Lecture: Monad and Adjunctions

November 7, 2018

Moral 1 Monads are "shadows" of adjunctions!

- **Moral 2** If (T, μ, η) is a monad on C, then Ta is a generalized space associated with a; μ_a is a degeneralization morphism; η_a is a canonical embedding of a into the generalized space Ta.
- **Moral 3** Morphisms in the Kleisli category C_T are generalizations of morphisms in the base category C.

More precisely, every adjunction gives rise to a monad, and every monad gives rise to (multiple) adjunctions.

Definition 1. Let C be a category. A **monad** on C is a triple (T, μ, η) where $T : C \to C$ is an endofunctor, $\mu : T^2 \Rightarrow T$ and $\eta : id_C \Rightarrow T$ are natural transformations such that the following two diagrams commute:

Theorem 1 (Adjunction \Rightarrow Monad). *Given*

$$\mathcal{C} \xrightarrow{F}_{G} \mathcal{D}$$

 $(GF, G \in F, \eta)$ is a monad on C.

Proof. The associative diagram for $G \in F$ is a special case of horizontal composition of natural transformations:

$$\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{FG} \mathcal{D} \xrightarrow{FG} \mathcal{D} \xrightarrow{FG} \mathcal{D} \xrightarrow{G} \mathcal{C}$$

The unit diagram for η follows from triangle equalities:

$$GFc \xrightarrow{GF\eta_c} GFGFc \xleftarrow{\eta_{GFc}} GFc$$

$$\downarrow^{G\epsilon_{Fc}}_{GFc}$$

where

$$G\epsilon_{Fc} \cdot \eta_{GFc} = (G\epsilon \cdot \eta_G)_{Fc} = (id_G)_{Fc} = id_{GFc}$$

and

$$G\epsilon_{Fc} \cdot GF\eta_c = G(\epsilon_{Fc} \cdot F\eta_c) = G(id_F)_c = id_{GFc}$$

	_	-	
L			
L			
-			

Definition 2. Let (T, μ, η) be a monad acting on C. The **Kleisli category** C_T is the category with $obC_T = obC$ and a morphism $f : a \rightsquigarrow b$ in C is a morphism $f : a \rightarrow Tb$ in C. Compositions are given by

$$a \xrightarrow{f} b \xrightarrow{g} c$$
$$a \xrightarrow{f} Tb \xrightarrow{Tg} T^2c \xrightarrow{\mu_c} Tc$$

The **Eilenberg-Moore category** C^T (also known as the category of free *T*-algebras) is the category with objects (a, h), where $h : Ta \to a$ is a structure morphism that makes the following two diagrams commute,

$$a \xrightarrow{\eta_a} Ta \quad T^a \xrightarrow{Th} Ta$$

$$\downarrow_h \qquad \downarrow_{\mu_a} \qquad \downarrow_h$$

$$a \quad Ta \xrightarrow{h} a$$

and morphisms $f : (a, h) \to (b, k)$ that makes the following diagram commutes in C:

$$\begin{array}{ccc} Ta & \xrightarrow{Tf} & Tb \\ \downarrow_h & & \downarrow_k \\ a & \xrightarrow{f} & b \end{array}$$

Theorem 2 (Monad \Rightarrow Adjunction). Let (T, μ, η) be a monad acting on C. Then there are adjunctions F^T, G^T, F_T, G_T such that the following diagram commutes

Proof. We define F_T , G_T as follows:

$$\begin{array}{cccc} \mathcal{C}_T & a \xrightarrow{f} b & a \xrightarrow{\eta_b \cdot g} b \\ & & \downarrow_{G_T} & \downarrow_{G_T} & F_T \uparrow & F_T \uparrow \\ \mathcal{C} & Ta \xrightarrow{\mu_b \cdot T_f} Tb & a \xrightarrow{g} b \end{array}$$

Check:

$$(G_T(F_T f)) = G_T(\eta_b \cdot f) = \mu_b \cdot T(\eta_b \cdot f) = (\mu_b \cdot T\eta_b) \cdot Tf = Tf$$

Moreover, there is a natural bijection between $C_T(F_T a, b) = C_T(a, b)$ and $C(a, G_T b) = C(a, Tb)$. In fact, in this case, the bijection is an "equality" given how the morphisms in C_T are defined.

In particular, we note that the counit ϵ_T at b, which is a morphism from $F_TG_Tb = Tb$ to b in C_T , just is 1_{Tb} .

Now as for the Eilenberg-Moore category, we define F^T and G^T as follows,

$$\begin{array}{cccc} \mathcal{C} & a & \xrightarrow{f} & b & a & \xrightarrow{g} & b \\ & & \downarrow_{F^{T}} & \downarrow_{F^{T}} & G^{T} \uparrow & & G^{T} \uparrow \\ \mathcal{C}^{T} & & (Ta, \mu_{a}) & \xrightarrow{f} & (Tb, \mu_{b}) & (a, h) & \xrightarrow{g} & (b, k) \end{array}$$

Let $\epsilon_{(a,h)} = h$. We leave it as an exercise to check that ϵ so defined is indeed a natural transformation from $F^T G^T$ to id_{C^T} . We check that $F^T \dashv G^T$ by showing that η and ϵ satisfy the triangle equalities.

$$F^{T}a = (Ta, \mu_{a}) \xrightarrow{F^{T}\eta} F^{T}G^{T}F^{T}a = (T^{2}a, \mu_{Ta})$$
$$\downarrow \epsilon F^{T} = \mu_{Ta}$$
$$F^{T}a = (Ta, \mu_{a})$$

which commutes by the associative square of μ .

Similarly,

$$G^{T}(a,h) = a \xrightarrow{\eta G^{T} = \eta} G^{T} F^{T} G^{T}(a,h) = Ta$$
$$\downarrow^{G^{T} \epsilon_{(a,h)} = h}$$
$$G^{T}(a,h) = a$$

which commutes by the fact that *h* is the left inverse of η_a .

Lastly, if C is a category, let $\operatorname{Adj}_T(C)$ be the category of adjunctions whose objects are fully specified adjunctions and morphisms are adjunctions transformations. We show that C_T and C^T are respectively the initial and terminal objects in this category, in the following sense:

Theorem 3. Let (T, μ, η) be a monad acting on C. If $F : C \to D$ and $G : D \to C$ is an adjunction that gives rise to this monad, then there is a unique functor $K : C_T \to D$ and $L : D \to C^T$ such that the following diagram commutes:

Proof. The left triangle commutes just in case the following squares commute:

$$\begin{array}{cccc} \mathcal{C}_T & \xrightarrow{G_T} & \mathcal{C} & \xrightarrow{F_T} & \mathcal{C}_T \\ & \downarrow_K & & & \downarrow_K \\ \mathcal{D} & \xrightarrow{G} & \mathcal{C} & \xrightarrow{F} & \mathcal{D} \end{array}$$

Now the commutativity of the right square forces

$$KF_T a = Ka = Fa, \quad \forall a : obC.$$

Moreover, note that

$$\mathcal{C}_T(a,b) = \mathcal{C}(a,Tb) = \mathcal{C}(a,G_TF_Tb) = \mathcal{C}(a,GKF_Tb) \cong \mathcal{D}(Fa,KF_Tb) = \mathcal{D}(KF_Ta,KF_Tb).$$

Recall that if $F \dashv G$, then

$$\mathcal{C} \qquad a \xrightarrow{f} GKF_T b$$

$$\mathcal{D} \qquad Fa \xrightarrow{Ff} FGKF_T b \xrightarrow{\epsilon_{KF_T} b} KF_T b$$

But $\epsilon_{KF_Tb} = \epsilon_{Fb}$. So $Kf = \epsilon_{Fb} \cdot Ff$.

Hence *K* exists and is unique.

Now the right triangle commutes just in case the following squares commute:

$$\begin{array}{ccc} \mathcal{C}^{T} & \xrightarrow{G^{T}} \mathcal{C} & \xrightarrow{F^{T}} \mathcal{C}^{T} \\ \mathcal{L} \uparrow & & \parallel & \mathcal{L} \uparrow \\ \mathcal{D} & \xrightarrow{G} \mathcal{C} & \xrightarrow{F} \mathcal{D} \end{array}$$

Since G_T is the projection functor, the commutativity of the left square forces

$$Ld = (Gd, \gamma_d), \quad \forall d : ob\mathcal{D}$$

We verify that $\gamma_d = G\epsilon_d$. By previous observation, we know $\gamma_d = \epsilon_{(Gd,\gamma d)}^T = \epsilon_{Ld}^T$. By the triangle inequality $G\epsilon \cdot \eta_G$, we have

$$Gd = G^{T}Ld \xrightarrow{\eta_{Gd}} G^{T}F^{T}G^{T}Ld = GFGd$$

$$\downarrow^{G^{T}\epsilon_{Ld}^{T} = \gamma_{d}}_{G^{T}Ld = Gd}$$

$$\downarrow^{G^{T}}Ld = Gd$$

Therefore, $\gamma_d = G\epsilon_d$. On morphisms, since $LG^T = G$, we have Lf = Gf, which one can verify is indeed a a structure morphism.

Example 1 (Powerset Monad). Consider the powerset monad (\mathcal{P}, μ, η) on **Set** defined by

$$\mu_X : \mathcal{PPX} \to \mathcal{PX} \quad S \mapsto \bigcup S$$
$$\eta_X : X \to \mathcal{PX} \quad x \mapsto \{x\}$$

This gives content to our Moral 2: $\mathcal{P}X$ is a "generalized set" associated with *X*; μ_X de-generalizes $\mathcal{PP}X$ to $\mathcal{P}X$ by collapsing the set-brackets; η_X embeds *X* into $\mathcal{P}X$.

The crucial observation is that $\mathbf{Set}_{\mathcal{P}}$, the Kleisli category of the powerset monad, is the category of sets with relations!

Here is a short argument why:

$$\mathbf{Set}^{\mathcal{P}}(X,Y) = \mathbf{Set}(X,\mathcal{P}Y)$$
$$= \mathbf{Set}(X,\mathbf{Set}(Y,2))$$
$$= \mathbf{Set}(X \times Y,2)$$
$$= \mathcal{P}(X \times Y)$$

So morphisms in $\mathbf{Set}^{\mathcal{P}}$ are precisely set-theoretic relations!

Example 2 (Giry Monad). Recall that the Giry monad is the triple (\mathcal{M}, μ, η) on **Meas** where

M sends each measurable space (*X*, *F*) to the measurable space of its probability measures,
 i.e. *M*(*X*) = {*ν* : *ν* is a probability measure on *X*}.

(Crash course on measure theory for those who are keen) A measurable space is a set *X* endowed with a σ -algebra \mathcal{F} , where \mathcal{F} is a field of subsets of *X* (subsets that are "measurable") such that \mathcal{F} contains \emptyset and is closed under complementation as well as countable union.

Given two measurable space (X, \mathcal{F}) and (Y, \mathcal{G}) , we say a function $f : X \to Y$ is measurable if $f^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{G}$. That is, the preimage of a measurable set under f is also measurable (but f does not need to send a measurable set to a measurable set; in particular, f(X) does not need to be measurable).

Given a measurable space (X, \mathcal{F}) , the canonical σ -algebra associated with $\mathcal{M}(X)$ is the coarsest σ -algebra such that the functions $ev_A : \mathcal{M}(X) \to [0,1]$ given by $ev_A(v) = v(A)$ is measurable (with respect to the Borel algebra of [0,1] - the σ -algebra generated by open intervals in [0,1]) for all $A \in \mathcal{F}$.

• $\mu_X : \mathcal{M}(\mathcal{M}(X)) \to \mathcal{M}(X)$ is given by $\pi \mapsto \mathcal{E}(\pi)$, where $\mathcal{E}(\pi)$ is a probability measure on X that assigns each measurable set A the probability $\int_{\nu \in \mathcal{M}(X)} \nu(A) \pi(d\nu)$ - the average probability of A weighted by π .

• $\nu_X : X \to \mathcal{M}(X)$ sends each element $x \in X$ to the Dirac measure δ_x .

Again our Moral 2 and Moral 3 apply in this example: we can think of $\mathcal{M}(X)$ as a (randomized) generalized space associated with *X*; μ_X as de-randomization, and ν_X as a canonical embedding of *X* into its stochastic generalization (where elements in *X* correspond to deterministic measures).

The Kelisli category of this monad is rather beautiful. Note that morphisms in **Meas**_M are measurable functions $Q : X \to \mathcal{M}(Y)$. Alternatively (by currying), we can think of Q as as a two-place function that takes (x, A) as input (with $x \in X$, and A a measurable set in Y), and returns a probability. This is precisely the *conditional probability* function (just rewrite Q(x, A) as Q(A|x)). So morphisms in **Meas**_M are also called Markov kernels or transition probabilities, and **Meas**_M is often referred to as the stochastic category **Stoch**.

In particular, it is not hard to see that the terminal object in $\operatorname{Meas}_{\mathcal{M}}$ is $(1, \{\emptyset, 1\})$. Morphisms $P : 1 \rightsquigarrow X$ in $\operatorname{Meas}_{\mathcal{M}}$ are, according to the proposed interpretation, conditional probabilities P(.|1 = 1). But since there is no stochasticity associated with 1 = 1, these are indeed the *unconditional probability measures defined on* X! So this gives us an alternative perspective on probability theory: probability measures on (X, \mathcal{F}) are morphisms from 1 to X in $\operatorname{Meas}_{\mathcal{M}}$. Moreover, just as we can think of settheoretic elements as injective functions $f : 1 \to X$ in Set , we can also think of probability functions $P : 1 \rightsquigarrow X$ as stochastic elements in X!