Lecture: Monad and Adjunctions

November 7, 2018

Moral 1 Monads are "shadows" of adjunctions!
Moral 2 If (T, μ, η) is a monad on \mathcal{C}, then $T a$ is a generalized space associated with $a ; \mu_{a}$ is a degeneralization morphism; η_{a} is a canonical embedding of a into the generalized space $T a$.

Moral 3 Morphisms in the Kleisli category \mathcal{C}_{T} are generalizations of morphisms in the base category \mathcal{C}.

More precisely, every adjunction gives rise to a monad, and every monad gives rise to (multiple) adjunctions.

Definition 1. Let \mathcal{C} be a category. A monad on \mathcal{C} is a triple (T, μ, η) where $T: \mathcal{C} \rightarrow \mathcal{C}$ is an endofunctor, $\mu: T^{2} \Rightarrow T$ and $\eta: i d_{\mathcal{C}} \Rightarrow T$ are natural transformations such that the following two diagrams commute:

Theorem 1 (Adjunction \Rightarrow Monad). Given

$$
\mathcal{C} \overbrace{K}^{\frac{F}{G}} \mathcal{D}
$$

$(G F, G \epsilon F, \eta)$ is a monad on \mathcal{C}.
Proof. The associative diagram for $G \epsilon F$ is a special case of horizontal composition of natural transformations:

$$
\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow[i d_{\mathcal{D}}]{\stackrel{F G}{\longrightarrow}} \mathcal{D} \xrightarrow[i d_{\mathcal{D}}]{\stackrel{F G}{\longrightarrow}} \mathcal{D} \xrightarrow{G} \mathcal{C}
$$

The unit diagram for η follows from triangle equalities:

where

$$
G \epsilon_{F c} \cdot \eta_{G F c}=\left(G \epsilon \cdot \eta_{G}\right)_{F c}=\left(i d_{G}\right)_{F c}=i d_{G F c}
$$

and

$$
G \epsilon_{F c} \cdot G F \eta_{c}=G\left(\epsilon_{F c} \cdot F \eta_{c}\right)=G\left(i d_{F}\right)_{c}=i d_{G F c}
$$

Definition 2. Let (T, μ, η) be a monad acting on \mathcal{C}. The Kleisli category \mathcal{C}_{T} is the category with $o b \mathcal{C}_{T}=o b \mathcal{C}$ and a morphism $f: a \rightsquigarrow b$ in \mathcal{C} is a morphism $f: a \rightarrow T b$ in \mathcal{C}. Compositions are given by

$$
\begin{aligned}
& a \xrightarrow{f} \mathrm{~m} \\
& b \xrightarrow{g} \mathrm{~g} \\
& \\
& a \xrightarrow{f} \mathrm{~Tb} \xrightarrow{T_{g}} T^{2} c \xrightarrow{\mu_{c}} T c
\end{aligned}
$$

The Eilenberg-Moore category C^{T} (also known as the category of free T-algebras) is the category with objects (a, h), where $h: T a \rightarrow a$ is a structure morphism that makes the following two diagrams commute,

and morphisms $f:(a, h) \rightarrow(b, k)$ that makes the following diagram commutes in \mathcal{C} :

Theorem 2 (Monad \Rightarrow Adjunction). Let (T, μ, η) be a monad acting on \mathcal{C}. Then there are adjunctions $F^{T}, G^{T}, F_{T}, G_{T}$ such that the following diagram commutes

Proof. We define F_{T}, G_{T} as follows:

Check:

$$
\left(G_{T}\left(F_{T} f\right)\right)=G_{T}\left(\eta_{b} \cdot f\right)=\mu_{b} \cdot T\left(\eta_{b} \cdot f\right)=\left(\mu_{b} \cdot T \eta_{b}\right) \cdot T f=T f
$$

Moreover, there is a natural bijection between $\mathcal{C}_{T}\left(F_{T} a, b\right)=\mathcal{C}_{T}(a, b)$ and $\mathcal{C}\left(a, G_{T} b\right)=\mathcal{C}(a, T b)$. In fact, in this case, the bijection is an "equality" given how the morphisms in \mathcal{C}_{T} are defined.

In particular, we note that the counit ϵ_{T} at b, which is a morphism from $F_{T} G_{T} b=T b$ to b in \mathcal{C}_{T}, just is $1_{T b}$.

Now as for the Eilenberg-Moore category, we define F^{T} and G^{T} as follows,

Let $\epsilon_{(a, h)}=h$. We leave it as an exercise to check that ϵ so defined is indeed a natural transformation from $F^{T} G^{T}$ to $i d_{\mathcal{C}^{T}}$. We check that $F^{T} \dashv G^{T}$ by showing that η and ϵ satisfy the triangle equalities.

$$
\begin{array}{r}
F^{T} a=\left(T a, \mu_{a}\right) \stackrel{F^{T} \eta}{\longrightarrow} F^{T} G^{T} F^{T} a=\left(T^{2} a, \mu_{T a}\right) \\
F^{\downarrow} a=\left(T a, \mu_{a}\right)
\end{array}
$$

which commutes by the associative square of μ.
Similarly,

$$
\begin{array}{r}
G^{T}(a, h)=a \xrightarrow{a \eta G^{T}=\eta} G^{T} F^{T} G^{T}(a, h)=T a \\
\mathfrak{V}^{T}(a, h)=a
\end{array}
$$

which commutes by the fact that h is the left inverse of η_{a}.
Lastly, if \mathcal{C} is a category, let $\operatorname{Adj}_{T}(\mathcal{C})$ be the category of adjunctions whose objects are fully specified adjunctions and morphisms are adjunctions transformations. We show that \mathcal{C}_{T} and \mathcal{C}^{T} are respectively the initial and terminal objects in this category, in the following sense:

Theorem 3. Let (T, μ, η) be a monad acting on \mathcal{C}. If $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ is an adjunction that gives rise to this monad, then there is a unique functor $K: C_{T} \rightarrow \mathcal{D}$ and $L: \mathcal{D} \rightarrow \mathcal{C}^{T}$ such that the following diagram commutes:

Proof. The left triangle commutes just in case the following squares commute:

Now the commutativity of the right square forces

$$
K F_{T} a=K a=F a, \quad \forall a: o b \mathcal{C}
$$

Moreover, note that

$$
\mathcal{C}_{T}(a, b)=\mathcal{C}(a, T b)=\mathcal{C}\left(a, G_{T} F_{T} b\right)=\mathcal{C}\left(a, G K F_{T} b\right) \cong \mathcal{D}\left(F a, K F_{T} b\right)=\mathcal{D}\left(K F_{T} a, K F_{T} b\right)
$$

Recall that if $F \dashv G$, then

$$
\begin{array}{ll}
\mathcal{C} & a \xrightarrow{f} G K F_{T} b \\
\mathcal{D} & F a \xrightarrow{F f} F G K F_{T} b \xrightarrow{\epsilon_{K F_{T}} b} K F_{T} b
\end{array}
$$

But $\epsilon_{K F_{T} b}=\epsilon_{F b}$. So $K f=\epsilon_{F b} \cdot F f$.
Hence K exists and is unique.
Now the right triangle commutes just in case the following squares commute:

Since G_{T} is the projection functor, the commutativity of the left square forces

$$
L d=\left(G d, \gamma_{d}\right), \quad \forall d: o b \mathcal{D}
$$

We verify that $\gamma_{d}=G \epsilon_{d}$. By previous observation, we know $\gamma_{d}=\epsilon_{(G d, \gamma d)}^{T}=\epsilon_{L d}^{T}$. By the triangle inequality $G \epsilon \cdot \eta_{G}$, we have

Therefore, $\gamma_{d}=G \epsilon_{d}$. On morphisms, since $L G^{T}=G$, we have $L f=G f$, which one can verify is indeed a a structure morphism.

Example 1 (Powerset Monad). Consider the powerset monad (\mathcal{P}, μ, η) on Set defined by

$$
\begin{aligned}
& \mu_{X}: \mathcal{P} \mathcal{P} X \rightarrow \mathcal{P} X \quad S \mapsto \bigcup S \\
& \eta_{X}: X \rightarrow \mathcal{P} X \quad x \mapsto\{x\}
\end{aligned}
$$

This gives content to our Moral 2: $\mathcal{P} X$ is a "generalized set" associated with $X ; \mu_{X}$ de-generalizes $\mathcal{P} \mathcal{P} X$ to $\mathcal{P} X$ by collapsing the set-brackets; η_{X} embeds X into $\mathcal{P} X$.

The crucial observation is that $\operatorname{Set}_{\mathcal{P}}$, the Kleisli category of the powerset monad, is the category of sets with relations!

Here is a short argument why:

$$
\begin{aligned}
\operatorname{Set}^{\mathcal{P}}(X, Y) & =\operatorname{Set}(X, \mathcal{P} Y) \\
& =\operatorname{Set}(X, \operatorname{Set}(Y, 2)) \\
& =\operatorname{Set}(X \times Y, 2) \\
& =\mathcal{P}(X \times Y)
\end{aligned}
$$

So morphisms in $\operatorname{Set}^{\mathcal{P}}$ are precisely set-theoretic relations!
Example 2 (Giry Monad). Recall that the Giry monad is the triple (\mathcal{M}, μ, η) on Meas where

- \mathcal{M} sends each measurable space (X, \mathcal{F}) to the measurable space of its probability measures, i.e. $\mathcal{M}(X)=\{v: v$ is a probability measure on $X\}$.
(Crash course on measure theory for those who are keen) A measurable space is a set X endowed with a σ-algebra \mathcal{F}, where \mathcal{F} is a field of subsets of X (subsets that are "measurable") such that \mathcal{F} contains \varnothing and is closed under complementation as well as countable union.

Given two measurable space (X, \mathcal{F}) and (Y, \mathcal{G}), we say a function $f: X \rightarrow Y$ is measurable if $f^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{G}$. That is, the preimage of a measurable set under f is also measurable (but f does not need to send a measurable set to a measurable set; in particular, $f(X)$ does not need to be measurable).
Given a measurable space (X, \mathcal{F}), the canonical σ-algebra associated with $\mathcal{M}(X)$ is the coarsest σ-algebra such that the functions $e v_{A}: \mathcal{M}(X) \rightarrow[0,1]$ given by $e v_{A}(v)=v(A)$ is measurable (with respect to the Borel algebra of $[0,1]$ - the σ-algebra generated by open intervals in $[0,1])$ for all $A \in \mathcal{F}$.

- $\mu_{X}: \mathcal{M}(\mathcal{M}(X)) \rightarrow \mathcal{M}(X)$ is given by $\pi \mapsto \mathcal{E}(\pi)$, where $\mathcal{E}(\pi)$ is a probability measure on X that assigns each measurable set A the probability $\int_{v \in \mathcal{M}(X)} v(A) \pi(d v)$ - the average probability of A weighted by π.
- $v_{X}: X \rightarrow \mathcal{M}(X)$ sends each element $x \in X$ to the Dirac measure δ_{x}.

Again our Moral 2 and Moral 3 apply in this example: we can think of $\mathcal{M}(X)$ as a (randomized) generalized space associated with $X ; \mu_{X}$ as de-randomization, and v_{X} as a canonical embedding of X into its stochastic generalization (where elements in X correspond to deterministic measures).

The Kelisli category of this monad is rather beautiful. Note that morphisms in Meas $\mathcal{M}^{\mathcal{M}}$ are measurable functions $Q: X \rightarrow \mathcal{M}(Y)$. Alternatively (by currying), we can think of Q as as a two-place function that takes (x, A) as input (with $x \in X$, and A a measurable set in Y), and returns a probability. This is precisely the conditional probability function (just rewrite $Q(x, A)$ as $Q(A \mid x)$). So morphisms in Meas $\mathcal{M}_{\mathcal{M}}$ are also called Markov kernels or transition probabilities, and Meas $\mathcal{M}_{\mathcal{M}}$ is often referred to as the stochastic category Stoch.

In particular, it is not hard to see that the terminal object in $\operatorname{Meas}_{\mathcal{M}}$ is $(1,\{\varnothing, 1\})$. Morphisms P : $1 \rightsquigarrow X$ in Meas $\mathcal{M}_{\mathcal{M}}$ are, according to the proposed interpretation, conditional probabilities $P(. \mid 1=1)$. But since there is no stochasticity associated with $1=1$, these are indeed the unconditional probability measures defined on X ! So this gives us an alternative perspective on probability theory: probability measures on (X, \mathcal{F}) are morphisms from 1 to X in Meas $\mathcal{M}_{\mathcal{M}}$. Moreover, just as we can think of settheoretic elements as injective functions $f: 1 \rightarrow X$ in Set, we can also think of probability functions $P: 1 \rightsquigarrow X$ as stochastic elements in X !

