
Introduction

”Computers are like Old Testament gods: lots
of rules, and no mercy.”

— Joseph Campbell

The C programming language is one of the few modern languages with explicit
memory management. Most widely-used languages like Java or Python implicitly
handle the bookkeeping of allocating and freeing blocks of dynamic memory, allowing
the developer to focus on other tasks. While this automatic memory management is
convenient, it comes at a cost. Computing what objects can be safely freed during
execution adds overhead at runtime. Furthermore, the user’s code is periodically and
unpredictably interrupted by a thread that performs ”garbage collection” - that is,
freeing objects that are out of scope to the programmer.

C takes a different approach to handling dynamic memory. Programmers are re-
sponsible for allocating and freeing the memory that their program consumes. This
model requires all decisions about when to free memory to be made at compiletime
rather than runtime, and so eliminates the overhead of maintaining reference counts
for objects. Additionally, programmers are given complete control over when their
memory gets freed during execution, without being interrupted by a garbage col-
lection thread. If the programmer manages memory correctly, the resultant code is
necessarily more efficient than if the management was performed implicitly by the
programming environment.

However, as the adage goes, with great power comes great responsibility. While
C programmers have complete control over how their memory space is arranged and
maintained, they must also watch out for memory bugs that cannot occur in man-
aged languages. Should a C programmer mistakenly free an object twice or not at
all, corruption of the memory space or heap exhaustion could occur. There is no
mechanism in the language to inform the programmer that such a bug has occurred
- consequently, these bugs are both common and notoriously difficult to debug.

This is especially true in computer science education. Novice programmers new
to the concepts of pointers and dynamic memory frequently have great difficulty
tracking down memory bugs in their own code. It is not uncommon for a student
in Princeton’s COS 217 to spend hours debugging a single memory leak. Moreover,
students needing help often bring buggy code to course staff and teaching assistants,
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reducing the amount of time they might spend helping with other, easier-to-diagnose
bugs. Ideally, we would have software to automate the task of diagnosing these bugs,
making life as easy as possible for students and faculty alike.

To address this problem, I have created Dynamaid, a tool that detects common
memory bugs and reports on them in a useful way. In particular, Dynamaid is capable
of detecting memory leaks, double frees, dangling pointers, and memory overflow. In
all cases, Dynamaid knows the names of the variables involved in each bug, and
is frequently able to report the exact line number where the bug occurred allowing
students to immediately fix their code.



Related Work

”You can get help from teachers, but you are
going to have to learn a lot by yourself, sitting
alone in a room”

— Dr. Seuss

Given how common memory bugs are in C code, a number of tools have been
created to aid in their diagnosis.
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Functionality

”He made an instrument to know
If the moon shine at full or no.”

— Samuel Butler

The Dynamaid tool aims to help correct four different classes of dynamic memory
management errors. In this section we will describe and provide examples of the
types of bugs we wish to detect, as well as providing sample executions of the tool
and interpretations of its output.

Memory Leaks

Memory leaks occur when the last reference to an object is lost before that object
is freed. Once this happens, the programmer has no means to deallocate the ob-
ject, which will continue to consume heap space for the remainder of the program
execution. Should a long-running process continually neglect to free memory, it will
eventually face heap exhaustion - future calls to malloc() may fail simply because
there is not enough free heap space to meet the request. Programs that uninten-
tionally use too much heap space may also cause the operating system to perform
paging operations more often, adversely affecting performance. Concretely, consider
the following program that contains a memory leak:

#include <stdlib.h>

int main(void)

{

char *string;

string = (char *) malloc(10);

...

return 0;

}

In this simple program, a ten byte block of memory is allocated and referred to only
by the pointer ”string.” Upon returning from main, this reference to the allocated
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block is lost without a corresponding call to free() having been issued - this is a
memory leak, and it is reported by Dynamaid.

Double Frees

A double free occurs when free() is called on a block of memory more than once. This
bug corrupts the program’s memory management data structures, either causing a
crash or causing malloc() to return the same memory address twice at subsequent
points during execution, causing some memory to be doubly allocated.

A simple example of a double free would be as follows:

#include <stdlib.h>

int main(void)

{

char *string;

string = (char *) malloc(10);

free(string);

...

free(string);

...

return 0;

}

As before, a ten byte block of memory is allocated, but is subsequently freed twice
leading to unpredictable behavior after the second free. Dynamaid reports an error
at runtime when the second call to free occurs.

Dangling Pointers

Once a block of memory has been freed, a programmer may no longer assume it
contains any usable data because the heap memory may have been repurposed since
the block was freed. Pointers to freed memory are called dangling pointers and
dereferencing one results in undefined behavior. An example of a dereference of a
dangling pointer would be as follows:
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#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(void)

{

char *src = "Hello, World!";

char *dest = (char *) malloc(strlen(src) + 1);

strcpy(dest, src);

...

free(dest);

...

printf(dest);

...

return 0;

}

After dest is freed, the call to printf produces undefined behavior. The program may
print the correct string, it may print garbage output, or it may cause a segmentation
fault. Dynamaid modifies all pointers to the object after it has been freed such that
they point to kernel space on a Linux system, guaranteeing a segmentation fault.
This helps users track down these bugs by guaranteeing that they produce a runtime
error.

Overflow and Underflow

Once a user has received a block of memory from a call to malloc(), he or she may only
use as many bytes as were requested. If a user writes before or after the boundary
of the block, we report memory underflow or overflow respectively. Writing past
the bounds of a block can corrupt any data that follows on the heap, leading to
unpredictable behavior.
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The following is a common example of memory overflow:

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(void)

{

char *src = "Hello, World!";

char *dest = (char *) malloc(strlen(src));

strcpy(dest, src);

printf(dest);

free(dest);

return 0;

}

This program forgets to allocate enough memory for the trailing null byte copied by
strcpy. Consequently, the copy operation overwrites the byte immediately following
the allocated block, possibly corrupting the heap and causing unpredictable bugs later
in execution. Dynamaid checks for overflow and underflow when the block is freed,
and reports it to the user.

Usage

Dynamaid is invoked by the user at compiletime to produce an instrumented binary
file that performs error checking for the above bugs. Like the MemInfo tool currently
in use in COS 217, Dynamaid is invoked similarly to the gcc compiler. In nearly all
cases, a student can replace ”gcc217” with ”gcc217dm” in their commands to get their
instrumented binary file. For example, if a user would normally invoke the command

gcc217 mycode.c -o mybinary

to compile their code, with Dynamaid they need only invoke the command

gcc217dm mycode.c -o mybinary

to get their instrumented code. The one difference is that Dynamaid accepts an extra
flag that gcc217 does not: a user may pass the ”-kill” flag to instruct Dynamaid to
terminate a program as soon as the first memory management bug is found. This
allows a user to avoid being overwhelmed by error messages in a program that has
many bugs. In this case, the user would invoke

gcc217dm -kill mycode.c -o mybinary
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Though Dynamaid is invoked at compiletime, error detection happens at run-
time. Consequently, if a program’s execution does not follow the logical path where
a memory bug exists, then that bug will not be reported (since, from Dynamaid’s
perspective, it never happened!) Therefore, Dynamaid is a supplement to, and not a
replacement for, thorough testing.

Error Messages

Dynamaid provides users with a great deal of information when a bug has been
found. The messages are terse, in the interest of not cluttering their terminal output
unnecessarily. A full description of all possible error messages and fields follows.

• Error Description

– ”Memory leak detected during free”
When an object is freed, any pointers it contained are lost, decreasing the
reference counts of all objects referenced by those pointers. If a free causes
a reference count to become zero for an object that has not been freed,
this is the message displayed.

– ”Memory leak detected within object during assignment”
When the last reference to an object is lost via an assignment, any pointers
that object contained are lost, decreasing the reference counts of all objects
referenced by those pointers. If an assignment causes a reference count to
become zero for an object that has not been freed, this is the message
displayed.

– ”Memory leak detected within object leaving scope”
When the last reference to an object is lost by leaving scope, any pointers
that object contained are lost, decreasing the reference counts of all objects
referenced by those pointers. If leaving scope causes a reference count to
become zero for an object that has not been freed, this is the message
displayed.

– ”Memory leak detected during assignment.”
During an assignment, one reference to the left hand side of the expression
is lost. If an assignment causes are reference count to be zero for an object
that has not been freed, this is the message displayed.

– ”Memory leak detected: last reference out of scope.”
When a local variable pointing to an allocated object exits block scope,
one reference to that object is lost. If the end of scope causes a reference
count to become zero for an object that has not been freed, this is the
message displayed.

– ”Free called on memory that was never malloc’d.”
If an object was not created via a call to malloc(), calloc(), or realloc(), it
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is the equivalent of a double free that corrupts the heap data structures.
Should user code attempt to free a pointer that was not returned by one of
those three functions (except for a call of free(NULL)), this is the message
displayed.

– ”Memory underflow detected.”/”Memory overflow detected.”
If user code modifies the bytes immediately before or after an allocated
block, it is evidence of memory overflow or underflow respectively. When
a block is freed, if these bytes have been modified, this is the message
displayed.

– ”Double Free detected.” If user code attempts to free the same block of
memory twice, we have detected a double free. If that occurs, this is the
message displayed.

• Assignment Information
If any of the above situations arise as the result of an assignment operation,
Dynamaid informs a user that a bug occurred while assigning from ”RHS” to
”LHS”, where RHS and LHS are the right-hand side and left-hand side of the
assignment expression, respectively.

• Filename
The file in which one of the above memory bugs was detected. Note that this
does not necessarily mean that this is where the bug occurred - in the case of
memory overflow, for instance, this would report the filename where the free()
that triggers detection occurred.

• Line Number
The line number at which one of the above memory bugs was detected. Note
that this does not necessarily mean that this is where the bug occurred - in the
case of memory overflow, for instance, this would report the line number where
the free() that triggers detection occurred.

• Variable Name
The variable name involved in the operation that triggered the detection of the
leak.

• Depth
If a free, assignment, or leaving scope causes a leak by destroying pointers in
the object being lost, that leak exists somewhere in the object graph created by
the user. Depth is how many pointer traversals Dynamaid had to make from
the original object loss to detect the leak.

• Size
The size in bytes of the relevant object in the error message.
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• Previous names
The set of all variables that have pointed to this object at any point during
execution.





Design

”It is a mistake to think you can solve any
major problems just with potatoes.”

— Douglas Adams

This senior thesis is the continuation of a junior independent work project from
Spring 2013. In this sense it is the product of three semesters of work. However, the
final product bears little resemblance to the previous independent work submission.
In this section we first discuss the evolution of the tool at a high level, and then
describe the exact algorithms used for bug detection.

Evolution

In Spring 2013, the Dynamaid tool was only intended to detect memory leaks and
double frees, with dangling pointer handling as a stretch goal. The main difficulty
involved in memory leak detection is instrumenting arbitrary C code with function
calls to maintain reference count information at runtime. A tool that was sensitive to
all of the rules of C would be required to handle truly arbitrary code. However, such
a project is well beyond the scope of a one-semester project. To ease this burden,
Dynamaid users would have been required to include annotations in their code and
refrain from using certain (otherwise valid) C coding conventions.

This approach worked reasonably well considering the timeframe allowed to im-
plement it. However, if the user’s annotations were incorrect or outdated, Dynamaid
would not work - ironically, these ”pseudobugs” were more difficult to identify than
the memory leaks themselves. Naturally, any solution acceptable for use in COS 217
would need to be significantly more robust and require little or no user intervention.

To truly achieve the goal of working on arbitrary C code, we needed a full-blown
C parser capable of understanding and manipulating any valid C syntax. With two
semesters available to complete this senior thesis, we decided a difficult but attain-
able goal would be to construct such a parser. With this goal in mind, I spent the
first month of the fall semester learning to use the Flex and Bison UNIX utilities.
Flex and Bison are designed to generate parsers from user-input grammar files. Be-
cause they are so powerful, they are used in a variety of compilers. However, this
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should give some sense of the difficulty of the project we were about to undertake - if
successful, we would have implemented roughly half of a C compiler. Because of the
project’s difficulty, my adviser suggested that I might talk to Professor David Walker,
a member of Princeton’s COS faculty with an expertise in programming languages,
before beginning to write actual Flex and Bison code. After considering our project,
Professor Walker suggested that we look into the open-source CETUS project from
the University of Purdue.

CETUS is a C source-to-source conversion tool originally designed to safely paral-
lelize sequentially-written C code. The main page for the tool explains that ”CETUS”
is not an acronym - rather, it says, ”The constellation Cetus is a sea monster. A C
monster.” Written in Java, CETUS’ underlying code provides an object model for the
C programming language with objects that represent assignment expressions, func-
tion calls, and other C constructs. CETUS represents a C program as a tree of these
objects - building on CETUS involves traversing and modifying this tree. This process
is significantly more robust and maintainable than modifying C grammar files.

Of course, CETUS has limitations. One issue is that it supports only the C90
standard, so input files that mix declarations and code cause the tool to crash. This
is not an issue in the context of COS 217, which requires student code not only
to adhere to the C90 standard but also to compile without even the most pedantic
warnings from the compiler. The expectation, in other words, is that student code
will be relatively simple and clean. Another issue from a maintenance perspective
is that the tool’s documentation is generally poor, with a limited tutorial and a
sparsely-commented Javadoc. As a result, most of my understanding of this tool
comes from actual visual inspection of the source code and experimentation with
simple input programs. Nevertheless, once understood, CETUS performs reliably
and so has become the backbone of this thesis project.

By using this tool, we are able to instrument student code to maintain the reference
count information and perform bug checks at runtime. The following section describes
in detail how the Dynamaid code accomplishes this.

Implementation

The Dynamaid tool is comprised of three main parts:

1. C data structures and functions that perform runtime checks and report bugs.

2. Java code that instruments student C code to use these structures and functions.

3. A Python script that performs preprocessing, calls our Java code, and invokes
the gcc compiler to produce the executable binary.
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Preprocessing

One of the most inconvenient parts of using CETUS for this project was that line
number information is stripped away when the program tree is created. Because
we want to be able to report line numbers for each bug we encounter, we need a
mechanism to force CETUS to include line number information in the program tree,
without changing anything about how the program itself executes.

The natural solution to this problem is to use pragmas. Dynamaid first runs a
pass over all student code and removes the comments while preserving line numbers.
It then generates a new file where after every line from the original student code
comes a line of the form

#pragma MemMgr:LINENUM:

where LINENUM is the line number in the original code of the line that follows.
A CETUS pass will retain this pragma information, so line number information is
available (albeit in a roundabout way) to our instrumentation code.

Instrumentation

Once we have embedded line number information in the student source code, we
are ready to begin instrumentation. Once CETUS has been invoked, we receive
the program tree, which contains all files that the student gave at the command
line. Any code outside of function calls is handled at compiletime, as per the C90
standard. Therefore, since all of our instrumentation involves operations that happen
at runtime, we only focus on code that resides within functions. Global variables may
be safely ignored, except as they appear within functions.

For every function in the student submission, the first step is to generate enter-
Scope() and leaveScope() calls for each formal parameter at the beginning and the
end of the function. This allows us to keep track of references that are created as
the result of a function call - if the pointers correspond to an object that has been
allocated, it is important that we be able to increment its reference count. An en-
terScope() call is generated for all formal parameters, even if they are not pointer
variables - our C backend must therefore be smart enough to ignore spurious calls
to this function. We briefly considered an approach that would only generate enter-
Scope() calls for pointer types, but this complicated handling of typedef’d pointer
types unnecessarily.

As an implementation wrinkle, not all types of parameters can be passed to en-
terScope(), which takes a void* as argument. Some object types cannot be cast to
void* - in particular, we do not generate function calls for variables of enumerable
type. This is perfectly fine, since an enum will not ever reasonably be a pointer in
the context of COS 217.

In order to handle variables leaving scope within a function, we then walk the body
of the function and collect information on each compound statement. A mapping is
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created between compound statements and the variables declared within them. This
mapping allows us to place leaveScope() calls at the end of the correct compound
statement, effectively figuring out scope information for the object (which CETUS
does not provide for us out of the box.) Additionally, we can use this information to
tell which variables are in scope at any point in the code. This is vital when it comes
to handling return statements, which force all local variables out of scope. To handle
return statements we simply walk the tree looking for returns, identify all variables
in scope at that point, and add leaveScope() calls right before the return statement.

All that remains is to instrument assignments with function calls. Again, like with
enterScope() calls, assign() calls cannot be generated for variables that cannot be cast
to type void*. We therefore ignore assignments involving variables of enumerable
type, again since they will never reasonably be pointers. We again walk the tree
finding assignment expressions. CETUS gives us both sides of the expression for free,
making it a simple matter to construct the call to assign. For a standard assignment
operation of the form

ptr1 = ptr2;

we generate a call to the assign function that looks like:

assign(&ptr1,ptr2,sizeof(ptr2),"ptr1","ptr2","filename.c",linenum);

The first argument is a pointer to a pointer, since the assign() function must change
the contents of ptr1. We must also pass the size of the object because whatever is
being assigned is automatically promoted to a 4-byte void*, even if it was originally
only a 1-byte char. Without the sizeof() mechanism we would always copy 4 bytes to
the left-hand side of an assignment, resulting in (ironically enough) memory overflow.

Rather than handle each one of the C assignment operators with its own function
(e.g., having an assignSubtract() function corresponding to the ”-=” operator), we
simply modify the second argument of the assign function instead. For example, if
we encounter an assignment of the form

a -= b;

then we would make the second argument to the assign function

a - b

This pattern continues for all ten of C’s assignment operators.
To find the filename for any tree element, we need to walk up the tree to the root.

The children of the root node in the program tree are of type TranslationUnit, and
directly correspond to the files CETUS was invoked with. Every other element in the
tree has a TranslationUnit as an ancestor - finding this ancestor allows us to get the
filename that it contains.
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To find the line number corresponding to an object, as we traverse the tree we
keep track of the last pragma that we found. After the preprocessing step, we can
be sure that there is a pragma for every line in the code - the most recent one found
during our instrumentation pass corresponds to the line number of the current tree
element.

The last step is to override the standard library dynamic memory management
functions. We walk the tree one last time looking for function calls to malloc(),
calloc(), realloc(), or free(), and replace them with calls to C functions that we
wrote named MemMgr malloc(), MemMgr calloc(), MemMgr realloc(), and Mem-
Mgr free(). Usefully, CETUS allows us to do this in a much more robust way than
the MemInfo tool does. MemInfo overrides the library functions with a set of fragile
preprocessor directives - CETUS allows us to not only make direct, reliable changes
to the function name but also to its arguments. For instance, since many bugs can
be detected on a call to free(), we would like to include error location information in
the call. In our solution, calls like

free(pointer);

become

MemMgr_free(pointer, "pointer", linenum, "filename.c");

Making this change without access to a C parser would have required at the very
least a complicated regular expression, and would have been a debugging nightmare.

Runtime Error Detection

Once the instrumentation step is complete, we have successfully wired the student’s
code together with any C code we care to write. What remains is to use the infor-
mation we get from the instrumentation to report runtime issues.
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The most important runtime component of Dynamaid is the global symbol table
that holds on to all information about allocated objects. The symbol table maps
from pointer addresses to info t structs that contain important information about
the object. In particular, the info t struct looks like:

typedef struct {

size_t refCount;

int isAllocated;

size_t size;

name_t *name;

addr_t *addr;

char *freedFile;

char *freedName;

int freedLine;

} info_t;

• refCount
The number of references currently pointing to this object.

• isAllocated
False if the object has been freed, true otherwise.

• size
The size in bytes of the object.

• name
A linked list of all variable names that have pointed to this object.

• addr
A linked list of all pointer addresses that have pointed to this object.

• freedFile, freedName, freedLine
If the object has been freed, these are the filename, variable name, and line
number of the original call to free.

With this information, we are able to detect and report each of the four classic
memory bugs. The algorithms for each are detailed below.
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Memory Leaks The problem of detecting and reporting memory leaks is simply
described. If any operation would cause an allocated object’s reference count to reach
zero, then we have found a leak and should report that operation. This implies that
we must successfully perform two tasks:

1. Accurately maintain reference counts, and

2. Accurately predict how many references will be lost during an operation

The practical upshot of this is that we know immediately whether a leak has occurred
and can report the exact location of the error. In fact, this method would also allow
us to implement garbage collection - instead of reporting a leak, we would simply free
the object.

There are four main ways that reference counts can change. The first three are
simple and their effects trivial to predict.

1. A formal parameter is passed into a function.
If a pointer is passed into a function as a formal parameter, it becomes, for all
intents and purposes, a local variable to that function. If the pointer currently
points to an object, that object’s reference count is increased by one. This is
handled by calling enterScope() for all formal parameters.

2. A local variable leaves scope.
This can happen either when a variable reaches the end of its block scope, or
as the result of a return statement. Whenever a pointer to a valid object leaves
scope, that object’s reference count is decremented by one. If this operation
results in a reference count of zero for an allocated object, we report a leak.
This is handled by the leaveScope() function. There is one exception to the
above. If a reference is returned from a function, we do not report a leak for
that object even if there are temporarily no variables that point to an allocated
object. This is to prevent spurious warnings in function’s whose purpose it is to
allocate, initialize and return an object. These functions are common in COS
217. Consider the following function that creates a (useless) linked list:
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#include <stdlib.h>

struct node {

struct node *next;

};

static struct node *getList(){

struct node *first;

struct node *second;

struct node *third;

struct node *fourth;

first = (struct node *) malloc(sizeof(struct node));

second = (struct node *) malloc(sizeof(struct node));

third = (struct node *) malloc(sizeof(struct node));

fourth = (struct node *) malloc(sizeof(struct node));

first->next = second;

second->next = third;

third->next = fourth;

fourth->next = NULL;

return first;

}

When this function returns, there is temporarily no pointer to the first node in
the list - however, the list is not lost because a reference is returned to the caller.
Bugs where students forget to catch a returned object from a function are rare,
so we ignore this possibility in order to reduce spurious warning messages. Of
course, this means that if a student really does forget to catch an object being
returned from a function, Dynamaid will not report it.

3. An assignment is evaluated.
If there is an assignment of the form

ptr1 = ptr2;

then whatever ptr2 points to gains a reference, and whatever ptr1 was pointing
to loses a reference. In the case where ptr1 and ptr2 are the same, no reference
counts change. This is handled by logic in the assign() function.

However, the fourth way a reference count can change is significantly more com-
plicated. Suppose, as in our linked list example, that object A contains the last
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reference to object B. Further suppose that a user frees object A. Then object B has
been lost, and we have a memory leak. Therefore, when freeing an object we must
take into account the pointers it contains. To do this, when an object is freed or
leaked we walk over the memory it contains, looking at every four consecutive bytes
and checking if they (taken as a pointer) correspond to another object. If they do,
we decrement the reference count for that object. If that object is itself leaked as a
result of this changing reference count, we repeat this process recursively, walking the
user’s object graph via depth-first search until there are no more leaked objects.

Unfortunately, the problem is even more complicated. Consider a circular linked
list, as opposed to the NULL-terminated linked list in the last code example. A client
of this linked list would hold a single pointer to the first node. If this pointer were
ever lost, the entire list would be lost to the user - all four nodes would be lost at
once. However, the reference count for the first node would not be zero; after all, the
fourth node in the list still contains a reference to the first one! In other words, the
client’s loss of their reference to the first node counts double. Not only is the first
reference lost, but also any reference to the first node from later in the list is too.
This problem generalizes to any user object graph that contains a cycle.

Early versions of the Dynamaid tool did not handle cycles in the object graph.
The solution was to handle the loss of any reference in two passes. The first pass was a
prediction step. This would run depth-first-search on the user’s object graph starting
at the object that was losing a reference. At each node, the number of references to
the original object would be counted. The total number of references to the original
object after all nodes had been visited is the number of references to the original
object that will be lost. If this number (plus one for the original reference loss that
caused us to look at the object in the first place - e.g. the user losing their handle
to the first node in the list) is equal to the current reference count, we conclude that
the first object has indeed leaked. If it has been leaked, a second round of depth-
first-search begins from the root node exactly as described above. This solution
is implemented in the predictRefsLost() function and the recursive countRefsLost()
function in memmanager.c.

Dangling Pointers Dangling pointers were originally a stretch goal for this thesis,
and for good reason: it is difficult to come up with a good way to handle them.
Simply having a dangling pointer in your code is not a bug. These are only bugs if
they are dereferenced. Even with CETUS, instrumenting every single memory access
in user code (which is the only way to truly detect the bug immediately) was too
difficult and unreliable to implement.

One of the reasons that dangling pointers are so difficult to detect is that they
produce unpredictable behavior. Frequently, even after an object is freed, its contents
remain in the same place on the heap. Therefore, subsequent memory accesses could
return the correct bytes, and the program would continue unscathed. Our strat-
egy, therefore, was to force programs that dereferenced dangling pointers to cause a
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segmentation fault and crash the program.
The first step to achieving this was maintaining a list of pointer variables that

pointed to each allocated object. The addr linked list in the info t struct for an
object contains the addresses of each pointer that had ever pointed to this object -
this list was updated every time the assign() function was called. Then, when an
object was freed, Dynamaid would set all of these pointers to a strategic value that
pointed to kernel-space on the nobel cluster, guaranteeing a segmentation fault on a
subsequent dereference.

There were a few difficulties implementing this approach. The first was that it was
difficult to know when to remove a pointer from the list of addresses. Suppose one
of the pointers was a local variable to a function that had just returned. When the
function returns, the stack shrinks and that pointer address is no longer in writable
memory. In a sense, we had our own (intentional) dangling pointers to addresses on
the stack! Removing these pointer addresses required knowing what the active stack
frame was before and after a function returned - practically an impossible task from
Dynamaid’s point of view. Instead, we simply never remove an address from the list.
To prevent Dynamaid from crashing when accessing an out-of-bounds address, we
needed some way to predict whether a memory access would cause a segmentation
fault.

Remarkably, this can be checked easily with the following code that appears in
memmanager.c:

int fd[2];

if (currAddr->oldaddr == NULL) continue;

if (pipe(fd) >= 0) {

if (write(fd[1], currAddr->oldaddr, 128) > 0)

if (*(currAddr->oldaddr) == ptr)

*(currAddr->oldaddr) = modPtr(ptr);

close(fd[0]);

close(fd[1]);

}

Here, we effectively use the write() system call to ask the operating system whether
the address at oldaddr is in bounds. If it is, then we set the pointer to our strategic
value.

Originally, Dynamaid reasonably set these pointers to NULL after a free. Unfortu-
nately, this proved too destructive. In particular, it completely prevented Dynamaid
from detecting double frees. After the first free() completed, all references to the
object became NULL, including any references that were subsequently freed.

In order to handle double frees and dangling pointers simultaneously, a more
clever solution was required. We needed a transformation to dangling pointers that
guaranteed a segmentation fault, but was also reversible so that MemMgr free() could
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still determine whether the pointer corresponded to something that had been freed
before.

The solution relies on the fact that on nobel, malloc() always returns a memory
address that is a multiple of four. Consequently, the low-order two bits are always
zero - these are free bits that we can use in our transformation. Additionally, any
pointer whose high-order two bits are ones is a guaranteed segmentation fault on the
nobel cluster. The transformation we apply therefore takes the highest order two bits
and stores them in the two free bits at the end of the pointer. The high two bits
are set to ones. This is a pointer that guarantees a segmentation fault, but where
the original pointer is recoverable - simply replace the high two bits with the original
bits, and set the low two bits to zeros. This is implemented in the modPtr() function
in memmanager.c.

This was successful in forcing segmentation faults for dangling pointer dereferences
- unfortunately, it was not particularly useful in describing where the bad dereference
occurred. To offer some debugging help in this situation, Dynamaid remembers the
information of the last operation it performed. A handler was installed to catch the
SIGSEGV signal. This handler outputs the information about the last operation,
along with information about the object responsible for the fault. This is determined
by looking up the faulting address in the symbol table. This information is surpris-
ingly useful in debugging dangling pointers, and is enough to point students to the
area where the fault occurred.

Double Frees Double frees are significantly easier to detect than the above is-
sues. After reversing the transformation applied to detect dangling pointers, a simple
lookup in the global symbol table suffices to see if the object has been freed before. If
it has, report a double free along with information about where the first free occurred.

Memory Overflow As was the case with dangling pointers, memory overflow is
difficult to detect immediately after it occurs. Once again, this is because in order to
detect overflow we would have to intercept every memory access and check whether
the user is writing to a part of the heap that it owns. This is too much for Dynamaid
to handle.

However, we can easily detect overflow and underflow after the fact. When a
user requests memory via a call to malloc() or calloc(), an additional eight bytes are
allocated in addition to the amount the user actually asked for. This allows for two
four-byte sentinels, one before and one after the block of memory being returned to
the user. The reason for using four-byte sentinels instead of one-byte sentinels is to
ensure that the address returned to the client is still a multiple of four so that dangling
pointer detection and double free detection still works. When a user frees an object,
Dynamaid checks to ensure these sentinels are intact. If they are not, then overflow
or underflow has been detected, and we report this along with the corresponding call
to free, variable name, and object information.





Testing Methodology

”We have to continually be jumping off cliffs
and developing our wings on the way down.”

— Kurt Vonnegut

When students in COS 217 submit their assignments, they are generally told that
their work will be graded ”...on quality from the user’s and programmer’s points of
view.” In particular, ”From the user’s point of view, [a] program has quality if it
behaves as it should.” In this section, we discuss the testing process to determine
whether Dynamaid indeed behaves as a user would expect.

Of course, Dynamaid is not a COS 217 assignment. There is no reference solution
to match, nor is there any test suite provided to be reasonably sure the code is
correct. Instead, testing was done on a more ad-hoc basis. As development continued
and new features were added to the tool, the tests we put it through became more
sophisticated. Because Dynamaid aims to accept arbitrary C code as input, a three-
tiered testing approach suggested itself, with each tier comprising more difficult tasks
than the one before it. The three tiers were as follows.

• Tier 1: Unit Testing
The tests in this tier were short, often nonsensical programs that usually con-
tained no more than one or two functions. Most of the time, these were com-
posed to test a single feature in the context of a certain data structure or code
layout.

As an example of a unit test, consider the following code designed to test mem-
ory overflow detection.
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#include <stdlib.h>

#include <string.h>

#include <stdio.h>

int main(void)

{

char *to_copy = "Hello, World!\n";

char *not_enough;

/* Forgotten about null byte */

not_enough = (char *) malloc(strlen(to_copy));

strcpy(not_enough, to_copy);

printf(not_enough);

/* Should report overflow */

free(not_enough);

return 0;

}

This test is sufficient to determine whether, in the most basic of circumstances,
Dynamaid can detect memory overflow.

This type of testing has two important advantages. First, tests like the above
can be composed very quickly and executed very cheaply. This lends itself
nicely to regression testing. After any significant change to the codebase, these
small tests can be run to provide a sanity check that previous functionality was
not negatively impacted. Second, if these tests fail, then they are generally the
simplest programs that cause the incorrect output - this is very valuable when
debugging, since there are relatively few parts of the input that could have
caused the error. In fact, a number of these test cases were composed once bugs
were found in higher tiers. Constructing the minimal example that causes the
error was my first step when bugs were found on more complicated inputs.

• Tier 2: Fault Injection
Unit tests by themselves are unlikely to expose any but the most superficial bugs
in Dynamaid. To increase confidence that the tool was behaving as it should,
more complicated test cases were required. Ideally, whatever tests we created
would be similar to COS 217 assignments that Dynamaid would eventually be
exposed to. At this stage, in order to decrease the number of coding problems
that could reasonably affect Dynamaid, faults were only injected into COS 217
assignments that were known to be bug-free. In particular, simple faults were
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injected into the reference solutions to the courses Symbol Table and Shell
assignments. The code for these tests cannot be included in this document in
order to preserve the integrity of the assignments for future classes, but they
generally represented the most common instances of each of the four memory
bugs that we detect.

These tests were considerably more stressful on Dynamaid. The input files
were larger, and there were many more dynamic memory operations than in
the tier-1 tests. The advantage to this type of testing is that it is far more likely
to expose errors in Dynamaid - the disadvantage is that their cause would be
much more difficult to track down. Consequently, whenever this fault injection
testing caused Dynamaid problems, a simple test case was added to the first
tier to handle it.

• Tier 3: Real Student Submissions
This is by far the most stressful type of test for Dynamaid. Low-scoring sub-
missions from the Fall 2013 semester of COS 217 were selected and run through
Dynamaid. Usually, these did not reveal bugs in error detection. When Dyna-
maid failed on these files it was usually the result of a crash during the instru-
mentation step. Students frequently use strange coding constructs that violated
assumptions Dynamaid made about coding style. Most of the time when these
were found, the strange coding practices were accommodated - those that were
not are listed in the known limitations section below.

Known Limitations

• Combined declaration statements and initializations are not supported.
This is a bug in Dynamaid, but not a terribly intrusive one. In particular,
statements like

char *string = NULL;

cause the tool to fail if ”string” will ever point to memory that will be managed
dynamically. Instead, users should write

char *string;

string = NULL;

to accomplish the same task.

• Only one assignment operator may be used per statement.
In particular, statements of the form

a = b = c;
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cause Dynamaid to crash during the instrumentation phase. Instead, users
should write

b = c;

a = b;

This is also a more explicit style that may help students track down other bugs
in their code, anyway.



Evaluation

”Three things are to be looked to in a building:
that it stand on the right spot; that it be
securely founded; that it be successfully
executed.”

— Johann Wolfgang von Goethe

It is one thing to know whether the Dynamaid tool works as specified. The
testing methodology from the previous section convinces us, to the extent possible,
that Dynamaid functions correctly. It reports each of the four main bugs reliably in
all test cases - in this sense, the tool was ”successfully executed.”

It is another thing altogether to know whether it ”stands on the right spot” -
that is, whether the tool is indeed useful when it comes to debugging code. This is
more difficult to assess. Simply asking students whether they used the tool and found
it helpful is unlikely to produce reliable results; most students have little experience
with code that requires explicit memory management, and so have nothing to compare
Dynamaid to. Without context, student feedback would not be objectively helpful.

Originally, the plan to objectively evaluate Dynamaid had been to run experiments
on the grading process of the shell assignment for the Spring 2014 semester. Each
grader could have been assigned to a group that used Dynamaid to track down bugs
in student submissions, or to a control group that could only use the current course
tools. Any time difference between the two groups could be attributed to the use
of the tool. This assumes only that on average, the graders in each group would
be equally skilled, and that student submissions by precept are likely to be equally
buggy. Unfortunately, this report was due to be completed before the assignment’s
due date.

Consequently, we contented ourselves with a much simpler process. At its core,
our evaluation was still a time-trial. My version of the shell assignment from the Fall
2011 semester was injected with a number of dynamic memory management bugs.
This version was given to my adviser, who was instructed to time how long it took him
to debug the program. Of course, Dynamaid detected all of the bugs immediately,
making fixing them relatively easy.

The code for the assignment was relatively clean. It passed all style checks
from splint and Dynamaid’s cousin, critTer, and received a nearly perfect score at
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submission-time in the Fall 2011 semester. Additionally, most of the five inserted
bugs were inspired by common mistakes students often make in their assignments -
bugs which my adviser was very familiar with. Nevertheless, from start to finish the
debugging process took him 27 minutes. If one of the most experienced debuggers
in the COS 217 course took that long to discover all the bugs in a relatively clean
version of the shell assignment, it is a safe bet that it would take students significantly
longer.

In reality, of course, most students likely would not solve all the bugs at all,
instead bringing their code to their preceptor or course lab TAs looking for help.
According to the Princeton registrar, 176 students were enrolled in COS 217 in the
Fall 2013 semester. If even a small subset of these students saved more than 20
minutes of debugging (likely much, much more), this would considerably ease the
strain on course staff at busy times of year.

Out of sheer curiosity, after the debugging trial ended my adviser compiled his
fixed version of the shell assignment with Dynamaid and ran it to see if any additional
bugs remained. This was unlikely - after all, the code had just been subjected to a
battery of official grading scripts and been reported clean. Remarkably Dynamaid
correctly reported a dangling pointer in the code! This was not a fault injection -
it was a bona fide bug that had been in my original submission when I had taken
the course. Effectively, this bug had eluded me, my original grader, and my thesis
advisor, surviving two full grading sessions. Dynamaid detected it immediately, and
provided enough information to quickly correct the issue. We conclude that Dynamaid
is indeed useful to the COS 217 class.



Future Work

”I am tomorrow, or some future day, what I
establish today. I am today what I established
yesterday or some previous day.”

— James Joyce
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