Adaptive Encoding of Zoomable Video Streams based on User Access Pattern

Ngo Quang Minh Khiem
Guntur Ravindra
Wei Tsang Ooi

National University of Singapore
Zoomable Video

Lecture

[Video player interface]

0:00 16:20

[Zoom control buttons]
Zoomable Video with Bitstream Switching
GOAL: Minimize bandwidth to transmit RoIs
Dynamic Cropping of ROI

Encode video once
Support any RoI cropping

- Tiled Streaming (TS)
- Monolithic Streaming (MS)
Tiled Streaming

One tile = $k \times k$ macroblocks

Encode each tile as independently decodable video streams

Tiles overlapping with the RoI are transmitted
Monolithic Streaming

Data outside RoI
need for decoding RoI

Single monolithic video

Monolithic Streaming
Trade-offs with TS and MS

TS

Bigger tile \rightarrow More waste \rightarrow More bits

Smaller tile \rightarrow Less compression \rightarrow More bits
MS

- Longer MV \rightarrow More dependency \rightarrow More bits
- Shorter MV \rightarrow Less compression \rightarrow More bits
Reduce bandwidth further, given RoI access statistics?
Questions in this paper

• Tiled Streaming
 ▪ Different tile size in the same frame?

• Monolithic Streaming
 ▪ Different motion search range?

• How?
Adaptive Encoding

Given RoI access statistics, adapt the encoding parameters such that the expected bandwidth E needed to transmit a RoI is minimized

$$E = \sum_{r \in R} c(r) p(r)$$

$c(r)$: compressed size of RoI r
$p(r)$: access probability of RoI r
Log user selection of RoI

(Online)

Encoded Video

Replace

Adaptive Encoding & Re-encode video

(Offline)

Adaptive Encoded Video

RoI Access Pattern
Adaptive Encoding

- Adaptive Tiling (AT)
- Monolithic Streaming with RoI-aware Coding (MS-PB)
Adaptive Tiling

Given RoI access pattern, tile the video such that E is minimized

$$E = \sum_{t \in T} c(t) p(t)$$

$c(t)$: compressed size of tile t
$p(t)$: access probability of tile t
Intuition

Allowing tiles of different sizes can reduce bandwidth

Regular tiling with 2x2 tiles

Adaptive tiling

RoI accessed by most users
Merge tiles 1, 2, 3 and 4
Greedy Heuristic Tiling

• Start with regular 1x1 tiles
• Merge a tile with its neighbors if expected bandwidth is reduced
• Merge newly-formed tile with its neighbors bandwidth is reduced
\[p(t_1)c(t_1) + p(t_2)c(t_2) \geq p(t_{12})c(t_{12}) \]
Resulting tile map

RoI Access Pattern
Monolithic Streaming with RoI-aware Coding

- Referenced MBs form large region outside RoI
- Short motion vector: less bandwidth efficient
- Probabilistic boxing motion vector (MS-PB)
Intuition

- $P(A) - P(AB) > P(B)$
 - Increase in size of A when sending $R2$ is marginal
- $P(A) - P(AB) < P(B)$
 - Increase in size of A when sending $R2$ is higher
- $[P(A) - P(AB)] S(A) > P(B) S(B)$

$P(A), P(B)$: sending A, B
$P(AB)$: A and B in same RoI
$P(A) - P(AB)$: sending A independent of B
Motion Vector Spread after MS-PB
Evaluation

• Evaluate AT and MS-PB in terms of
 ▪ Bandwidth efficiency
 ▪ Compression efficiency

• Benchmark methods
 ▪ Per-RoI
 ▪ Tiled Streaming
 ▪ Monolithic Streaming
Video Sequences

Rush-Hour (500 frames)

Tractor (688 frames)

Bball (200 frames)

Rainbow (350 frames)
Experiment Setup

• RoI size: 320x192 pel
• Video resolution 1920x1080 pel
• Evaluation is conducted by a training-testing framework
 ▪ Training and test sets have the same distribution
• One training and test set for each GoP
Expected Data Rate for Different Videos without B-Frames

Test Video

Expected Data Rate (Mbps)
Expected Data Rate for Different Videos with 2 B-Frames

Test Video

Expected Data Rate (Mbps)

- Bball
- Rainbow

- PerRol
- MS-PB
- MS
- AT
- TS4x4
Presence of B-frame

Without B-frame
MS-PB < MS

With B-frame
MS-PB ≈ MS

Motion Vector Spread without B-frame

Motion Vector Spread with 2 B-frame
Conclusion & Future Work

• Propose an adaptive encoding approach based on user access patterns
• Reduce bandwidth by 21% (MS-PB) and 27% (AT)
• Limiting motion vector is beneficial to zoomable video with wide spread of dependency
• Future work:
 ▪ Computational complexity
 ▪ Diverse user interest of RoI
 ▪ Frequency of Adaptation
Thank you

• Questions?
• Feedback/Suggestion?