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Initial: memory holds value 0

Memory Consistency Models (MCMs) are used 
to specify legal memory access orderings
• MCMs specify rules for legal values that can be returned when 

software loads from memory on a shared memory system
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W0 x = 1 R2 y = ?

W1 y = 1 R3 x = ?

Litmus test: small diagnostic 
program for validating MCM 
behaviors
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This work: Memory Transistency Models (MTMs) – the superset of 
MCMs that additionally capture VM-aware ordering specifications



Status bits VA-to-PA mapping
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...and cached in the translation 
lookaside buffer (TLB).
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When a mapping is changed in the page table, 
corresponding TLB entries must be invalidated.

Read y

How does VM affect consistency? 

Virtual-to-physical address (VA-to-PA) mappings 
are stored in page table entries (PTEs)…
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Remap:  Invalidate



How does VM affect consistency? 

Status bits VA-to-PA mapping

A D R W VA x → PA a

A D R W VA y → PA c

.

.

.

Page table

Virtual-to-physical address (VA-to-PA) mappings 
are stored in page table entries (PTEs)…

...and cached in the translation 
lookaside buffer (TLB).

VA-to-PA mapping

VA x → PA a

VA y → PA b

.

.

.

TLB

When a mapping is changed in the page table, 
corresponding TLB entries must be invalidated.

AMD Athlon™ 64 and AMD Opteron™ Processor bug:
INVLPG (x86 TLB entry invalidation instruction) fails to 
invalidate TLB entry in certain cases

Read y Stale mapping access
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Remap:



TransForm introduces constructs for ISA-level 
MTM specification and ELT synthesis

• Formal MTM vocabulary captures system- and 
hardware-level VM events and interactions 
with user-facing program instructions

• Enables ISA-level MTM specification

• Enables automated enhanced litmus test (ELT)
synthesis

ELT

μarch model

COATCheck
Valid ELT 
outcome?
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handwritten

Automated!



Outline

• Background on ISA-level MCM vocabulary

• Introduction to ISA-level MTM vocabulary

• Automating synthesis of ELTs

• Case Study: an estimated MTM for x86

• Conclusions
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ISA-level MCM relations can describe 
programs and their candidate executions

Program Instructions
Event = {W0, R1, W2}
MemoryEvent = {W0, R1, W2}
Location = {x}
address {W0→ x, R1→ x, W2→ x}
program order (po)
po = {W0→ R1, R1→W2}

Candidate execution Communication (com) relations
reads from (rf)
rf = {W0→ R1}
coherence order (co)
co = {W0→W2}
from reads (fr)
fr = {R1→W2}

Graph

W0 x

W2 x

R1 x

po

porf

fr

co

Accessed data (outcome) symbolically 
represented by com relations

Core 0
Core 0

W0 x

R1 x

W2 x

Core 0

W0 x = 1

R1 x = 1

W2 x = 2
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W0 x = 1

R1 x = 1

W2 x = 2



MCM specifications place constraints on 
permitted execution behaviors
Consistency predicates constrain candidate execution behavior based on 
MCM specifications

Intel x86 processors use the total store order (TSO) memory model (x86-TSO)

sb (“store buffering”) litmus test mp (“message passing”) litmus test

Causality – axiom in x86-TSO 
consistency predicate:
acyclic(rfe + co + fr + ppo + fence)

W0 x = 1 W2 y = 1

R3 x = 0R1 y = 0

Core 0 Core 1

po pofr fr

W0 x = 1 R2 y = 1

R3 x = 0W1 y = 1

Core 0 Core 1

po pofr rf
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rfeppo ppo



Augmenting MCMs to include MTM features

What MCMs have
What is needed for MTM 

interactions

Support for static VA-to-PA 
mappings without aliasing.

Support for VA-to-PA mappings 
that can be modified during a 
program’s execution.

Support for user-level 
instruction interactions 
through shared memory.

Support for shared memory 
interactions between user-level 
instructions and system- and 
hardware-level operations.

transistency operations
10



Outline

• Introduction to ISA-level MTM vocabulary
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MTM Vocabulary: Hardware-level operations

TransForm supports page table walks (PT walks) and dirty bit updates

PT walk: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in page table entry (PTE)
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dirty bit update: modifies dirty 
bit in page table entry (PTE)

Ghost instructions



MTM Vocabulary: Hardware-level operations

TransForm supports page table walks (PT walks) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)
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PT walk: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in page table entry (PTE)
dirty bit update: modifies dirty 
bit in page table entry (PTE)

Ghost instructions



MTM Vocabulary: Hardware-level operations

TransForm supports page table walks (PT walks) and dirty bit updates

ghost – relates user-facing MemoryEvent to 
invoked ghost instructions (numerical subscripts)

rf_ptw – relates PT walk to user-facing 
MemoryEvents that access loaded TLB entry
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PT walk: loads translation 
lookaside buffer (TLB) entry

dirty bit update: modifies dirty 
bit in page table entry (PTE)
dirty bit update: modifies dirty 
bit in page table entry (PTE)

Ghost instructions



MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations
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PTE Write: changes address mapping 
stored in a PTE for some VA v

Support instructions



MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations
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PTE Write: changes address mapping 
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

Support instructions



MTM Vocabulary: System-level operations

TransForm supports address remappings via PTE Writes and TLB entry invalidations
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PTE Write: changes address mapping 
stored in a PTE for some VA v

INVLPG: invalidates TLB entry

remap – relates PTE Writes to invoked INVLPGs

rf_pa – relates PTE Write for VA v → PA p to user-facing 
MemoryEvents accessing PA p via VA v
co_pa, fr_pa, and fr_va follow similarly

Support instructions
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Support instructions



Outline

• Automating synthesis of ELTs

19



From Specification to Test Synthesis

• ELTs include MTM vocabulary and support verification against an 
MTM spec
• Goals: 

• Automated

• Interesting and minimal (“Spanning set”)

• Deduplicated

• Comprehensive (to a bound)

Candidate 
Execution 
Synthesis 

(§IV-A)

Candidate 
Executions

(Alloy)

Interesting ELT criteria (§IV-B):
1. #Write > 0
2. Forbidden by MTM

+ Minimality criterion (§IV-B)

Spanning Set Pruning (§IV-B)

Unique 
ELT 

Pruning 
(§IV-C)

TransForm Synthesis Engine (§IV)

Pruned
Candidate 
Executions

(XML)

Unique ELT 
suite

MTM spec 
in Alloy 
(§V-A)

Synthesis 
bound

Relation 
placement 

rules (§IV-A)

Relaxation 
rules (§IV-B)
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TransForm’s synthesis engine starts by synthesizing 
all possible candidate executions up to a bound
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Candidate executions are pruned for interesting 
ELT behaviors and checked for minimality
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Unique ELTs are found by deduplicating 
synthesized ELTs with a post-processing script
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Outline

• Case Study: an estimated MTM for x86
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x86t_elt transistency predicates are composed of 
TSO axioms and new transistency-specific axioms

• x86t_elt: an approximate x86 transistency model based on prior work 
and publicly available documentation

• x86-TSO: sc_per_loc, rmw_atomicity, causality
tlb_causality (auxiliary)

acyclic[ptw_source + com]
invlpg (required)

acylic[fr_va + remap + ^po]
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A per-axiom suite was synthesized for each 
x86t_elt axiom

103 total unique ELTs!
(98 for hardware verification/validation, 5 for diagnosing TLB implementation bugs)
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The synthesized x86t_elt suite consisted of all relevant 
ELTs from prior work (up to the bound) and more

• 21 of 22 relevant ELTs from prior work synthesized
• 6 ELTs synthesized verbatim →map to 3 ELT programs in x86t_elt suite

• 15 ELTs can be reduced to a minimal ELT that is synthesized

• 1 ELT requires a higher bound for synthesis

• 3 ELTs from prior work, 100 new ELTs
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Conclusions

• TransForm: framework for formal specification of MTMs and ELT 
synthesis

• Enables modern ISAs to have a formal specification that includes VM

• Offers systems programmers and hardware designers a stronger 
opportunity for verification of full systems

• Future work:
• Empirical x86 processor testing

• RISC-V MTM specification

• Available at: https://github.com/naorinh/TransForm
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