
TransForm: Formally Specifying 
Transistency Models and 
Synthesizing Enhanced Litmus Tests
Naorin Hossain

Princeton University

FOCA 2020

October 30, 2020

Naorin Hossain, Caroline Trippel, Margaret Martonosi. "TransForm: Formally Specifying 
Transistency Models and Synthesizing Enhanced Litmus Tests", ISCA ’20.



*addr0 = new_value

*

*

*

data = *addr1

Page replacement needed when memory is 
full and data from disk is being accessed

2

*addr0 = new_value

*

*

*

data = *addr1

*requires dirty bit update*

Page Table

A D R W Physical page

addr0 0 0 1 1 pg0

addr1 0 0 1 0 disk

Page Table

A D R W Physical page

addr0 0 1 1 1 pg0

addr1 0 0 1 0 disk

pg0

old_valueaddr0

Main memory

Disk

Cache

new_valueaddr0



Page replacement needed when memory is 
full and data from disk is being accessed

3

*addr0 = new_value

*

*

*

data = *addr1

Page Table

A D R W Physical page

addr0 0 1 1 1 pg0

addr1 0 0 1 0 disk

pg0

old_valueaddr0

Main memory

Disk

Cache

new_valueaddr0

Page Table

A D R W Physical page

addr0 0 1 1 1 pg0

addr1 0 0 1 0 disk



Page replacement needed when memory is 
full and data from disk is being accessed

4

*addr0 = new_value

*

*

*

data = *addr1

Page Table

A D R W Physical page

addr0 0 0 1 1 pg0

addr1 0 0 1 0 disk

pg0

new_valueaddr0

Main memory

Disk

Cache

new_valueaddr0



Page replacement needed when memory is 
full and data from disk is being accessed

5

*addr0 = new_value

*

*

*

data = *addr1

Page Table

A D R W Physical page

addr0 0 0 1 1 disk

addr1 0 0 1 0 disk

pg0

new_valueaddr0

Main memory

Disk

Cache

new_valueaddr0

new_value



Page replacement needed when memory is 
full and data from disk is being accessed

6

*addr0 = new_value

*

*

*

data = *addr1

Page Table

A D R W Physical page

addr0 0 0 1 1 disk

addr1 0 0 1 0 pg0

pg0

data_valueaddr1

Main memory

Disk

Cache

new_valueaddr0

new_value

data_value

data_valueaddr1



What if dirty bit is not updated before page 
swapped to disk?

7

*addr0 = new_value

*

*

*

data = *addr1

*addr0 = new_value

*

*

*

data = *addr1

*requires dirty bit update*

Page Table

A D R W Physical page

addr0 0 0 1 1 pg0

addr1 0 0 1 0 disk

Page Table

A D R W Physical page

addr0 0 0 1 1 pg0

addr1 0 0 1 0 disk

pg0

old_valueaddr0

Main memory

Disk

Cache

new_valueaddr0



What if dirty bit is not updated before page 
swapped to disk?

8

*addr0 = new_value

*

*

*

data = *addr1

Page Table

A D R W Physical page

addr0 0 1 1 1 pg0

addr1 0 0 1 0 disk

pg0

old_valueaddr0

Main memory

Disk

Cache

new_valueaddr0

Page Table

A D R W Physical page

addr0 0 0 1 1 pg0

addr1 0 0 1 0 disk



What if dirty bit is not updated before page 
swapped to disk?

9

*addr0 = new_value

*

*

*

data = *addr1

Page Table

A D R W Physical page

addr0 0 0 1 1 disk

addr1 0 0 1 0 disk

pg0

old_valueaddr0

Main memory

Disk

Cache

new_valueaddr0

old_value



What if dirty bit is not updated before page 
swapped to disk?

10

*addr0 = new_value

*

*

*

data = *addr1

*

*

*

data2 = *addr0

Page Table

A D R W Physical page

addr0 0 0 1 1 disk

addr1 0 0 1 0 pg0

pg0

data_valueaddr1

Main memory

Disk

Cache

new_valueaddr0

old_value

data_value

data_valueaddr1



What if dirty bit is not updated before page 
swapped to disk?

11

*addr0 = new_value

*

*

*

data = *addr1

*

*

*

data2 = *addr0

Page Table

A D R W Physical page

addr0 0 0 1 1 pg1

addr1 0 0 1 0 pg0

pg0

data_valueaddr1

Main memory

Disk

Cache

old_valueaddr0

old_value

data_value

data_valueaddr1

*old_value is accessed*

pg1

old_valueaddr0

Like user-facing memory operations, the dirty 
bit updates are another memory reference
that requires correct ordering for correct 

program executions.



Litmus test: small diagnostic 
program for validating MCM 
behaviors

[Lamport 1979]

Can r2 hold the initial value 0 after 
any execution of the program?Initial: memory holds value 0

Memory Consistency Models (MCMs) specify 
correct event orderings for concurrent programs

• MCMs specify rules for legal values that can be returned when 
software loads from memory on a shared memory system

Core 0 Core 1

a. st data = 1;

b. st flag = 1;

c. ld r1 = flag;

if (r1 != 1) goto c;

d. ld r2 = data;

12

Core 0 Core 1

b. st flag = 1;

a. st data = 1;

c. ld r1 = flag;

d. ld r2 = data;

This work: Memory Transistency Models (MTMs) – the superset of 
MCMs that additionally capture VM-aware ordering specifications

t

i

m

e



TransForm introduces constructs for ISA-level 
MTM specification and ELT synthesis

• Formal MTM vocabulary captures system- and 
hardware-level VM events and interactions 
with user-facing program instructions

• Enables ISA-level MTM specification

• Enables automated enhanced litmus test (ELT)
synthesis

ELT

μarch model

COATCheck
Valid ELT 
outcome?

13

handwritten

Automated!

Allows for verification against formally specified MTM

synthesized



Outline

• Background on ISA-level MCM vocabulary

• Background on virtual memory systems

• Novel ISA-level MTM vocabulary

• Automating synthesis of ELTs

• Case Study: an estimated MTM for x86

• Conclusions

My
Work

Prior
Work



Approach to defining vocabulary for formally 
reasoning about MTMs
• MCMs can be defined axiomatically

• Axiomatic MCM specifications use sets of relations
that can describe user-facing program executions

• MCM relations describe user-facing event 
executions of programs with one-to-one V-to-P 
address mappings

• MTMs are superset of MCMs
• Axiomatic MTM specifications can use MCM 

relations but require additional relations to similarly 
describe transistency events and V-to-P address 
mappings that can have synonyms and be modified

15

MTM 
relations MCM 

relations

User-facing 
events

One-to-one
V-to-P addresses

System-level 
events

Hardware-level 
events

Modifiable
V-to-P addresses



ISA-level MCM relations can describe 
programs and their candidate executions

Program Instructions
Event = {W0, W1, R2, R3}
MemoryEvent = {W0, W1, R2, R3}
Location = {x, y}
address {W0→ x, W1→ y, R2→ y, R3→ x}
program order (po)
po = {W0→W1, R2→ R3}

Candidate execution Communication (com) relations
reads from (rf)
rf = {W1→ R2}
coherence order (co)
co = {}
from reads (fr)
fr = {R3→W0}

Graph

Accessed data (outcome) symbolically 
represented by com relations

16

Candidate executions – set of possible 
executions of a program and their outcomes

Core 0 Core 1

W0 x R2 y

W1 y R3 x

Core 0 Core 1

W0 x = 1 R2 y = 1

W1 y = 1 R3 x = 0

W0 x R2 y

R3 xW1 y

Core 0 Core 1

po pofr rf

[Shasha & Snir, 1988]
[Alglave et al., 2014]



ISA-level MCM relations can describe 
programs and their candidate executions

Program Instructions
Event = {W0, W1, R2, R3}
MemoryEvent = {W0, W1, R2, R3}
Location = {x, y}
address {W0→ x, W1→ y, R2→ y, R3→ x}
program order (po)
po = {W0→W1, R2→ R3}

Candidate execution Communication (com) relations
reads from (rf)
rf = {W1→ R2}
coherence order (co)
co = {}
from reads (fr)
fr = {R3→W0}

Graph

Accessed data (outcome) symbolically 
represented by com relations

17

Candidate executions – set of possible 
executions of a program and their outcomes

Core 0 Core 1

W0 x R2 y

W1 y R3 x

Core 0 Core 1

W0 x = 1 R2 y = 1

W1 y = 1 R3 x = 0

W0 x = 1 R2 y = 1

R3 x = 0W1 y = 1

Core 0 Core 1

po pofr rf

[Shasha & Snir, 1988]
[Alglave et al., 2014]



MCM specifications place constraints on 
permitted execution behaviors
Axiomatic MCM specifications use MCM relations to describe axioms that 
constrain candidate execution behaviors

Intel x86 processors use the total store order (TSO) memory model (x86-TSO) 
[Owens et al., 2009]: strict sequential memory access orderings but relaxed 
Store->Load orderings to allow for store buffering

Causality – axiom for x86-TSO:
acyclic(rfe + co + fr + ppo + fence) W0 x = 1 R2 y = 0

R3 x = 0W1 y = 1

Core 0 Core 1

po pofr fr

18

ppo ppo



MCM specifications place constraints on 
permitted execution behaviors
Axiomatic MCM specifications use MCM relations to describe axioms that constrain 
candidate execution behaviors

Sequential consistency (SC) [Lamport, 1979]: outcome must be representative of executing 
instructions in order

Intel x86 processors use the total store order (TSO) memory model (x86-TSO) [Owens et 
al., 2009]: like SC but relaxes Store->Load orderings to allow for store buffering

W0 x = 1 R2 y = 1

R3 x = 0W1 y = 1

Core 0 Core 1

fr

19

ppoppo rfe

Causality – axiom for x86-TSO:
acyclic(rfe + co + fr + ppo + fence)

mp (“message passing”) litmus test



Outline

• Background on virtual memory systems

My
Work

Prior
Work



V-to-P address mappings need to be stored and 
accessed during memory events

21
A. Bhattacharjee and D. Lustig, "Architectural and operating system support 
for virtual memory", Synthesis Lectures on Computer Architecture, 2017.

V-to-P address mappings 
are stored in page tables.

Page table entries (PTEs) hold 
address mapping and status bits 
(permissions, access, dirty).

Page tables are usually 
structured hierarchically.

When address translation is 
needed, a page table walk
traverses the page table levels to 
find the desired address mapping.



V-to-P address mappings are cached in the 
translation lookaside buffer (TLB)

22

Page mappings cached in TLB to 
reduce latency of memory accesses.

Hierarchical page tables require 
additional memory accesses 
during address translation – big 
performance hit.

TLBTLB TLB TLB
Core 3Core 0 Core 2Core 1



V-to-P address mappings can be changed by OS

23

Operating system (OS) may 
change address mappings in 
page tables.

TLB

Changed!

Invalidate!

Stale mapping

Corresponding TLB entries must 
be invalidated on each core to 
prevent stale mapping accesses.

TLB TLB TLB

Invalidate!

Core 3

Invalidate!Invalidate!

Core 0 Core 2Core 1



V-to-P address mappings can be changed by OS

24

Operating system (OS) may 
change address mappings in 
page tables.

New page table walk needed to 
load new mapping into TLB.

TLB

Changed!

0110100001101000001001001101

Corresponding TLB entries must 
be invalidated on each core to 
prevent stale mapping accesses.

New entry!

TLB TLB TLB
Core 3Core 0 Core 1 Core 2



Virtual memory events TransForm needs to 
support

25

Hardware-level events System-level events

Page table walk
Loads TLB entries on memory access

Address mapping changes
V-to-P address mapping must be 
modifiable like data

PTE status bit updates
TransForm supports dirty bit 
updates on memory stores

TLB entry invalidations
May be invoked on multiple cores 
by address mapping changes



Outline
• Novel ISA-level MTM vocabulary

My
Work

Prior
Work



MTM Vocabulary: Hardware-level events

TransForm supports page table walks (PTW) and dirty bit updates

PTW: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in PTE

27

Ghost instructions



MTM Vocabulary: Hardware-level events

TransForm supports page table walks (PTW) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)

28

PTW: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in PTE

Ghost instructions



MTM Vocabulary: Hardware-level events

TransForm supports page table walks (PTW) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)

rf_ptw – relates PTW to user-facing 
MemoryEvents that access loaded TLB entry

29

PTW: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in PTE

Ghost instructions



MTM Vocabulary: Hardware-level events

TransForm supports page table walks (PTW) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)

30

PTW: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in PTE

Ghost instructions

rf_ptw – relates PTW to user-facing 
MemoryEvents that access loaded TLB entry



MTM Vocabulary: Hardware-level events

TransForm supports page table walks (PTW) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)

31

PTW: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in PTE

Ghost instructions

rf_ptw – relates PTW to user-facing 
MemoryEvents that access loaded TLB entry



MTM Vocabulary: Hardware-level events

TransForm supports page table walks (PTW) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)

rf_ptw – relates PTW to user-facing 
MemoryEvents that access loaded TLB entry

32

PTW: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in PTE

Ghost instructions



MTM Vocabulary: System-level events

TransForm supports address remappings via PTE Writes and TLB entry invalidations

33

PTE Write: changes address mapping 
stored in a PTE for some VA v

Support instructions



MTM Vocabulary: System-level events

TransForm supports address remappings via PTE Writes and TLB entry invalidations

34

PTE Write: changes address mapping 
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

Support instructions



MTM Vocabulary: System-level events

TransForm supports address remappings via PTE Writes and TLB entry invalidations

35

PTE Write: changes address mapping 
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

Support instructions

remap – relates PTE Writes to invoked INVLPGs



MTM Vocabulary: System-level events

TransForm supports address remappings via PTE Writes and TLB entry invalidations

36

PTE Write: changes address mapping 
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

rf_pa – relates PTE Write for VA v → PA p to user-facing 
MemoryEvents accessing PA p via VA v
fr_pa – relates user-facing MemoryEvents accessing PA p 
via VA v to PTE Writes for VA v’ → PA p
co_pa and fr_va follow similarly

Support instructions



MTM Vocabulary: System-level events

TransForm supports address remappings via PTE Writes and TLB entry invalidations

37

PTE Write: changes address mapping 
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

Support instructions

rf_pa – relates PTE Write for VA v → PA p to user-facing 
MemoryEvents accessing PA p via VA v
fr_pa – relates user-facing MemoryEvents accessing PA p 
via VA v to PTE Writes for VA v’ → PA p
co_pa and fr_va follow similarly

(PA a)

(PA a)



MTM Vocabulary: System-level events

TransForm supports address remappings via PTE Writes and TLB entry invalidations

38

These new com relations can be 
used to derive same PA accesses.

Forbidden!

rf_pa – relates PTE Write for VA v → PA p to user-facing 
MemoryEvents accessing PA p via VA v
fr_pa – relates user-facing MemoryEvents accessing PA p 
via VA v to PTE Writes for VA v’ → PA p
co_pa and fr_va follow similarly



MTM Vocabulary: Putting it all together

Program executions with 
transistency events and relations can 
get quite complex but they allow us 
to capture these additional 
interactions that can occur and 
impact the program’s execution.

39



Outline
• Automating synthesis of ELTs My

Work

Prior
Work



MCMs can be verified with litmus tests.
MTMs can be verified with enhanced litmus tests.

• Litmus tests: small diagnostic 
programs for validating MCM 
behaviors
• Executions and their outcomes 

can be deemed permitted or 
forbidden by MCM specification

• Enhanced litmus tests (ELTs): 
litmus tests enhanced with 
system- and hardware-level 
events that facilitate address 
translation

41



From Specification to Test Synthesis

• ELTs can be described with MTM relations and support verification 
against an MTM spec
• Goals: 

• Automated

• Interesting and minimal (“Spanning set”)

• Deduplicated

• Comprehensive (to a bound)

Candidate 
Execution 
Synthesis 

Candidate 
Executions

(Alloy)

Interesting ELT criteria:
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion

Spanning Set Pruning

Unique 
ELT 

Pruning 

TransForm Synthesis Engine

Pruned
Candidate 
Executions

(XML)

Unique ELT 
suite

MTM spec 
in Alloy 

Synthesis 
bound

Relation 
placement 

rules

Relaxation 
rules

42



Candidate 
Execution 
Synthesis 

Candidate 
Executions

(Alloy)

Interesting ELT criteria:
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion

Spanning Set Pruning

Unique 
ELT 

Pruning 

TransForm Synthesis Engine

Pruned
Candidate 
Executions

(XML)

Unique ELT 
suite

MTM spec 
in Alloy 

Synthesis 
bound

Relation 
placement 

rules

Relaxation 
rules

TransForm’s synthesis engine starts by synthesizing 
all possible candidate executions up to a bound

43

. . .
*only showing consistency events and relations for simplicity*



Candidate executions are pruned for interesting 
ELT behaviors and checked for minimality

Candidate 
Execution 
Synthesis 

Candidate 
Executions

(Alloy)

Interesting ELT criteria:
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion

Spanning Set Pruning

Unique 
ELT 

Pruning 

TransForm Synthesis Engine

Pruned
Candidate 
Executions

(XML)

Unique ELT 
suite

MTM spec 
in Alloy 

Synthesis 
bound

Relation 
placement 

rules

Relaxation 
rules

. . .

No 
Writes

Permitted 
by MTM

44

Not 
minimal



Unique ELTs are found by deduplicating 
synthesized ELTs with a post-processing script

Candidate 
Execution 
Synthesis 

Candidate 
Executions

(Alloy)

Interesting ELT criteria:
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion

Spanning Set Pruning

Unique 
ELT 

Pruning

TransForm Synthesis Engine

Pruned
Candidate 
Executions

(XML)

Unique ELT 
suite

MTM spec 
in Alloy 

Synthesis 
bound

Relation 
placement 

rules

Relaxation 
rules

. . .

Duplicate

45



Outline
• Case Study: an estimated MTM for x86

My
Work

Prior
Work



x86t_elt transistency predicates are composed of 
TSO axioms and new transistency-specific axioms

• x86t_elt: an approximate x86 transistency model based on prior work 
and publicly available documentation

• x86-TSO: sc_per_loc, rmw_atomicity, causality
tlb_causality (auxiliary)

acyclic[ptw_source + com]
invlpg (required)

acylic[fr_va + remap + ^po]

47



A per-axiom suite was synthesized for each 
x86t_elt axiom

140 total unique ELTs!
48



The synthesized x86t_elt suite consisted of all 
relevant ELTs from COATCheck and more

• All 22 relevant ELTs from COATCheck synthesized
• 7 ELTs synthesized verbatim →map to 4 ELT programs in x86t_elt suite

• 15 ELTs can be reduced to a minimal ELT that is synthesized

• 4 ELTs from COATCheck, 136 new ELTs

49



Conclusions

• TransForm: framework for formal specification of 
MTMs and ELT synthesis

• Enables modern ISAs to have a formal 
specification that includes VM

• Offers systems programmers and hardware 
designers a stronger opportunity for verification 
of full systems

• Future work:
• Empirical MTM testing to validate/verify with x86t_elt

• Specify other MTMs (e.g., RISC-V)

• Model additional transistency interactions (e.g., 
updating permission bits)

• Available at: 
https://github.com/naorinh/TransForm

https://github.com/naorinh/TransForm


TransForm: Formally Specifying 
Transistency Models and 
Synthesizing Enhanced Litmus Tests

https://github.com/naorinh/TransForm

Naorin Hossain

Princeton University

FOCA 2020

October 30, 2020

https://github.com/naorinh/TransForm

