
TransForm: Formally Specifying
Transistency Models and

Synthesizing Enhanced Litmus Tests
Naorin Hossain

Princeton University
Caroline Trippel

Stanford University
Margaret Martonosi
Princeton University

ISCA 2020

1

Core 0 Core 1

W0 x = 1 R2 y = 1

W1 y = 1 R3 x = 0

Core 0 Core 1

W0 x = 1 R2 y = 1

W1 y = 1 R3 x = 1

Core 0 Core 1

W0 x = 1 R2 y = 0

W1 y = 1 R3 x = 1

Core 0 Core 1

W0 x = 1 R2 y = 0

W1 y = 1 R3 x = 0

Initial: memory holds value 0

Memory Consistency Models (MCMs) are used
to specify legal memory access orderings
• MCMs specify rules for legal values that can be returned when

software loads from memory on a shared memory system

Core 0 Core 1

W0 x = 1 R2 y = ?

W1 y = 1 R3 x = ?

Litmus test: small diagnostic
program for validating MCM
behaviors

2

This work: Memory Transistency Models (MTMs) – the superset of
MCMs that additionally capture VM-aware ordering specifications

Status bits VA-to-PA mapping

A D R W VA x → PA a

A D R W VA y → PA b

.

.

.

Page table

...and cached in the translation
lookaside buffer (TLB).

VA-to-PA mapping

VA x → PA a

VA y → PA b

.

.

.

TLB

When a mapping is changed in the page table,
corresponding TLB entries must be invalidated.

Read y

How does VM affect consistency?

Virtual-to-physical address (VA-to-PA) mappings
are stored in page table entries (PTEs)…

3

Status bits VA-to-PA mapping

A D R W VA x → PA a

A D R W VA y → PA c

.

.

.

Page table

...and cached in the translation
lookaside buffer (TLB).

VA-to-PA mapping

VA x → PA a

VA y → PA b

.

.

.

TLB

When a mapping is changed in the page table,
corresponding TLB entries must be invalidated.

Read y

How does VM affect consistency?

Virtual-to-physical address (VA-to-PA) mappings
are stored in page table entries (PTEs)…

4

Remap: Invalidate

How does VM affect consistency?

Status bits VA-to-PA mapping

A D R W VA x → PA a

A D R W VA y → PA c

.

.

.

Page table

Virtual-to-physical address (VA-to-PA) mappings
are stored in page table entries (PTEs)…

...and cached in the translation
lookaside buffer (TLB).

VA-to-PA mapping

VA x → PA a

VA y → PA b

.

.

.

TLB

When a mapping is changed in the page table,
corresponding TLB entries must be invalidated.

AMD Athlon™ 64 and AMD Opteron™ Processor bug:
INVLPG (x86 TLB entry invalidation instruction) fails to
invalidate TLB entry in certain cases

Read y Stale mapping access

5

Remap:

TransForm introduces constructs for ISA-level
MTM specification and ELT synthesis

• Formal MTM vocabulary captures system- and
hardware-level VM events and interactions
with user-facing program instructions

• Enables ISA-level MTM specification

• Enables automated enhanced litmus test (ELT)
synthesis

ELT

μarch model

COATCheck
Valid ELT
outcome?

6

handwritten

Automated!

Outline

• Background on ISA-level MCM vocabulary

• Introduction to ISA-level MTM vocabulary

• Automating synthesis of ELTs

• Case Study: an estimated MTM for x86

• Conclusions

7

ISA-level MCM relations can describe
programs and their candidate executions

Program Instructions
Event = {W0, R1, W2}
MemoryEvent = {W0, R1, W2}
Location = {x}
address {W0→ x, R1→ x, W2→ x}
program order (po)
po = {W0→ R1, R1→W2}

Candidate execution Communication (com) relations
reads from (rf)
rf = {W0→ R1}
coherence order (co)
co = {W0→W2}
from reads (fr)
fr = {R1→W2}

Graph

W0 x

W2 x

R1 x

po

porf

fr

co

Accessed data (outcome) symbolically
represented by com relations

Core 0
Core 0

W0 x

R1 x

W2 x

Core 0

W0 x = 1

R1 x = 1

W2 x = 2

8

W0 x = 1

R1 x = 1

W2 x = 2

MCM specifications place constraints on
permitted execution behaviors
Consistency predicates constrain candidate execution behavior based on
MCM specifications

Intel x86 processors use the total store order (TSO) memory model (x86-TSO)

sb (“store buffering”) litmus test mp (“message passing”) litmus test

Causality – axiom in x86-TSO
consistency predicate:
acyclic(rfe + co + fr + ppo + fence)

W0 x = 1 W2 y = 1

R3 x = 0R1 y = 0

Core 0 Core 1

po pofr fr

W0 x = 1 R2 y = 1

R3 x = 0W1 y = 1

Core 0 Core 1

po pofr rf

9

rfeppo ppo

Augmenting MCMs to include MTM features

What MCMs have
What is needed for MTM

interactions

Support for static VA-to-PA
mappings without aliasing.

Support for VA-to-PA mappings
that can be modified during a
program’s execution.

Support for user-level
instruction interactions
through shared memory.

Support for shared memory
interactions between user-level
instructions and system- and
hardware-level operations.

transistency operations
10

Outline

• Introduction to ISA-level MTM vocabulary

11

MTM Vocabulary: Hardware-level operations

TransForm supports page table walks (PT walks) and dirty bit updates

PT walk: loads translation
lookaside buffer (TLB) entry

dirty bit update: modifies dirty
bit in page table entry (PTE)

12

dirty bit update: modifies dirty
bit in page table entry (PTE)

Ghost instructions

MTM Vocabulary: Hardware-level operations

TransForm supports page table walks (PT walks) and dirty bit updates

ghost – relates user-facing MemoryEvent to
invoked ghost instructions (numerical subscripts)

13

PT walk: loads translation
lookaside buffer (TLB) entry

dirty bit update: modifies dirty
bit in page table entry (PTE)
dirty bit update: modifies dirty
bit in page table entry (PTE)

Ghost instructions

MTM Vocabulary: Hardware-level operations

TransForm supports page table walks (PT walks) and dirty bit updates

ghost – relates user-facing MemoryEvent to
invoked ghost instructions (numerical subscripts)

rf_ptw – relates PT walk to user-facing
MemoryEvents that access loaded TLB entry

14

PT walk: loads translation
lookaside buffer (TLB) entry

dirty bit update: modifies dirty
bit in page table entry (PTE)
dirty bit update: modifies dirty
bit in page table entry (PTE)

Ghost instructions

MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations

15

PTE Write: changes address mapping
stored in a PTE for some VA v

Support instructions

MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations

16

PTE Write: changes address mapping
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

Support instructions

MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations

17

PTE Write: changes address mapping
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

rf_pa – relates PTE Write for VA v → PA p to user-facing
MemoryEvents accessing PA p via VA v
co_pa, fr_pa, and fr_va follow similarly

Support instructions

MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations

PTE Write: changes address mapping
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

rf_pa – relates PTE Write for VA v → PA p to user-facing
MemoryEvents accessing PA p via VA v
co_pa, fr_pa, and fr_va follow similarly

18

Support instructions

Outline

• Automating synthesis of ELTs

19

From Specification to Test Synthesis

• ELTs include MTM vocabulary and support verification against an
MTM spec
• Goals:

• Automated

• Interesting and minimal (“Spanning set”)

• Deduplicated

• Comprehensive (to a bound)

Candidate
Execution
Synthesis

(§IV-A)

Candidate
Executions

(Alloy)

Interesting ELT criteria (§IV-B):
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion (§IV-B)

Spanning Set Pruning (§IV-B)

Unique
ELT

Pruning
(§IV-C)

TransForm Synthesis Engine (§IV)

Pruned
Candidate
Executions

(XML)

Unique ELT
suite

MTM spec
in Alloy
(§V-A)

Synthesis
bound

Relation
placement

rules (§IV-A)

Relaxation
rules (§IV-B)

20

Candidate
Execution
Synthesis

(§IV-A)

Candidate
Executions

(Alloy)

Interesting ELT criteria (§IV-B):
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion (§IV-B)

Spanning Set Pruning (§IV-B)

Unique
ELT

Pruning
(§IV-C)

TransForm Synthesis Engine (§IV)

Pruned
Candidate
Executions

(XML)

Unique ELT
suite

MTM spec
in Alloy
(§V-A)

Synthesis
bound

Relation
placement

rules (§IV-A)

Relaxation
rules (§IV-B)

TransForm’s synthesis engine starts by synthesizing
all possible candidate executions up to a bound

21

. . .

Candidate executions are pruned for interesting
ELT behaviors and checked for minimality

Candidate
Execution
Synthesis

(§IV-A)

Candidate
Executions

(Alloy)

Interesting ELT criteria (§IV-B):
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion (§IV-B)

Spanning Set Pruning (§IV-B)

Unique
ELT

Pruning
(§IV-C)

TransForm Synthesis Engine (§IV)

Pruned
Candidate
Executions

(XML)

Unique ELT
suite

MTM spec
in Alloy
(§V-A)

Synthesis
bound

Relation
placement

rules (§IV-A)

Relaxation
rules (§IV-B)

. . .

No
Writes

Permitted
by MTM

Not
minimal

22

Unique ELTs are found by deduplicating
synthesized ELTs with a post-processing script

Candidate
Execution
Synthesis

(§IV-A)

Candidate
Executions

(Alloy)

Interesting ELT criteria (§IV-B):
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion (§IV-B)

Spanning Set Pruning (§IV-B)

Unique
ELT

Pruning
(§IV-C)

TransForm Synthesis Engine (§IV)

Pruned
Candidate
Executions

(XML)

Unique ELT
suite

MTM spec
in Alloy
(§V-A)

Synthesis
bound

Relation
placement

rules (§IV-A)

Relaxation
rules (§IV-B)

. . .

Duplicate

23

Outline

• Case Study: an estimated MTM for x86

24

x86t_elt transistency predicates are composed of
TSO axioms and new transistency-specific axioms

• x86t_elt: an approximate x86 transistency model based on prior work
and publicly available documentation

• x86-TSO: sc_per_loc, rmw_atomicity, causality
tlb_causality (auxiliary)

acyclic[ptw_source + com]
invlpg (required)

acylic[fr_va + remap + ^po]

25

A per-axiom suite was synthesized for each
x86t_elt axiom

103 total unique ELTs!
(98 for hardware verification/validation, 5 for diagnosing TLB implementation bugs)

26

The synthesized x86t_elt suite consisted of all relevant
ELTs from prior work (up to the bound) and more

• 21 of 22 relevant ELTs from prior work synthesized
• 6 ELTs synthesized verbatim →map to 3 ELT programs in x86t_elt suite

• 15 ELTs can be reduced to a minimal ELT that is synthesized

• 1 ELT requires a higher bound for synthesis

• 3 ELTs from prior work, 100 new ELTs

27

Conclusions

• TransForm: framework for formal specification of MTMs and ELT
synthesis

• Enables modern ISAs to have a formal specification that includes VM

• Offers systems programmers and hardware designers a stronger
opportunity for verification of full systems

• Future work:
• Empirical x86 processor testing

• RISC-V MTM specification

• Available at: https://github.com/naorinh/TransForm

28

https://github.com/naorinh/TransForm

TransForm: Formally Specifying
Transistency Models and

Synthesizing Enhanced Litmus Tests
Naorin Hossain

Princeton University
Caroline Trippel

Stanford University
Margaret Martonosi
Princeton University

ISCA 2020

https://github.com/naorinh/TransForm

29

https://github.com/naorinh/TransForm

