Lecture: Monad and Adjunctions

November 7, 2018

Moral 1 Monads are “shadows” of adjunctions!

Moral 2 If (T, i, 1) is a monad on C, then Ta is a generalized space associated with a; y, is a degen-
eralization morphism; 7, is a canonical embedding of a into the generalized space Ta.

Moral 3 Morphisms in the Kleisli category Cr are generalizations of morphisms in the base category
C.

More precisely, every adjunction gives rise to a monad, and every monad gives rise to (multiple)
adjunctions.

Definition 1. Let C be a category. A monad on Cisa triple (T, jt,17) where T : C — C is an endofunctor,
p:T?> = Tandy : ide = T are natural transformations such that the following two diagrams
commute:

P SES

Theorem 1 (Adjunction = Monad). Given

(GF, GeF, 1) is a monad on C.

Proof. The associative diagram for GeF is a special case of horizontal composition of natural transfor-
mations:

C F D FG D FG D G C
~_ 7 ~_ 7
idp idp
The unit diagram for # follows from triangle equalities:

TIGFc

GFc *> GFGFc «+— GFc
GFc

where
Gerc - fcre = (Ge - 11¢)re = (idg)re = idGre

and
Gere - GFije = G(erc - Fiie) = G(idr)c = idgre



Definition 2. Let (T, u,7) be a monad acting on C. The Kleisli category Cr is the category with
0bCt = 0bC and a morphism f : a ~+ b in C is a morphism f : 2 — Tb in C. Compositions are given
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The Eilenberg-Moore category C” (also known as the category of free T-algebras) is the category
with objects (a,h), where h : Ta — a is a structure morphism that makes the following two diagrams
commute,

PRI PR AN,

Nl

a Ta—" g
and morphisms f : (a,h) — (b, k) that makes the following diagram commutes in C:

o~ Tb

h
[,k
a$>b

Theorem 2 (Monad = Adjunction). Let (T, u,n) be a monad acting on C. Then there are adjunctions
FT,GT, Fr, Gt such that the following diagram commutes

Proof. We define Fr, Gt as follows:
Cr 0 ~des b g NS,
i J{GT FTT FTT
C Wy a—55b

Check:
(Gr(Frf)) = Gl - f) = po - TOpo - ) = (4o - Tp) - Tf = Tf
Moreover, there is a natural bijection between Cr(Fra, b) = Cr(a,b) and C(a, Grb) = C(a, Th). In
fact, in this case, the bijection is an “equality” given how the morphisms in Cr are defined.
In particular, we note that the counit e at b, which is a morphism from FrGtb = Tb to b in Cr,

justis 1rp.
Now as for the Eilenberg-Moore category, we define FT and G as follows,
c a—L b a—5 p
lFT lFT GTT GTT
ct (T, pa) — (Tb,my)  (a,h) —5— (b,k)

Let €(, ) = h. We leave it as an exercise to check that € so defined is indeed a natural transformation
from FTGT to id,r. We check that FT - GT by showing that ;7 and e satisfy the triangle equalities.



FT
Fla = (Ta, u,) T FTGTET, = (T?a, ut,)

\ leFT:m

FTa = (Ta, u,)

which commutes by the associative square of .
Similarly,

T_
GT(a,h) =a = GTFTGT(a,h) = Ta

\ JGTTM) =h

which commutes by the fact that / is the left inverse of 7,.

O

Lastly, if C is a category, let Adj;(C) be the category of adjunctions whose objects are fully spec-
ified adjunctions and morphisms are adjunctions transformations. We show that Cr and CT are re-

spectively the initial and terminal objects in this category, in the following sense:

Theorem 3. Let (T, u,n) be a monad acting on C. If F : C — D and G : D — C is an adjunction that
gives rise to this monad, then there is a unique functor K : Cr — D and L : D — CT such that the following

diagram commutes:

K
CT >

D L » CT
GT
"ﬂc/
FT
C

Proof. The left triangle commutes just in case the following squares commute:

CT%C%CT

[
p-S,c-ft,p

Now the commutativity of the right square forces
KFra = Ka = Fa, Va:obC.
Moreover, note that
Cr(a,b) = C(a, Tb) = C(a, GrFrb) = C(a, GKFrb) = D(Fa, KFrb)

Recall that if F - G, then

C a L GKFrb
Ff €KFrb
D Fa —— FGKFpb —— KFrb

But €xr,p = €rp. So Kf = epy, - Ff.

Hence K exists and is unique.

Now the right triangle commutes just in case the following squares commute:

¢t S, ¢ et

R

p_—S,c-f.p

= D(KFT{Z, KFTb).



Since Gr is the projection functor, the commutativity of the left square forces
Ld = (Gd,yy), Vd:obD

We verify that 7; = Ge,;. By previous observation, we know y; = e(TG dyd) = e{d. By the triangle
inequality Ge - 176, we have

Gd = GTLd 1% GTFTGTLd = GFGd

T~ JGT‘%_QG@,

G'Ld = Gd

Therefore, v; = Ge4. On morphisms, since LGT = G, we have L f = Gf, which one can verify is
indeed a a structure morphism.

Example 1 (Powerset Monad). Consider the powerset monad (P, y,77) on Set defined by

px : PPX - PX S (]S
nx: X = PX x+— {x}

This gives content to our Moral 2: PX is a “generalized set” associated with X; ux de-generalizes
PPX to PX by collapsing the set-brackets; 7x embeds X into PX.

The crucial observation is that Setp, the Kleisli category of the powerset monad, is the category of
sets with relations!

Here is a short argument why:

Set” (X,Y) = Set(X, PY)
= Set(X, Set(Y,2))
= Set(X X Y,2)
=P(XxY)

So morphisms in Set” are precisely set-theoretic relations!
Example 2 (Giry Monad). Recall that the Giry monad is the triple (M, p, 1) on Meas where

e M sends each measurable space (X, F) to the measurable space of its probability measures,
i.e. M(X) = {v : vis a probability measure on X}.

(Crash course on measure theory for those who are keen) A measurable space is a set X
endowed with a o-algebra F, where F is a field of subsets of X (subsets that are “measur-
able”) such that F contains @ and is closed under complementation as well as countable
union.

Given two measurable space (X, F) and (Y, G), we say a function f : X — Y is measurable
if f~1(A) € F forall A € G. That is, the preimage of a measurable set under f is also
measurable (but f does not need to send a measurable set to a measurable set; in particular,
f(X) does not need to be measurable).

Given a measurable space (X, F), the canonical o-algebra associated with M (X) is the
coarsest o-algebra such that the functions evy : M(X) — [0,1] given by ev4(v) = v(A)
is measurable (with respect to the Borel algebra of [0, 1] - the o-algebra generated by open
intervals in [0,1]) forall A € F.

o ux : M(M(X)) - M(X) is given by 7t — E(7r), where £(7) is a probability measure on X
that assigns each measurable set A the probability [, _,, (x) v(A)7(dv) - the average probability
of A weighted by 7.



e vy : X - M(X) sends each element x € X to the Dirac measure Jy.

Again our Moral 2 and Moral 3 apply in this example: we can think of M(X) as a (randomized)
generalized space associated with X; px as de-randomization, and vy as a canonical embedding of X
into its stochastic generalization (where elements in X correspond to deterministic measures).

The Kelisli category of this monad is rather beautiful. Note that morphisms in Meas  are mea-
surable functions Q : X — M(Y). Alternatively (by currying), we can think of Q as as a two-place
function that takes (x, A) as input (with x € X, and A a measurable set in Y), and returns a probabil-
ity. This is precisely the conditional probability function (just rewrite Q(x, A) as Q(A|x)). So morphisms
in Meas ) are also called Markov kernels or transition probabilities, and Meas », is often referred to
as the stochastic category Stoch.

In particular, it is not hard to see that the terminal object in Meas ( is (1, {®,1}). Morphisms P :
1 ~» X in Meas  are, according to the proposed interpretation, conditional probabilities P(.|1 = 1).
But since there is no stochasticity associated with 1 = 1, these are indeed the unconditional probability
measures defined on X! So this gives us an alternative perspective on probability theory: probability
measures on (X, F) are morphisms from 1 to X in Meas (. Moreover, just as we can think of set-
theoretic elements as injective functions f : 1 — X in Set, we can also think of probability functions
P : 1~ X as stochastic elements in X!



