicks, “Hp-16c,” 2013. Available: http://www.hpmuseum.org/hp16.htm
[25] “Istqb glossary,” Web Application, International Software Testing Qualifications Board, March 2015. Available:

http://astqb.org/glossary/
[26] F. Ioannides, “Programmer calculator,” Android Application, December 2015. Available: https:

//play.google.com/store/apps/details?id=fidias.ioannides
[27] D. Macos and A. Solymosi, “Scamo: Realisation of an oo-functional dsl for cross platform mobile

applications development,” AIP Conference Proceedings, vol. 1558, no. 1, pp. 327–331, 2013. Available:
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4825490

[28] P. Marius, “Considerations regarding the cross-platform mobile application development process,” 2013.
[29] Microsoft, “Calculator,” Pre-installed on Windows 8 computers, 2015.
[30] miwachang, “Programmer’s calculator calc-p,” Android Application, October 2013. Available: https:

//play.google.com/store/apps/details?id=com.miwachang.progcalc
[31] J. Montgomery, “Sci:pro calculator,” iOS Application, November 2014. Available: https://itunes.apple.com/us/

app/sci-pro-calculator/id684978583?mt=8
[32] M. D. Network. Using css flexible boxes. Available: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_

Flexible_Box_Layout/Using_CSS_flexible_boxes
[33] J. Nielsen, Usability Engineering. Academic Press, 1993.
[34] J. Nielsen, Usability Inspection Methods. Wiley, 1994, ch. Heuristic Evaluation.
[35] J. Nielsen. (2012, January) Thinking aloud: The #1 usability tool. Available: https://www.nngroup.com/articles/

thinking-aloud-the-1-usability-tool/
[36] C. Nuttall, “App stores are not the future, says google,” July 2009. Available: http://blogs.ft.com/tech-blog/2009/

07/app-stores-are-not-the-future-says-google/
[37] J. Ohrt and V. Turau, “Cross-platform development tools for smartphone applications,” Computer, vol. 45, no. 9,

pp. 72–79, Sept 2012.
[38] Oracle, “Sun studio 12: C user’s guide,” 2010. Available: https://docs.oracle.com/cd/E19205-01/819-5265/bjazt/

index.html
[39] Penjee. Programmers 64 bit calculator. Available: http://calc.penjee.com/
[40] peterolson, “Biginteger.js,” Public GitHub repository. Available: https://github.com/peterolson/BigInteger.js
[41] J. Preece, H. Sharp, and Y. Rogers, Interaction Design-beyond human-computer interaction. John Wiley &

Sons, 2011.

26

http://phonegap.com/2012/03/19/phonegap-cordova-and-what%E2%80%99s-in-a-name/
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%E2%80%99s-in-a-name/
https://play.google.com/store/apps/details?id=com.browndwarf.hexconverter
https://play.google.com/store/apps/details?id=com.browndwarf.hexconverter
http://www.calcuseum.com/poc_13622.html
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/viewport-sized-typography/
https://itunes.apple.com/us/app/64-bit-calculator/id320585695?mt=8
https://itunes.apple.com/us/app/64-bit-calculator/id320585695?mt=8
https://wiki.gnome.org/Apps/Calculator
https://play.google.com/store/search?q=programmer%27s%20calculator&c=apps&hl=en
https://play.google.com/store/search?q=programmer%27s%20calculator&c=apps&hl=en
https://developer.chrome.com/apps/chrome_apps_on_mobile
https://developer.chrome.com/apps/chrome_apps_on_mobile
https://developer.chrome.com/native-client
https://developer.chrome.com/apps/about_apps
http://blog.jgc.org/2006/06/how-i-love-my-hp-16c.html
http://blog.jgc.org/2006/06/how-i-love-my-hp-16c.html
http://www.hpmuseum.org/hp16.htm
http://astqb.org/glossary/
https://play.google.com/store/apps/details?id=fidias.ioannides
https://play.google.com/store/apps/details?id=fidias.ioannides
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4825490
https://play.google.com/store/apps/details?id=com.miwachang.progcalc
https://play.google.com/store/apps/details?id=com.miwachang.progcalc
https://itunes.apple.com/us/app/sci-pro-calculator/id684978583?mt=8
https://itunes.apple.com/us/app/sci-pro-calculator/id684978583?mt=8
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Using_CSS_flexible_boxes
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Using_CSS_flexible_boxes
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
https://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
http://blogs.ft.com/tech-blog/2009/07/app-stores-are-not-the-future-says-google/
http://blogs.ft.com/tech-blog/2009/07/app-stores-are-not-the-future-says-google/
https://docs.oracle.com/cd/E19205-01/819-5265/bjazt/index.html
https://docs.oracle.com/cd/E19205-01/819-5265/bjazt/index.html
http://calc.penjee.com/
https://github.com/peterolson/BigInteger.js

[42] R. Spencer, “The streamlined cognitive walkthrough method, working around social constraints encountered in a
software development company,” in Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM, 2000, pp. 353–359.

[43] R. Tamura, “Progcalc rpn programmer calculator,” iOS Application, August 2009. Available: https:
//itunes.apple.com/us/app/progcalc-rpn-programmer-calculator/id294256032?mt=8

[44] L. Verou, “dpilove.” Available: http://dpi.lv/
[45] T. Wang, “Calcpro - programmers’ calculator,” iOS Application, August 2013. Available: https:

//itunes.apple.com/us/app/calcpro-programmers-calculator/id684106142?mt=8&ign-mpt=uo%3D4
[46] M. T. Weber), “Programmer calculator,” Android Application, November 2015. Available: https:

//play.google.com/store/apps/details?id=org.mosdev.progcalc&hl=en
[47] Wikibooks, “C programming/c reference/stdint.h — wikibooks, the free textbook project,” 2012, [Online;

accessed 29-December-2015]. Available: https://en.wikibooks.org/w/index.php?title=C_Programming/C_
Reference/stdint.h&oldid=2365818

[48] Wikipedia, “Bootstrap (front-end framework) — wikipedia, the free encyclopedia,” 2015, [Online; accessed
30-December-2015]. Available: https://en.wikipedia.org/w/index.php?title=Bootstrap_(front-end_framework)
&oldid=696859146

27

https://itunes.apple.com/us/app/progcalc-rpn-programmer-calculator/id294256032?mt=8
https://itunes.apple.com/us/app/progcalc-rpn-programmer-calculator/id294256032?mt=8
http://dpi.lv/
https://itunes.apple.com/us/app/calcpro-programmers-calculator/id684106142?mt=8&ign-mpt=uo%3D4
https://itunes.apple.com/us/app/calcpro-programmers-calculator/id684106142?mt=8&ign-mpt=uo%3D4
https://play.google.com/store/apps/details?id=org.mosdev.progcalc&hl=en
https://play.google.com/store/apps/details?id=org.mosdev.progcalc&hl=en
https://en.wikibooks.org/w/index.php?title=C_Programming/C_Reference/stdint.h&oldid=2365818
https://en.wikibooks.org/w/index.php?title=C_Programming/C_Reference/stdint.h&oldid=2365818
https://en.wikipedia.org/w/index.php?title=Bootstrap_(front-end_framework)&oldid=696859146
https://en.wikipedia.org/w/index.php?title=Bootstrap_(front-end_framework)&oldid=696859146

Appendices

A. Scenarios

1. A COS 217 student is working on the buffer overrun assignment. He wants to calculate the

hexadecimal offset needed for a jump. He takes the destination address and subtracts the address

of the instruction following the jump. Because the destination address is earlier in memory, this

calculation gives a negative jump offset and causes difficulties.

2. A COS 217 student is preparing for an exam, which contains a disproportionately high number

of questions involving bit fiddling. While studying and checking over her answers, the student

uses a programmer’s calculator for performing bit operations.

3. An operating systems (COS 318) student is working on writing his bootloader. As part of this

assignment, he uses magic numbers for various hexadecimal memory constants. He performs

various operations with these numbers and, while debugging with GDB, uses the built-in Linux

calculator to check the results.

4. A computer architecture student is studying virtual memory. She takes a 64-bit hexadecimal

address and uses shifts and bit masks to find the page table, the virtual page number, and the

page offset.

28

B. Requirements

Functional

1. High Priority

• Standard, non-programming functionality: add, subtract, times, divide

• Bitwise operators: and, or, not, xor

• Bit shifts: left and right shifts

• Binary, decimal, and hexadecimal input and display

• Clear, accumulator clear, and delete

• 64-bit support

• Signed and unsigned support

2. Medium Priority

• 8, 16, and 32-bit support

3. Time Permitting

• Circular shifts: RoL and RoR

• Keyboard input and shortcuts

• Individual bit editing

• Back and undo buttons

4. Future Consideration

• Floating point

• ASCII, Unicode

• 1s complement

• Big endian, little endian representations

• Byte flip, word flip

Non-Functional

1. Runnable as a Chrome App and on iOS and Android

29

2. Installable through the various app stores

3. Perform as expected

4. Have an easy-to-use interface

30

C. Sketches

31

D. Sample Storyboard

Figure 6: A storyboard for subtracting a larger hexadecimal number from a smaller one (as in the
first scenario).

34

E. Initial Software Prototype

Figure 7: The first implementation of the user interface.

35

F. Distribution

Chrome Web Store

https://chrome.google.com/webstore/detail/programmers-calculator/

pgkgdlpegifkoofoioopnbkkfhjociaj?hl=en-US&gl=US

World Wide Web

http://www.princeton.edu/~brianmr/calculator/18

18Aliased at http://brianrosenfeld.com/calculator/.

36

https://chrome.google.com/webstore/detail/programmers-calculator/pgkgdlpegifkoofoioopnbkkfhjociaj?hl=en-US&gl=US
https://chrome.google.com/webstore/detail/programmers-calculator/pgkgdlpegifkoofoioopnbkkfhjociaj?hl=en-US&gl=US
http://www.princeton.edu/~brianmr/calculator/
http://brianrosenfeld.com/calculator/

G. Version 1

Figure 8: A screenshot of the Version 1 interface.

37

H. Responsive Layout

Figure 9: Screenshots of two different sizings of the Version 2 interface, scaled down by 50% to fit
this page. In addition to the differences in text and button sizes, notice how the narrower window
uses a four-row layout for the binary display and the wider-layout uses a two-row layout.

38

I. Supported Operators

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Negation

6. Bitwise not

7. Bitwise and

8. Bitwise or

9. Bitwise xor

10. Modulo

11. Left shift

12. Arithmetic right shift

13. Logical right shift

14. Rotate-left circular shift

15. Clear

16. Accumulator Clear

17. Delete

39

Task 1: Add the 32-bit, unsigned numbers FF8A0016 and 50010 then subtract 1010112. What is
the result in hexadecimal?

1. Click the white “32” in the top bar to set the mode to 32-bits.
a. Yes. 64 bits are shown in the binary display and the number 64 is orange, so the

user should understand that the numbers in the top control the bit length.
Moreover, when the user hovers over the word 64, the cursor changes to a pointer,
suggesting that it is clickable.

b. Yes. The number 32 has been changed to orange, the number 64 has been
changed to white, and the 32 high-order bits have been grayed out. The user
should understand that this means the calculator is in 32-bit mode.

2. Click the word “unsigned” in the top bar to change the mode to unsigned.
a. Yes. The user just clicked a number in the top bar to change the bit length, so he

or she should understand that the top bar is used for changing the mode.
Moreover, the word “signed” is currently the same orange as 32-bits, so the user
should understand that the calculator is currently in signed mode.

b. Yes. The word “unsigned” is now highlighted, suggesting that the calculator is in
unsigned mode.

3. Click FF then 8 then A then 00.

a. Yes. The display for hex is currently set to a different color, and the entire
keyboard is enabled. Moreover, the cursor turns to a pointer over the different
keyboard options, suggesting that they are buttons.

b. Yes. Clicking a button updates the display to show that value and the button
temporarily changes color to show that the click was registered.

4. Click the + button.

a. Yes. + is the standard symbol for addition.
b. Yes. The + button temporarily changes color to show that the click was registered,

and then the text of the button changes to orange, suggesting that the operation is
active.

5. Click the box that has DEC in it.
a. Most likely. The cursor changes to a pointer over the various display boxes and

the HEX box is currently highlighted, so the user should understand that it is
active.

b. Yes. The DEC box is now highlighted instead of the HEX box and the non-
decimal digits are grayed out. One suggestion would be to have the cursor no
longer be a pointer over these disabled buttons.

6. Click 5 then 0 then 0.

J. Streamlined Cognitive Walkthrough

40

a. Yes. This is the standard way of entering a number on a calculator.
b. Yes. The display updates after each digit is entered and each button temporarily

changes color when clicked. Moreover, the display shows the plus sign and the
number on a separate line, making it clear that the user is in the middle of an
addition.

7. Click the – button

a. Yes. – is the standard symbol for subtraction.
b. Yes. The – button temporarily changes color to show that it was clicked, the

display updates with the result of the addition, the – button becomes highlighted,
and the + button is no longer highlighted—all of which suggest that the calculator
is now in the middle of a subtraction.

8. Click the box with the binary numbers.

a. Yes. The user has already changed bases, and this change requires the same type
of action as before.

b. Yes, the box with the binary digits is now highlighted instead of the DEC box and
the non-binary digits are grayed out. As with before, an improvement would be to
have the cursor no longer be a pointer over these disabled buttons.

9. Enter 1 then 0 then 1 then 0 then 1 then 1.

a. Yes. The user has already entered numbers on the calculator, and this is standard
calculator procedure. Moreover, the display shows the subtraction sign and the
number on a separate line, making it clear that the user is in the middle of a
subtraction.

b. Yes. Each of the displays is updated with the new operand.
10. Press =

a. Yes. This is standard calculator procedure.
b. Yes. The displays are updated to show one value and no longer show the

subtraction sign, and the subtraction sign is no longer highlighted, suggesting that
the operation has been completed.

11. Read the number FF8BC9 from the HEX box.
a. Yes. This box is labeled HEX, so the user should understand it contains a

hexadecimal value.
b. Yes. The user will have their final value.

41

Task 2: Shift the 32-bit, signed integer -1 right 2 with an arithmetic shift (a shift in which the
sign bit is shifted from the left).

1. Press AC to clear the calculator.

a. Yes. AC is standard for accumulator clear on calculators.
b. Yes. The displays now show zero.

2. Click the “signed” text.
a. Yes. The user already knows how to do this from the previous task.

b. Yes. The “signed” text is now highlighted instead of “unsigned”.
3. Click the button 1.

a. Yes. This is standard procedure for entering numbers.
b. Yes. The number 1 is now displayed.

4. Click the button with the plus-minus sign.
a. Yes. Because the button has a plus-minus sign, the user should understand that it

is used for changing sign.
b. Yes. The display now shows -1 for decimal and the appropriate hex and binary

representations.
5. Click the DEC box (see previous task)

6. Click the >> button.
a. Maybe. >> is clearly a right shift, but so is >>>. In Java and JavaScript, >> is

defined as an arithmetic right shift and >>> is defined as a logical right shift. If
the user is familiar with bitwise operators in these languages, then the difference
between the calculator’s right shifts will be clear. If the user is programming in C,
the meaning of these operators may be unclear, for C only has one right shift
operator (>>) and that operator has undefined behavior on negative numbers. An
alternative could be A>> and L>> to express that these are arithmetic and logical
right shifts respectively.

b. Yes. The >> button temporarily changes color to show that the click was
registered, and then the text of the button changes to orange, suggesting that the
operation is active.

7. Click the button 2.
a. If it’s clear that >> is a binary operator rather than a unary operator, then yes.

Otherwise, the user may try to click >> twice in order to shift by two bits.
Highlighting the operator shows that the operation is in progress, so the user
should understand that this is a binary operator.

b. Yes. See step 3.

8. Press = (see previous task)

42

Task 3: In the following code snippet, what is y equal to in decimal?

uint16_t x = 27023;

int8_t y = x;

1. Press AC to clear the calculator (see previous tasks)
2. Click “unsigned” (see previous tasks)

3. Click “16” (see previous tasks)
4. Click DEC (see previous tasks)

5. Enter 2 then 7 then 0 then 2 then 3 (see previous tasks)
6. Click “8” in the top black bar (see previous tasks)

7. Click “signed” (see previous tasks)

Task 4: Try to divide 1016 by zero. Now exit the error mode and divide by two instead.
1. Click 1 then 0 (see previous tasks)
2. Click ÷ (see previous tasks)

3. Click 0 (see previous tasks)
4. Click = (see previous tasks

5. Click C
a. It’s not very clear what the difference is between AC and C though after the first

time, users would know the difference. An option would be to use the HEX box to
show instructions.

b. Yes, the error is gone and the divide has been undone with the divide operator still
active.

6. Click 2 (see previous tasks)
7. Click 0 (see previous tasks)

Takeaways

• Use a regular cursor for disabled buttons
• Possibly use A>> and L>> instead of >> and >>>.
• Use the HEX box to give instructions during an error.

43

Please complete the following tasks while thinking out loud.

1. Add the 32-bit, unsigned numbers FF8A0016 and 50010 then subtract 1010112.
What is the result in hexadecimal?

2. Shift the 32-bit, signed integer -1 right 2 with an arithmetic shift (a shift in which
the sign bit is shifted from the left).

3. In the following code snippet, what is y equal to in decimal?

uint16_t x = 27023;

int8_t y = x;

4. Try to divide 1016 by zero. Now exit the error mode and divide by two instead.

K. Thinking-Aloud Study: Participant Instructions

44

1. Add the 32-bit, unsigned numbers FF8A0016 and 50010 then subtract 1010112.
What is the result in hexadecimal?

a. Does the user change to unsigned, 32-bit mode correctly? Yes / No
b. Does the user use FF and/or 00 to input the hex number? Yes / No
c. Can the user change to decimal? Yes / No
d. Does the user change to binary? Yes / No
e. Does the user hit equals before the subtraction key? Yes / No
f. Does the user report the correct answer (FF8BC9)? Yes / No
g. Other observations and user’s thoughts

h. Was it clear?

L. Thinking-Aloud Study: Evaluator Instructions

45

2. Shift the 32-bit, signed integer -1 right 2 with an arithmetic shift (a shift in which
the sign bit is shifted from the left).

a. Does the user know which right shift to use? Yes / No
b. Is it clear that the right shift is a binary operator? Yes / No
c. Other observations and user’s thoughts:

3. In the following code snippet, what is y equal to in decimal?
uint16_t x = 27023;

int8_t y = x;

a. Does the user set the correct mode initially? Yes / No
b. Does the user cast correctly (expected answer is -113)? Yes / No

c. Other observations and user’s thoughts

d. Was it clear?

46

4. Try to divide 1016 by zero. Now exit the error mode and divide by two instead.
a. How did the user exit the error mode? AC / C
b. Other observations and user’s thoughts:

Debriefing
Read: These tasks were designed to expose you to various parts of the calculator’s
interfaced and to observe how you interacted with it. Aside from what we have discussed,
is there anything that was unclear? Do you have any further suggestions for either the
interface or functionality?

47

• Participants: three seniors and two juniors in the Computer Science department at Princeton.
• Program: Calculator version 0.0.1, which was downloaded from the Chrome Web Store and

run on my MacBook Pro. The calculator was run at the default size.

Task 1: Add the 32-bit, unsigned numbers FF8A0016 and 50010 then subtract 1010112.
What is the result in hexadecimal?
• None	of	the	five	users	set	the	initial	mode	correctly.	

o Because	users	worked	with	modes	correctly	in	future	tasks,	I	believe	this	
does	not	reflect	a	usability	issue	and	instead	resulted	from	users	viewing	
“32-bit,	unsigned”	as	merely	a	detail	in	the	task.	I	did	not	ask	why	users	did	
not	change	the	mode,	for	I	did	not	want	to	influence	them	in	future	tasks	
(notably,	task	three	that	focused	specifically	on	modes).	

o One	user	explicitly	stated	that	the	result	would	be	the	same	for	64-bits	
numbers,	so	he	wasn’t	going	to	change	the	bit	length.	This	property	of	the	
task	represents	a	shortcoming	in	the	task	itself	and	should	be	changed	if	the	
task	is	to	be	used	again	in	the	future.	

• Only	one	user	uses	the	FF	and/or	00	shortcuts,	and	three	users	used	the	keyboard.	

• There	was	some	confusion	when	changing	between	hexadecimal,	decimal,	and	binary	
inputs.	

o Two	users	started	to	input	500	as	a	hexadecimal	number	before	clearing	it	
after	realizing	that	it	was	not	decimal	as	requested.		

o The	first	time	that	users	tried	to	change	the	base,	there	was	some	hesitation	
before	clicking	the	decimal	box.	

o Three	users	were	confused	about	switching	to	binary	because	the	binary	box	
has	a	different	display	than	the	decimal	and	hex	boxes	and	lacked	a	BIN	label.	

§ One	user	was	going	to	convert	the	number	to	hex.	

o When	entering	a	binary	number,	one	user	thought	the	bits	were	buttons.	

• At	the	end	of	the	task,	users	said	they	thought	the	way	of	switching	bases	made	sense	and	
would	be	clear	for	future	use	(despite	confusion	on	the	first	use).	

	 	

M. Thinking-Aloud Study: Results

48

Task	2:	Shift	the	32-bit,	signed	integer	-1	right	2	with	an	arithmetic	shift	(a	shift	in	which	
the	sign	bit	is	shifted	from	the	left).	

• Every	user	used	the	correct	right	shift	(>>),	however	only	one	actually	knew	the	
difference	between	(>>)	and	(>>>).	

o One	went	based	off	of	“intuition”,	explaining	that	he	was	familiar	with	the	
two	different	operations.	

o Two	guessed	with	one	of	them	stating,	“This	is	where	I	go	to	Google”	and	
explaining	that	he	“never	keeps	[the	difference]	in	mind.”	

o One	didn’t	notice	(>>>),	so	he	used	(>>).	

• Only	two	out	of	the	five	users	expected	the	right	shift	to	be	a	binary	operator.	

o One	user	double	clicked	the	operator	to	shift	right	by	two	and	said,	“That’s	
not	what	I	expected.”	When	prompted,	he	explained	that	he	thought	(>>)	was	
a	right	shift	by	one	and	(>>>)	was	a	shortcut	to	right	shift	by	two.		

• Two	users	entered	-1	as	“-“	then	“1”	rather	than	by	using	the	negation	button.	
o One	of	these	users	used	the	keyboard,	which	maps	the	underscore	key	to	

subtraction	rather	than	negation.	This	user	suggested	providing	a	list	of	
keyboard	shortcuts	with	hovering	over	an	operation	showing	a	description	
of	the	operation	and	its	keyboard	shortcut.	

Task 3: In the following code snippet, what is y equal to in decimal?
uint16_t x = 27023;

int8_t y = x;

• Three	users	performed	this	task	without	any	issues.	
o One	explained	that	she	hadn’t	initially	seen	the	signed/unsigned	labels	but	

noticed	it	later.
o One	user	was	still	in	binary	from	the	previous	task,	and	when	he	entered	“2”	

he	said	that	he	expected	an	automatic	change	to	decimal.i	He	asked	for	
keyboard	shortcuts	for	changing	base	and	explained	that	he	“wants	speed”.

• One	user	who	performed	the	task	incorrectly	by	not	setting	the	initial	mode	said	it	wasn’t	
clear	at	first	that	the	text	labels	were	modes	and	clickable.	

• One	user	brought	up	the	fact	C	has	specific	promotion	rules	and	that	the	changes	were	
atomic.ii	He	suggested	using	the	mode	buttons	8s	8u	…		64s	64u	to	insure	the	correct	
casting.	

	 	

49

Task	4:	Try	to	divide	1016	by	zero.	Now	exit	the	error	mode	and	divide	by	two	instead.	

• Four	users	used	C	and	correctly	explained	the	difference	in	behavior	between	AC	and	C.	
o One	of	the	users	had	initially	tried	to	exit	the	error	mode	by	pressing	delete	

on	the	keyboard	or	by	typing.	
o Even	so,	one	of	these	users	thought	it	was	unclear	out	of	normal	context.	

• One	user	used	AC	instead	of	C.	He	said	he	always	clicks	“AC”,	and	when	prompted,	he	
didn’t	know	what	the	difference	would	be.	

Other	user	thoughts	and	comments	
• One	user	said	he	currently	uses	Google	for	these	types	of	tasks	but	that	he	thought	the	
calculator	would	be	helpful.

• One	user	explained	that	he	tried	to	use	the	keyboard	because	he	normally	works	with	
Emacs.	Another	user	said	he	normally	uses	the	numerical	keypad	when	he	is	at	a	
workstation.

• One	user	commented	that	he	likes	that	unusable	keys	became	grey.
• One	user	commented	that	it	was	easy	to	switch	between	decimal,	hexadecimal,	and	
binary,	which	is	normally	a	pain	point	for	him.	Another	user	suggested	that	there	be	
buttons	for	switching	the	base	rather	than	clicking	in	the	box.

• Three	users	asked	what	ROL	was.iii

• One	user	suggested	that	on	startup	it	be	made	clearer	which	box	you’re	typing	into	
(which	base	you’re	using).	He	thought	the	different	color	for	hex	represented	an	aesthetic	
difference	rather	than	a	functional	one.

• One	user	said	that	he	wants	to	see	the	calculation	how	it	is	in	his	head.	For	example,	for	
the	first	task	he	would	want	to	see	FF8A0016	+	50010	in	a	box	above	DEC.

Usability	problems	
1. It	is	unclear	to	some	users	that	the	mode	text	labels	are	clickable.	

2. Switching	bases	is	confusing	for	first	time	users.	It	is	not	intuitive	that	the	boxes	are	
clickable.	Moreover,	the	binary	box	is	not	consistent	with	the	other	days,	making	it	
confusing	to	switch	to	binary,	and	the	initial	selection	of	the	hex	box	looks	like	an	
aesthetic	difference	rather	than	a	functional	one.	

3. The	difference	between	>>	and	>>>	is	unclear.	

4. It	is	not	clear	that	shifts	are	binary	operators.	

5. It	is	unclear	to	some	users	what	the	difference	between	AC	and	C	are	in	the	error	mode.	
6. There	is	no	documentation	for	keyboard	shortcuts.	

7. It	is	not	possible	to	change	bases	from	the	keyboard.	

8. Users	do	not	know	what	ROL	is.	

50

Other	user	suggestions:	

• Using	the	mode	buttons	8s	8u	…		64s	64u	to	insure	the	correct	casting.	This	is	less	
aesthetically	pleasing,	but	helps	users	who	aren’t	familiar	with	the	rules	for	C	
promotions.	

• A	separate	display	that	shows	the	operation	as	the	user	entered	it,	for	example	it	could	
show	FF8A0016	+	50010.	

Notes	

i	This	is	not	possible	because	it	could	be	a	hexadecimal	number.	
ii We	realized	that	were	the	task	as	follows,	changing	to	signed	before	changing	the	bit	
length	would	produce	-1	rather	than	the	correct	result	of	255	that	is	achieved	when	
changing	the	bit	length	first.

uint8_t x = 255;

int16_t y = x;

iii	ROL	is	rotate	left.	

51

N. Nielsen (1994) Heuristics [34]

1. Visibility of system status: The system should always keep users informed about what is going

on, through appropriate feedback within reasonable time.

2. Match between system and the real world: The system should speak the users’ language,

with words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow

real-world conventions, making information appear in a natural and logical order.

3. User control and freedom: Users often choose system functions by mistake and will need a

clearly marked “emergency exit” to leave the unwanted state without having to go through an

extended dialogue. Support undo and redo.

4. Consistency and standards: Users should not have to wonder whether different words, situa-

tions, or actions mean the same thing. Follow platform conventions.

5. Error prevention: Even better than good error messages is a careful design which prevents a

problem from occurring in the first place.

6. Recognition rather than recall: Make objects, actions, and options visible. The user should

not have to remember information from one part of the dialogue to another. Instructions for use

of the system should be visible or easily retrievable whenever appropriate.

7. Flexibility and efficiency of use: Accelerators—unseen by the novice user—may often speed

up the interaction for the expert user such that the system can cater to both inexperienced and

experienced users. Allow users to tailor frequent actions.

8. Aesthetic and minimalist design: Dialogues should not contain information which is irrelevant

or rarely needed. Every extra unit of information in a dialogue competes with the relevant units

of information and diminishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors: Error messages should be ex-

pressed in plain language (no codes), precisely indicate the problem, and constructively suggest

a solution.

10. Help and documentation: Even though it is better if the system can be used without documen-

52

tation, it may be necessary to provide help and documentation. Any such information should be

easy to search, focused on the user’s task, list concrete steps to be carried out, and not be too

large.

53

	
	
	

Problem Heuristic(s) violated Potential solution(s)

1. It is unclear to some users that the
mode text labels are buttons.

• Consistency and standards
• Help and documentation

• Make these look more like buttons
• Tooltip instructions

2. It is unclear that the display boxes
are clickable for changing bases.

• Consistency and standards
• Help and documentation

• Make the labels look like buttons
• Tooltip instructions
• Separate buttons for changing base

3. The binary box lacks a label,
making it different than the other
boxes and harder to realize that it
is clickable.

• Consistency and standards • Add a BIN label

4. It is unclear that hex is initially
selected rather than just a
different color.

• Visibility of system status • Bold the label of the selected box

5. The difference between the right
shifts is unclear.

• Help and documentation • Rename to A>> and L>>
• Tooltip instruction.

6. It is unclear that shifts are binary
operators.

• Help and documentation • Tooltip instructions

7. The difference between AC and C
in the error mode is unclear to
some users.

• Help users recognize,
diagnose, and recover
from errors

• Provide instructions in the HEX box.
• Tooltip instructions.

8. There is no documentation for
keyboard shortcuts

• Help and documentation • Tooltip with keyboard shortcut.
• Provide separate list of shortcuts.

9. It is not possible to change base
from the keyboard.

• Flexibility and efficiency
of use

• Add a shortcut

10. Users do not know what ROL
stands for.

• Help and documentation • Provide a tooltip instruction

11. NOT is mixed in among the
binary operators.

• Consistency and standards • Move NOT to before the binary
operators.

12. Hex is not consistent with binary
because it is not zero padded on
the left.

• Match between system
and the real world.

• Padded hex on the left with zeros.

13. Disabled buttons still have a
pointer for a cursor.

• Consistency and standards • Use a normal pointer.

Note: The heuristic evaluation was conducted after the streamlined cognitive walk through and
thinking-aloud study, so many of the usability problems are cross-listed. The list here can be
considered a “master” list.

O. Heuristic Evaluation

54

Operation Shortcut

signed Shift+S

unsigned Shift+US

8bit Shift+1

16bit Shift+2

32bit Shift+4

64bit Shift+8

binary Shift+B

decimal Shift+D

hex Shift+H

[0F] [0F]

00 Shift+0

FF Shift+F

AC esc or Shift+A

C Shift+C

DEL delete

± Shift+ or p

NOT Shift+` (~) or n

AND Shift+7 (&)

OR |

XOR Shift+6 (^)

MOD Shift+5 (%) or m

<< <

A>> >

P. Keyboard Shortcuts

55

L>> Shift+> or l

+ Shift+= or keypad plus

– or keypad minus

× Shift+8 or x or keypad multiply

÷ / or keypad divide

ROL r

= = or enter/return

56

Q. Version 1 vs. Version 2

Figure 10: The first row shows Version 1 (left) and Version 2 (right) in the middle of a binary opera-
tion. Notice how Version 2 makes the calculator’s status clearer by showing the operator next to the
accumulator. The second row shows Version 1 (left) and Version 2 (right) after a divide by zero error.
Notice how Version 2 provides instructions explaining the two different ways to exit the error mode.

57

R. Availability Comparison

Calculator Platform(s) Offline Free
Our calculator Chrome, OS X, Windows, Linux, Android, iOS, Web X X
Windows [29] Windows X X
OS X [5] OS X X X
GNOME [16] GNOME / Linux X X
Penjee [39] Weba X
DevCalc [3] Android X X
CALC-P [30] Android X X
Mosdevb [46] Android X
SixTeen [8] Android X X
Ioannides [26] Android X X
CalcPro [45] iOS X X
HexZombie [10] iOS X X
Sci:Pro [31] iOS X X
ProgCalc [43] iOS X X
64 BitCalcc [14] iOS X

aThe application does not render well on mobile, and it does not use a responsive layout.
bThe application locks the calculator when the device is not connected to the internet, explaining that the app is

funded by ads and requires an internet connection.
cCosts $2.99.

58

S. Functionality Comparison

Modes Input Right Shifts
Calculator 8 16 32 64 128 FPa Bases Bit Editing Arith. Log.
Our calculator S/US S/US S/US S/US 2,10,16 X X
Windows S S S S 2,8,10,16 X X
OS X US 8,10,16 X X
GNOME US 2,8,10,16 Xb X
Penjee S/US S/US S/US S/US S/US X 2, 10, 16 X X
DevCalc S 2,8,10,16
CALC-P S/US 2,10,16 X
HexCalc S/US S/US S/US 2,8,10,16 X
Mosdev S/US S/US S/US US 2,8,10,16 X X
SixTeen S/US S/US S/US US X 2,10,16 X X
Ioannides S S S S 2,8,10,16 X
CalcPro S S S 2,10,16
HexZombiec S/US S/USd 10,16 X
Sci:Pro US 2,8,10,16 X
ProgCalc S/US 8,10,16e X
64 Bit Calc S/US S/US S/US S/US 2,8,10,16 X X

aFloating Point.
bBit editing only works for the first 48 bits.
cDoes not show the binary representation.
d64-bit support is only on the iPad.
eThe calculator shows the binary representation, but there is no way to enter a binary number.

59

T. Heuristic Assessment

We assed the application against each of Nielsen’s (1994) ten heuristics [34]. We believe the

calculator satisfies all ten. Below, we present the arguments for and against each one. Negative

factors are emphasized in italics.

• Visibility of system status

– The system highlights the active signed/unsigned status, bit length, and base.

– Throughout the system, buttons change color when clicked, recognizing the user’s action.

– System displays update promptly to user action.

– When an operation is in progress, the system highlights the binary operator and displays it next

to the accumulator.

– When in an error mode, the system provides a message explaining the error.

• Match between system and the real world

– All operator symbols match real world conventions except A>> and L>>. We chose those two

operators because >> and >>> (the Java and JavaScript operators) were unclear to users.

– The calculator uses infix notation, which is how users think.

– The calculator offers common, real world bit lengths and bases.

• User control and freedom

– The calculator provides AC, C, DEL for varying degrees of clearing or deletion.

– The calculator allows users to switch binary operators by clicking a new operator before the

operand is entered.

– The calculator does not feature redo.19

• Consistency and standards

– The interface groups similar operators together.

– The interface follows platform conventions for the cursor.

– The interface’s clickable text looks like buttons.

• Error prevention
19We did not consider this to be needed.

60

– The calculator disables digits that are not valid for the base.

– The calculator disables operators that are not valid for the signed/unsigned mode.

– The calculator bounds checks user input, only allowing the user to enter valid numbers.

• Recognition rather than recall

– The user interface remains relatively constant throughout use. The only changes include

activating and disabling buttons and updating the display.

– The Chrome Web Store listing links to keyboard shortcuts.

• Flexibility and efficient of use

– The calculator features 00 and FF for quicker input.

– The calculator offers keyboard shortcuts for use on computers.

• Aesthetic and minimalist design

– The interface contains only the information that is needed.

– Version 1 was more “minimalist” than Version 2.20

• Help users recognize, diagnose, and recover from errors

– The calculator’s error messages use plain language.

– The calculator provides instructions for resolving user errors.

• Help and documentation

– The calculator does not need documentation to be used.

– The calculator does not include documentation.21

20We added the additional visual cues to ease learnability—a worthwhile tradeoff.
21As noted above, the calculator does not need documentation to be used. We believe that a feature that requires

documentation really just needs to be made more intuitive. If enough users request documentation, we will happily
prepare and provide it.

61

	Introduction
	Background
	Existing Programmer's Calculators
	Computer calculators
	Mobile and web calculators

	Cross-Platform Development
	Overview
	Options
	Academic Work

	Approach
	Implementation
	Evaluating Requirements
	Prototyping
	Application Structure
	Unit Testing

	Integral Types in JavaScript
	Problem
	Alternative Solutions
	Solution: Using a BigInteger library

	Building a Flexible User Interface
	Problem
	Alternative Solutions
	Solution: Flexible Box Layout Mode
	Solution: Media Queries and Viewport Units

	Functionality
	Distribution
	Initial Usability Evaluation
	Streamlined Cognitive Walkthrough
	Thinking-Aloud Study
	Heuristic Evaluation

	Version Two
	Final Evaluation
	Comparison with Past Work
	Usability Evaluation

	Future Work
	Conclusion
	Acknowledgements
	Honor Code
	Scenarios
	Requirements
	Sketches
	Sample Storyboard
	Initial Software Prototype
	Distribution
	Version 1
	Responsive Layout
	Supported Operators
	Streamlined Cognitive Walkthrough
	Thinking-Aloud Study: Participant Instructions
	Thinking-Aloud Study: Evaluator Instructions
	Thinking-Aloud Study: Results
	Nielsen (1994) Heuristics heuristic
	Heuristic Evaluation
	Keyboard Shortcuts
	Version 1 vs. Version 2
	Availability Comparison
	Functionality Comparison
	Heuristic Assessment

