Towards Understanding User Tolerance to Network Latency in Zoomable Video Streaming

Ngo Quang Minh Khiem, Guntur Ravindra, and Wei Tsang Ooi
Department of Computer Science, National University of Singapore

Goal

We conducted a user study with 35 participants to understand:
- User tolerance to network latency when interacting with zoomable video streams
- How the choice of concealment schemes affects user tolerance to delay

Zoomable Video Streaming

Zoomable video allows users to zoom and pan around a video to watch a region-of-interest (RoI) at a higher resolution.

- View RoI at the display size, with higher resolution
- Send request for new RoI
- Delay due to network latency
- New RoI received
- New RoI to request

We are interested in supporting zooming and panning in the streaming context, where video sources are available at the server side.

Experiment Parameters

- Video Clips: 5 video clips captured by a HD camera
- Pilot Study: a pilot study with 8 users to find out the proper range of delay values
- Delay values (second): 1, 2, 3, 4, 5
- Five delay values were randomly assigned with different videos to form five configurations:
 - avoiding the same video content to be watched multiple times in a session
 - avoiding fixed coupling between a delay and a video
- Five configurations were tested in each concealment schemes. So, we had 10 test cases.

User Study

- 35 participants (22 male, 13 female) were in the experiment.
- A demo & practice session was provided. No network latency was introduced in this session.
- Participants were not told about the presence of delay and delay values.
- Test cases were presented in a random order to avoid:
 - preference to any delay value or concealment scheme
 - users’ adaptation to gradual change of delay (by not using method of limits)
- For each test case, a participant was asked to watch, interact (zoom/pan) with a video, and evaluate the responsiveness of zooming and panning.
 - Do you find the responsiveness when zooming and panning acceptable?

Results and Finding

We measure user acceptance, the percentage of participants who rated a delay value as acceptable.

![Graph showing user acceptance (%) vs delay (seconds)]

Finding

- More users were tolerant to delays in Low-Res scheme than Black scheme.
- Tolerable delay value in viewing zoomable video streams is higher than thresholds found in some high interactive multimedia applications.
- User tolerance starts degrading beyond 1 second: prefetching or caching is necessary.
- More time to request or forward data through multi-prefetching or caching is necessary.

Conclusions

Our user study presented findings on:
- how much network latency users can tolerate in interaction with zoomable videos
- how their tolerance degrades in the presence of network latency
- how the choice of concealment scheme helps improve delay tolerance levels of users

Our findings can be incorporated into designing a system for streaming of zoomable videos that provide both good Quality of Experience and Quality of Service.