

ChoraleAnalyzer
Development of a Simple Implementation into an
Effective Pedagogical and Musicological Tool

Charles Peyser
Advisor: Dr. Robert Dondero

ChoraleAnalyzer ii

Table of Contents

Note to the Reader .. 1

Introduction ... 2

Prior Work ... 5

Music21 ... 5

The Original ChoraleAnalyzer .. 5

A Faster, More Comprehensive Backend .. 6

Parallel Interval Validation ... 6

Progression Tracking .. 9

A Clearer, More Usable Frontend ... 13

A Simple GUI .. 14

An Online Tool - CGI ... 15

A Website in PHP .. 17

Frontend – Design .. 18

Development Environment ... 18

MySQL Database ... 19

Program Architecture ... 21

Security .. 26

User Interface ... 27

Future Work .. 27

Acknowledgements .. 29

Charles Peyser

Spring 2014 Independent Work
Advisor: Dr. Robert Dondero

Submitted: May 6th, 2014

ChoraleAnalyzer 1

Note to the Reader

This project is largely one in online musical education, and was entirely made possible by a

prior semester of work given to solving the problem of automatic chorale verification and

grading. As such, it is difficult to discuss the project’s goals and results without heavy

reference to the original ChoraleAnalyzer tool, its design, and its capabilities. Except for the

reworking of the tool to be faster and more adaptable and the addition of a substantial new

analysis feature, however, development of the original ChoraleAnalyzer was the work of

last semester. For reference as to the specifics of the tool, and for a primer on the relevant

topics in music theory, I invite the reader’s attention to my first Junior Paper:

“ChoraleAnalyzer: An Automatic Tool for the Verification of Bach-Style Chorales”. This

paper will seek to restrict itself to the progress made in the spring of 2014.

ChoraleAnalyzer 2

Introduction
At this point in the progression of education technology it is difficult to dispute the claim

that large, automated online courses will play a substantial role in the way that we will

educate in the 21st century. Since

the first MOOC, or Massive Open

Online Course, was launched in

2008 at the University of

Manitoba, Canada (Marques), the

model has grown to encompass

over 200 universities, 1300

instructors, and 10 million

students. In fact, since the beginning

of 2013 the number of courses offered online has exploded, from about 100 at the start of

the year to more than 1200 today (Shah).

Online education has become popular largely because it works from a business perspective.

While an online course might be expensive to create, sometimes costing over $100,000 to

pay for the same kind of production value that might be expected from a television series

(Goldstein), the incremental cost of adding another user is practically nothing, making

MOOCs difficult to compete with in an environment where anyone can log in and learn.

MOOCs also open up markets that do not exist for the traditional pedagogical model;

MOOCs are growing at an increasing rate (Shah)

ChoraleAnalyzer 3

working professionals, parents, and educators can participate in an online course more

easily than they can attend an actual lecture (Swope).

The first MOOCs were largely technical (Marques), and in fact, programming and other

engineering topics dominated online course offerings in their earliest years. Recently,

however, subjects in the humanities have overtaken other fields to become the largest

category of online course offered by major providers (Shah). The challenge with the

dominance of this sort of class is grading – as essays and projects take over for computation

and multiple-choice exams, evaluation becomes more subjective and requires more human

attention (Duhring). Many online educators address this problem by employing peer

grading, a process by which students read and assign grades to each other’s work. This

system, however, suffers from the assumption that students are qualified to grade an

assignment, and that they will read and understand grading directions given by professors

with little incentive (Rees).

One field for which the grading barrier has played a substantial role in slowing the progress

of online education is music. Evaluation in music history and music theory often is difficult

in a multiple-choice or essay format, making it hard to grade students in an online course

(Covach). The beginner music theory curriculum stands at a peculiar place between the

technical and aesthetic, teaching composition through both analytical and artistic

procedure. As such, grading is hard. A composition must follow the rules of the particular

style in question, and it falls outside the ability of both the average student and a simple

program to grade a general submission.

ChoraleAnalyzer 4

This paper, and the tool that it describes, deals with one style in particular that is covered in

introductory and intermediate music theory classes – the Bach chorale style. The style

encompasses both the rules of melody and of harmony that are typically put forward in such

a class, and thus, a composition assignment in the chorale style often acts as a capstone

project. The Bach chorale style is characterized by a large number of melodic and harmonic

“rules” that govern how notes and chords ought to, but do not necessarily have to, relate to

each other. Following these rules generally produces a stylistic and artful composition.

Bach himself, however, often violated the rules of the style in compliance with some

aesthetic motivation; thus, evaluating a composition in the Bach style is an exercise in

validating general compliance with the rules while finding justification for the points at

which the rules are ignored.

Needless to say, a problem as complex as Bach-style analysis thwarts basic peer-grading

schemes. A Bach chorale is different from an essay in that a non-expert cannot reliably

evaluate the chorale. The mechanisms by which it operates are simply too technical to be

checked by students but too non-standard to be easily handled by an automatic grader.

Grading Bach-style chorales has become a notoriously tedious job delegated to graduate

students and teacher’s assistants, and stands in the way of a full migration of the standard

music theory curriculum online.

This paper discusses an advanced tool for the evaluation of Bach-style chorales, the chord

progression-based mechanism it employs to take rule violations in context of where they

ChoraleAnalyzer 5

occur, and the use of the tool through an online interface that provides pedagogical feedback

to instructors.

Prior Work
Music21

ChoraleAnalyzer, in both its original form and the form presented in this paper, is built on

top of a set of Python scripts called music21. Created and maintained by Dr. Michael

Cuthbert and his team at MIT, music21 is self-described as “a toolkit for computer-aided

musicology”. It contains methods for parsing musical scores from various formats into an

internally-defined set of Python objects, and conducting analysis on those objects (music21).

While music21 featured prominently in the improvements made to the original

ChoraleAnalyzer as part of this project, it is more relevant to the original construction of the

tool, and is thus only referred to as necessary in this paper.

The Original ChoraleAnalyzer

The original ChoraleAnalyzer was a large group of Python scripts sitting on top of music21.

The program repeatedly scans through a chorale and accompanying Roman numeral

analysis for rule violations of various types. I created the tool in the fall of 2013, and at the

time of completion it was able to reliably discover the following errors in a chorale:

§ Parallel intervals, including parallel octaves, fifths, and unisons. Hidden parallels.

ChoraleAnalyzer 6

§ Voice leading errors, including tritone intervals in the same part and repeated bass

tones.

§ Single-chord errors, including parts out of standard range, intervals between parts

that are too large, and voice crossings.

§ Harmonic violations, including incorrect modalities, inversions, and non-standard

progressions.

§ Discrepancies between the provided chorale and Roman numeral analysis.

The tool also supported a basic grading metric called the “Bachness” score, which compared

the number of violations per measure of a chorale in each rule type to data collected from a

sample of original Bach chorales, and gave a score based on conformity. The tool, at the

time, did not adjust the score based on the violation in context within the chorale.

The original tool ran from the command line of a machine that had music21 installed. It

ran extremely slowly, as the mechanisms for finding parallel intervals were taken from the

music21 libraries and were ill suited for the task. A single chorale could take longer than

twenty minutes to process.

A Faster, More Comprehensive Backend
Parallel Interval Validation

Development of the original ChoraleAnalyzer program into a viable pedagogical tool

required a number of changes from the implementation completed in the fall. In particular,

ChoraleAnalyzer 7

parallel interval validation in the original ChoraleAnalyzer derived from music21’s built in

theoryAnalysis.theoryAnalyzer.getParallelFifths() method, which is

extraordinarily inefficient and slowed execution on chorales of average size (20-30

measures) considerably. It became obvious that in order to make the tool public and to

handle a large number of submitted chorales, some alternative, faster mechanism would

have to be devised.

The solution that was devised and eventually implemented relied on a technique that a

human grader might use to find parallel intervals. Each pair of parts is inspected

individually in a horizontal manner, looking for rhythmic points at which the parts sound

simultaneously and checking the next note in both parts for illegal parallel intervals. In

order to implement this mechanism, two pieces of data are first gleaned from the chorale: a

list of offsets and an offset dictionary. The list of offsets, just called offsets in the code, is

a Python list of measure/beat elements that give all of the rhythmic points at which a note

begins in the chorale. The measure/beat elements are represented as a Python float in the

form measure.beat, the assumption being that no measure will have more than ten beats.

The offset dictionary, called offsetDict, maps offsets in measure.beat form to music21

Note objects. Between the two simple data structures, a chorale can be traversed

horizontally and intervals can be computed.

For each pair of parts (there are six unique pairs for four parts), the two offset lists are

searched for matches, where a match represents a point at which the parts both sound, and a

candidate for the first pair of tones in an illegal parallel interval. When a match is found,

ChoraleAnalyzer 8

the forward interval, that is, the interval between the tone and the one that immediately

follows it, is computed for both voices and compared. If the intervals are found to be the

same and of illegal size, the violation is flagged and a message is passed up the logic

hierarchy to the frontend. Otherwise, the match is discarded and the process proceeds

onward.

As can be seen in the profiling results below, the new offset-based implementation vastly

outpaces the original music21 implementation, offering a feasible alternative to a

mechanism that was slowing execution down to an intolerable level. Profiling of the

music21 implementation using the Python cProfile module reveals that the speed problems

in the theoryAnalysis.theoryAnalyzer.getParallelFifths() method lie deep in

the music21 codebase. Further investigation would be required in order to determine what

in particular causes the method to take so long. The music21 team has been made aware of

the issue. Hopefully, music21 will adopt my implementation over that which is currently in

its codebase.

ChoraleAnalyzer 9

Chorale Number Music21 Implementation New Implementation

1 9m 34.577s 4.919s

2 8m 8.663s 3.425s

3 4m 46.927s 2.573s

4 5m 5.516s 2.416s

5 27m 14.560s 6.186s

6 2m 6.132s 1.672s

It should be noted that the sets of parallel intervals identified by the two implementations

differ meaningfully. In particular, the music21 implementation identifies a number of

parallel intervals that the offset-based implementation does not, but these violations do not

appear to follow the standard definition of parallel intervals. Further inquiry into the

mechanism behind the music21 implementation is required to determine what exactly it

searches for, but for the purposes of this project the new implementation appears sufficiently

thorough.

Progression Tracking

One of the problems with the original ChoraleAnalyzer is that flagged errors without any

notion of context: a student could know how her error profile compares to Bach

quantitatively, but for any given violation could not know how likely Bach would be to

ignore that rule in that place. This, of course, is the fundamental problem with automatic

ChoraleAnalyzer 10

Bach-style grading: the rules in question are more like guidelines than anything else in

particular, and seeing violations in a black-and-white way limits perspective on the chorale.

This iteration of ChoraleAnalyzer takes a tentative step towards tackling the problem of

treating violations by their context by tracking progressions of chords together with

violations, and associating violations with the chord progressions in which they occur. The

algorithm and implementation for gathering n-gram chord progressions from a chorale in

XML format arises entirely from the work of Dr. Dmitri Tymoczko of the Princeton

Department of Music, who has produced a substantial library of code for parsing, analyzing,

and extracting data from compositions of various types.

Dr. Tymoczko’s code was modified so as not to return Python strings representing chord

progressions, but rather progressionTracker objects, defined in utilities.py and

capable of storing a chord progression together with incident Bach-style violations. A

progressionTracker can be described well by analogy: a progressionTracker instance

is to a chord progression of variable length as an errorTracker instance is to an entire

chorale. A module called gatherProgs.py was composed that adapted Dr. Tymoczko’s

original progression gathering code. A second module called testBachProgs.py was

composed that contains methods for processing long lists of progressionTracker

instances into simpler, non-redundant lists of progressionTrackers that together provide

an in-context error profile for a chorale, and converting that list into a Python dictionary

that maps progressions to a list giving the frequency that each category of violation is

incident to that progression.

ChoraleAnalyzer 11

More specifically, the method combineProgs() takes the raw output of the

gatherProgs.py process, that is, a Python list of progressionTracker objects

corresponding to every progression of chords in a chorale, where a progression is defined as

a sequence of consecutive chords of size five or smaller, as represented in the Roman

numeral analysis. These progressionTrackers represent specific instances of the

progression and the errors that occur within. The method finds duplicate

progressionTrackers, which represent the same progression occurring at multiple points

in the chorale, and sum their associated error sets. The next step of processing,

createProgDict(), accepts that list of unique progressionTrackers and returns a

dictionary that maps string representations of progressions to lists representing error profiles.

Information as to the relative occurrence of rule violations in various progressions is then

readily accessible for any chorale, or set of chorales.

As alluded to above, this opens the door to addressing the problem of the subjective nature

of the Bach rules. By considering a violation together with its progression context, a new,

better “Bachness” metric is possible. The fundamental mechanism behind the “Context

Aware Bachness” grading scheme implemented in the website is the “discounting” of error

values based on their occurrences in the Bach chorales themselves. The procedure involves

tallying up the errors that occur in the student chorale, but scaling down the contribution to

the tally if Bach made the same mistake. The scaling system is simple: an error’s

contribution to Context Aware Bachness is one divided by the number of occurrences in

Bach (unless, of course, the error never occurs in Bach, in which case it is divided by one).

ChoraleAnalyzer 12

It is worth noting that the data gathered in order to support this computation, that is, the

progression to error profile dictionary on Bach himself, is itself an interesting and novel

dataset. For example, it seems that a large number of parallel fifths in Bach occur over a I

chord. The data is saved as a Python pickle file1, has been published as a Git repo, and will

be made available to the appropriate faculty in the music department.

The data set itself is too large to be fully described here. It contains the error profiles of

20344 distinct progressions. Interesting facts can be gleaned even from cursory perusing of

the data. For example, the tenor goes out of range seven times over viio6 -> I6 -> V

progressions, while only going out of range fourteen times over all progressions. Consider

the below:

1 “Pickle” is a built-in Python serialization mechanism. That is, a Python class hierarchy
can be encoded into pickle format, saved to a file, and retrieved by another Python process
at a later time. Pickle is comparable to JSON, in that it is used to pass data structures from
program to program.

ChoraleAnalyzer 13

Error Type Most Violating Progression in Bach

Parallel Unison (Does not occur in Bach)

Parallel Fifth V -> V7 -> I

Parallel Octave I6 -> I -> IV

Bass Out of Range V -> V7 -> I

Tenor Out of Range viio6 -> I6 -> V

Alto Out of Range viio -> Imaj7 -> ii2

Soprano Out of Range (Does not occur in Bach)

Alto/Soprano Interval I -> IVmaj6/5 -> V6/5

Tenor/Alto Interval ii -> viio6 -> I6

Bass/Tenor Interval V -> V7 -> I

Alto/Soprano Voice Crossing V -> V2 -> i6

Tenor/Alto Voice Crossing viio6 -> I6 -> V

Bass/Tenor Voice Crossing V -> V7 -> I

Tritone Leap iv6 -> V -> i

Repeated Bass Tone V -> V7 -> I

A Clearer, More Usable Frontend
One of the biggest problems with the original ChoraleAnalyzer addressed by this project is

ease-of-use. The tool was powerful and adaptive but yet entirely unusable by a theorist or

ChoraleAnalyzer 14

instructor without background in technology. Use of the tool requires the user to install an

open source library into her Python path and run the program using the Python interpreter.

This was unrealistic, seeing as most of tool’s audience is unlikely to know its way around a

command line!

A Simple GUI

The first solution attempted to the ease-of-use

problem was to build a simple graphical user

interface that a user could access by double

clicking an icon on her desktop. The user

would then load chorales from a dropdown

menu, hit an “analyze” button, and see

results in an expandable text box. The user

could then copy the results from the

application to some other location and

proceed to analyze as many chorales as

desired.

An attempt was made to realize this method of interaction in a GUI built with Tkinter. The

interface proved easy enough to implement – the problem arose in packaging of the

application to be used on other computers. ChoraleAnalyzer relies on having access to a

Python installation equipped with music21. The application crashed immediately for

An attempted GUI for ChoraleAnalyzer

ChoraleAnalyzer 15

machines that did not have the libraries installed. Thought was given to producing an

installer that would find music21, install it, and place it in the appropriate path. Lack of

knowledge of the user’s operating system and specific installation of Python made such an

installer seem to be a risky and unattractive option, so the GUI was abandoned.

An Online Tool - CGI

Uploading ChoraleAnalyzer to the Internet and producing a visual interface on a webpage

solved the problems of the simple GUI. The specific Python libraries necessary for the

program to run could simply be installed on a virtual machine provided by an online

vendor, and that machine could act as the web server that would process chorales coming

from the user. The operating system and Python installation of the user would be irrelevant

– access would be through a browser.

The fundamental issue anticipated with building a website that runs ChoraleAnalyzer was

transferring data from the user to a Python program. For this reason, the original effort to

build the webpage was made in CGI, using Python to print HTML pages to the user and to

process form entries that would contain the files to be analyzed. Development was begun

using an XAMPP testing server running on a single machine, and a simple webpage was

successfully designed that passed XML and text files to the program to be processed and

returned.

It became clear during development, however, that simply to pass chorales into and out of a

webpage without maintaining any state was to sell the potential of the tool short. If some

ChoraleAnalyzer 16

basic data about the submitted chorales could be remembered, then meaningful information

as to the average error profile over a number of chorales could be generated, which could

have important theoretical and pedagogical implications. In particular, if the application

could inform an instructor that some particular class of errors of some particular set of

progressions was causing problems for an unusually high proportion of students, that

instructor might be able to save tremendous time and effort in communicating correct

practice to his students. The added functionality could also be used by students themselves

to learn which progressions are the most troubling.

The CGI model ultimately did not suit the integration of a database that could store

meaningful user data. In particular, communication between the Python interpreter, which

is a 64-bit application, and a MySQL database, which runs as a 32-bit application, stopped

progress. While there certainly exist ways to use a database in a CGI context, the

integration of a unique Python installation caused complications that, at first glance, were

unable to be resolved by several experts. Both my advisor and I agreed that the website was

entirely viable as a pure Python application, were more time to be put into solving the

database issue. However, in the interest of moving forward with the project in the short

time frame of a single semester, I abandoned the CGI model in favor of a more traditional

website, built in HTML, PHP, and JavaScript.

ChoraleAnalyzer 17

A Website in PHP

While PHP was originally avoided due to its instability as a language and perceived

difficulty of integration with Python programs, the traditional model was eventually

successful in supporting the application in the anticipated manner. A website was built that

provided a simple homepage from which a user could upload a chorale and Roman numeral

analysis to be analyzed, and have the results returned in a simple textual format. The user

could also access an “About” page with details on use and appropriate references, and a

contact form to submit bug reports. However, if the user wants to maintain information

regarding submitted chorales, she can create a user profile by submitting a username and

password. If that username has yet to be taken, an account is created and the user is taken a

“profile” screen.

On the “profile” page, the user again has the opportunity to upload a chorale and roman

numeral analysis for error validation. However, unlike on homepage, a chorale submitted

while logged in is associated with the user’s profile and stored. The user can then access

any of those chorales at any other time, and select any subset of them to “queue for

analysis”. The user can then analyze that subset, and be directed to a page providing

comprehensive information on the error profile of those chorales taken together as a group.

In particular, a list of average violations per chorale is given in each error type, as well as a

printout of progressions that demonstrate a particular propensity for errors of a particular

type.

ChoraleAnalyzer 18

Frontend – Design
The website is implemented on an Apache 2 server running on an Amazon EC2 instance

located in northern Virginia. The server runs Ubuntu with a typical LAMP setup, including

a MySQL database. The domain name “Choraleanalyzer.com” was purchased and

connected via an A request to the elastic IP 54.85.217.150.

Development Environment

As described above, development occurred on an XAMPP local server that simply served

HTML and PHP files to “localhost” to be viewed in a browser. Migration occurred using a

shared Git repository. Only one branch was needed, seeing as the only changes to be made

to the deployment server were made on the development server. In order to allow the page

to operate on both servers, a global variable named $homepage was maintained in each

PHP file.

 Development Server Deployment Server

Value of $homepage 127.0.0.1 Choraleanalyzer.com

Redirections could occur by simple reference to $homepage, as in:

header(“Location: http://$homepage/ChoraleAnalyzer/somepage.php”);

ChoraleAnalyzer 19

All files other than the landing page index.php are stored in a directory called

ChoraleAnalyzer, allowing for easy migration using Git. The landing page itself was

written separately for the two servers.

MySQL Database

The website relies on two MySQL tables in order to store state relevant to user profiles2.

TABLE USERS Field Type

 username3 varchar(255)

 password varchar(255)

As suggested by the names, this table stores usernames and passwords for users. It is

populated by users when creating new profiles.

2 The details as to column names and types are slightly different in the server
implementation. Those details are ignored here in order to present the database in an
intuitive manner.
3 The “username” entries in the two tables represent the same thing: a username associated
with a profile. They are not, however, implemented as SQL foreign keys. That is, the two
references contain the same information, but do not occupy the same memory.

ChoraleAnalyzer 20

TABLE CHORALES Field Type

 name varchar(255)

 username varchar(255)

 xml blob

 rna blob

 errorTracker blob

 errTrackerNum mediumtext

Each entry of this table corresponds to a chorale submitted by a registered user. The

chorale’s name is stored in order to provide some representation to give to the user when

selecting subsets, and the username itself is stored so that the appropriate set of chorales can

be shown. The other three entries are “blobs”, or Binary Large Objects, that encompass the

pre- and post-analysis states of the chorales. The first two blob entries, “xml” and “rna”, are

the chorale submissions in XML format and the Roman numeral analysis submission in

romantext format, respectively. They allow for storage of the chorales in case data is ever

required for an inquiry into student submitted chorales – presumably over time the database

will grow to store a wealth of such information. The third blob entry, “errorTracker”, stores

the Python errorTracker object that contains the post-analysis error profile of the chorale.

The final entry, “errTrackerNum”, maintains a number that corresponds to the

errorTracker on the server, to facilitate passing the object to Python without dealing with

serialization.

ChoraleAnalyzer 21

Program Architecture

The ChoraleAnalyzer webpage consists of a number of PHP files that pass data to each

other via HTTP POST requests. The following diagram illustrates the flow of data through

the application, where green boxes represent scripts that contain only logic, and are thus

never seen.

It will likely be most effective to address each component of the application in turn, in order

to communicate the design of the program in a holistic manner.

§ Homepage (index.php): index.php provides the landing site for the page, and

fundamentally provides several points of entry into the site. A horizontal navigation

bar, which persists throughout the site, points back at the homepage and to an about

page, about.php. From the homepage, a user can also access the account creation

page, a contact form, and the improved ChoraleAnalyzer itself for stateless analysis

ChoraleAnalyzer 22

(the chorale is analyzed and a report is returned, but the data is not stored). Finally,

a user can login thorough a form at the top of the page to access her own page.

§ About (about.php, romantext.php): about.php is a static HTML page that

provides basic information about the tool, how it works, the nature of the input files

it requires, and a the Bachness scoring scheme. It links to romantext.php, which is

another static page that describes the romantext format for Roman numeral analysis

that is requisite to use of the tool. The brief tutorial is taken from Appendix B of my

paper on the original ChoraleAnalyzer itself (see above, Note to the Reader).

§ Contact (contact.php, sendMail.php): contact.php is a simple module that

displays a form allowing the user to input a message containing a comment,

question, or bug report. Form submissions are handled by sendEmail.php, which,

as the name suggests, sends an email. The code is linked to the author’s personal

email address.

§ Account Creation (newaccount.php): The account creation screen is immediately

accessible from the homepage and exposed the user to a form that allows him to

register a new username and password. Upon validating that the form is

appropriately filled, the code opens a connection to the Users table in the MySQL

database. A list of all usernames is produced and compared against the candidature

account to ensure that usernames remain unique; if a duplicate is found, the form is

rendered again with a message to user asking for a different username. Otherwise,

the username and password are entered into the table.

ChoraleAnalyzer 23

§ Login (login.php): The login mechanism, expressed in login.php, makes use of

the PHP session mechanism. When a username and password are submitted to

the login form in the homepage, a connection is made to the Users table in the

MySQL database. Once the user has been authenticated, a session is started. In

PHP, a session is a global associative array that maintains information assigned to

it from the time that session_start() is called until session_end() is called.

The username in question is loaded into the session, and profile.php is

rendered4.

§ Logout (logout.php): From the profile page, a user can hit a button in the upper

right-hand corner of the screen to logout and return to the homepage. This action,

which essentially consists of a call to session_end(), is handled in logout.php.

§ Profile (profile.php): Once logged in, the user is presented with an interface

similar to the homepage in that it offers access to the improved ChoraleAnalyzer

through file uploads. When files are submitted in this page, however, Chorales are

stored in the manner described above (see the MySQL Database section), and

presented to the user in a list. The list is populated by a database call which searches

all chorales for those keyed to the username in question. Selecting any subset of the

stored chorales and clicking a “Queue for Analysis” button activates the

queue_chorales() JavaScript function, which copies the selected chorale

references to another list.

4 The PHP session object works by storing cookies in the user’s browser. Thus, cookies
must be enabled for the site to function properly.

ChoraleAnalyzer 24

§ Error Profile (errorProfile.php, errorTrackerAnalysis.php,

testBachProgs.php, progDictAnalysis.php): From the final list on the profile

page, the user can activate a set of scripts that gather a holistic error profile for the

subset in question, and print it to the user. Control is passed to errorProfile.php,

which validates the form and retrieves references to the errorTracker instances in

question. The data is passed to errorTrackerAnalysis.py, which defines a

Python object called a groupTracker, which is meant to be analogous to an

errorTracker but to maintain state for a number of chorales. The groupTracker

inherits from errorTracker, and thus maintains counts for each type of error and a

list of progressionTrackers. A groupTracker is instantiated by passing in a list

of errorTracker instances, which have their respective error counts summed.

The groupTracker has only one method – a printing mechanism that computes

average violations per chorale, and that calls upon the progression tracking modules

to produce a summary of the worst progressions for each error type.

§ Analysis without storage (analyze.php): If a chorale and a Roman numeral

analysis are submitted from the homepage, the form contents are processed by

analyze.php. The original design of this module simply copied these files to a

temporary location, processed them with the improved ChoraleAnalyzer through the

PHP exec() function, and printed the resulting list of violations and Bachness score.

Two issues were encountered:

o File copying without a lock: It proved difficult to copy the contents of the files

submitted in the homepage to a temporary location without forking a process.

ChoraleAnalyzer 25

That is, a new process would be automatically spawned by PHP to handle to

copying job, and control would pass to the improved ChoraleAnalyzer before

the copy was complete. This problem was solved by delegating the copying

job to Python instead of PHP: a simple script called copyFiles.py that takes

filenames as arguments and copies them to a known location was composed

and called with the exec() function. PHP waits for copyFiles.py to

complete before moving to the improved ChoraleAnalyzer. That is, the

problematic mechanism is removed by replacing PHP file handling with

Python file handling.

o Concurrency: Storing the contents of the chorale and Roman numeral

analysis in a file with a fixed name leads to problems if two users

simultaneously call the improved ChoraleAnalyzer. In that case, one user’s

file can get overwritten by the other’s before analysis is complete. The

solution implemented involves appending a random large number to the end

of the filename, generated using PHP’s rand() function. While this solution

obviously does not eliminate the possibility of a concurrency conflict, it makes

it practically impossible, given the large space from which the number is

taken.

§ Analysis with storage (analyzeAndStore.php): If a chorale and a Roman numeral

analysis are submitted from the profile page, the form contents are processed by

analyzeAndStore.php. This module implements all of the above, as well as a

mechanism to hold on to the submitted files and produced errorTracker for later

ChoraleAnalyzer 26

use. A connection is established with the Chorales table in the MySQL database,

and the name of the submitted chorale is checked to prevent duplicates. The

submitted files are then passed into the improved ChoraleAnalyzer, which saves the

errorTracker instance.

Security

Upon consultation with a group of web developers working at the Princeton Department of

Computer Science, a number of basic security measures were implemented in order to

prevent intrusion into the database:

§ Prepared Statements: A number of the database accesses that occur in the site

involve queries composed from user input. This inherently puts the site at risk of

SQL injection and jeopardizes the integrity of user data. In the site’s original design,

the PHP mysql library was used for database access. Upon realization that the

mysql library offered no protection against SQL injection attacks, all relevant calls

were replaced by calls to the similar, but more secure mysqli library. This library

offers the ability to “prepare” an SQL query by removing all in-context meaning

before passing to the database.

§ Hashing: Before being entered into the database, passwords are passed through the

PHP crypto() function, which implements a secure one-way hash. This way, even

a malicious user that somehow gained access to the database would be unable to

ChoraleAnalyzer 27

impersonate another user, as the password field in the database does not divulge the

actual password without knowledge of the seed used in the hash.

§ Salt: A sequence of characters is both prepended and appended to usernames and

passwords upon entry into the newaccounts form. By itself, salting does not add

any additional security to the site. In combination with hashing, however, salting

dramatically increases the difficulty of password discovery. In particular, salting

helps to protect against attempts to break the hash by comparison to likely, English-

based possible passwords.

User Interface

The website was transformed from raw html to a presentable interface using Bootstrap,

which is a collection of CSS and JavaScript files that allow for easy selection and usage of

html objects called “components”. These components are pre-designed to look professional.

Instead of loading all of the core Bootstrap files onto the server, the website utilizes the

Bootstrap CDN, a technology that downloads the relevant files from a specified location on

the internet as the page is rendered.

Future Work
In many ways, the project presented in this paper encompasses a number of “Future Work”

goals set out in my paper on the original ChoraleAnalyzer. A result is that unlike for the

original ChoraleAnalyzer, future work is not imperative – the tool is effectively complete to

ChoraleAnalyzer 28

the degree to which it solves the problem that it addresses in an easy-to-use manner,

providing most readily derivable information as to the submitted chorale to the user.

However, the remains substantial work that could be done. In particular:

• The user interface to the improved ChoraleAnalyzer could be turned into a genuine

GUI, providing in-score indications of error locations. This would likely require

integration with MuseScore, which is an open source musical notation package

(MuseScore). Such a project would have a high barrier to entry; so to speak, as

MuseScore itself is implemented in over 100,000 lines of C++, and an understanding

of the program architecture would be required to properly integrate the improved

ChoraleAnalyzer.

• There remains more advanced error-based analysis that could be done. For example,

the tool could check for advanced violations like failure to resolve the third of a V7

chord up.

• The website maintains each chorale and Roman numeral analysis that is submitted

in its original forms. Once the website becomes used, it is likely to amass a large set

of such submissions. Who knows what this dataset might be used for in the field of

musical education? Perhaps this set could provide the basis for the first musical

plagiarism-detection software.

• As described above, this project has exposed a wealth of information as to the

context of the rule violations in the Bach chorales themselves. This data, however,

really asks more questions than it answers. It would be fascinating to explore why,

ChoraleAnalyzer 29

from a musicological perspective, Bach writes so many alto/tenor voice crossings

over viio6 -> I6 -> V progressions. It remains for music theorists more qualified than

myself to investigate the motives that caused Bach to compose in an unusual matter.

Apart from work to the program itself, a long path remains to the point at which the

ChoraleAnalyzer tool with have the exposure that I expect of it. Dr. Dmitri Tymoczko

in the Department of Music has asked to co-author a paper with me on the tool, which

will hopefully bring it to the attention of the music theory community. I expect to

commercialize the ChoraleAnalyzer as I continue to push it to be an enabling, powerful

pedagogical tool. I hope that one day it will become integrated into the first

comprehensive MOOC on music theory.

Acknowledgements
I wish to express deep gratitude to my advisor, Dr. Robert Dondero, for providing

consistently effective direction regarding the vast array of new technologies I needed to

learn this semester, for putting tremendous time and energy into advising a project on a

peculiar intersection of topics, and for committing that time and energy before the project

was even fully defined.

 I also wish to thank Professor Dmitri Tymoczko of the Princeton Department of Music, for

furnishing me with most of the data and some of the code required to implement Content

Aware Bachness, and for providing guidance throughout development.

ChoraleAnalyzer 30

Bibliography

Covach, John. "To MOOC or Not To MOOC?" MTO: A Journal for the Society of Music

Theory. N.p., Aug. 2013. Web. 23 Apr. 2014.

<http://mtosmt.org/issues/mto.13.19.3/mto.13.19.3.covach.php?utm_source=rss&utm_m

edium=rss&utm_campaign=to-mooc-or-not-to-mooc-music-theory-online>.

Duhring, John. "Massive MOOC Grading Problem – Stanford HCI Group Tackles Peer

Assessment." Moocnewsandreviewscom RSS. MOOC: MOOC News and Review, 10

May 2013. Web. 23 Apr. 2014. <http://moocnewsandreviews.com/massive-mooc-

grading-problem-stanford-hci-group-tackles-peer-assessment/>.

Goldstein, Buck. "As MOOCs Move Mainstream Universities Must Pay to Play." The Huffington

Post. TheHuffingtonPost.com, 28 Oct. 2013. Web. 23 Apr. 2014.

<http://www.huffingtonpost.com/buck-goldstein/as-moocs-move-mainstream-

_b_4170524.html>.

Marques, Juliana. "A Short History of MOOCs and Distance Learning."

Moocnewsandreviewscom RSS. MOOC: MOOC News Reviews, 17 Apr. 2013. Web. 23

Apr. 2014. <http://moocnewsandreviews.com/a-short-history-of-moocs-and-distance-

learning/>.

"MOOCs in 2013: Breaking Down the Numbers (EdSurge News)." EdSurge. N.p., 22 Dec. 2013.

Web. 23 Apr. 2014. <https://www.edsurge.com/n/2013-12-22-moocs-in-2013-breaking-

ChoraleAnalyzer 31

down-the-numbers>.

"MuseScore." MuseScore. N.p., n.d. Web. 04 May 2014. <http://musescore.org/>.

"Music21: A Toolkit for Computer-Aided Musicology." Music21: A Toolkit for Computer-Aided

Musicology. N.p., n.d. Web. 04 May 2014. <http://web.mit.edu/music21/>.

Rees, Jonathan. "Essays on the Flaws of Peer Grading in MOOCs | Inside Higher Ed." Inside

Higher Ed. N.p., 5 Mar. 2013. Web. 23 Apr. 2014.

<http://www.insidehighered.com/views/2013/03/05/essays-flaws-peer-grading-

moocs#sthash.VukHeQaZ.dpbs>.

Swope, John. "How MOOCs Can Be Free and Profitable at the Same Time." EdTech Magazine.

N.p., 16 Dec. 2013. Web. 23 Apr. 2014.

<http://www.edtechmagazine.com/higher/article/2013/12/how-moocs-can-be-free-and-

profitable-same-time>.

