
Lecture: Monad and Adjunctions

November 7, 2018

Moral 1 Monads are “shadows” of adjunctions!

Moral 2 If (T, µ, η) is a monad on C, then Ta is a generalized space associated with a; µa is a degen-
eralization morphism; ηa is a canonical embedding of a into the generalized space Ta.

Moral 3 Morphisms in the Kleisli category CT are generalizations of morphisms in the base category
C.

More precisely, every adjunction gives rise to a monad, and every monad gives rise to (multiple)
adjunctions.

Definition 1. Let C be a category. A monad on C is a triple (T, µ, η) where T : C → C is an endofunctor,
µ : T2 ⇒ T and η : idC ⇒ T are natural transformations such that the following two diagrams
commute:

T3 T2

T2 T

Tµ

µT µ

µ

T T2 T

T

ηT

µ

Tη

Theorem 1 (Adjunction⇒Monad). Given

C D
F

G

a

(GF, GεF, η) is a monad on C.

Proof. The associative diagram for GεF is a special case of horizontal composition of natural transfor-
mations:

C D D D CF FG

idD

FG

idD

G

The unit diagram for η follows from triangle equalities:

GFc GFGFc GFc

GFc

GFηc

GεFc

ηGFc

where
GεFc · ηGFc = (Gε · ηG)Fc = (idG)Fc = idGFc

and
GεFc · GFηc = G(εFc · Fηc) = G(idF)c = idGFc
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Definition 2. Let (T, µ, η) be a monad acting on C. The Kleisli category CT is the category with
obCT = obC and a morphism f : a  b in C is a morphism f : a → Tb in C. Compositions are given
by

a b c

a Tb T2c Tc

f g

f Tg µc

The Eilenberg-Moore category CT (also known as the category of free T-algebras) is the category
with objects (a, h), where h : Ta → a is a structure morphism that makes the following two diagrams
commute,

a Ta

a

ηa

h

Ta Ta

Ta a

Th

µa h
h

and morphisms f : (a, h)→ (b, k) that makes the following diagram commutes in C:

Ta Tb

a b

T f

h k
f

Theorem 2 (Monad ⇒ Adjunction). Let (T, µ, η) be a monad acting on C. Then there are adjunctions
FT , GT , FT , GT such that the following diagram commutes

CT CT

CGT

GTFT

FT

Proof. We define FT , GT as follows:

CT a b

C Ta Tb

GT

f

GT

µb ·T f

a b

a b

ηb ·g

g
FT FT

Check:
(GT(FT f )) = GT(ηb · f ) = µb · T(ηb · f ) = (µb · Tηb) · T f = T f

Moreover, there is a natural bijection between CT(FTa, b) = CT(a, b) and C(a, GTb) = C(a, Tb). In
fact, in this case, the bijection is an “equality” given how the morphisms in CT are defined.

In particular, we note that the counit εT at b, which is a morphism from FTGTb = Tb to b in CT ,
just is 1Tb.

Now as for the Eilenberg-Moore category, we define FT and GT as follows,

C a b

CT (Ta, µa) (Tb, µb)

FT

f

FT

f

a b

(a, h) (b, k)

g

g
GT GT

Let ε(a,h) = h. We leave it as an exercise to check that ε so defined is indeed a natural transformation
from FTGT to idCT . We check that FT a GT by showing that η and ε satisfy the triangle equalities.
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FTa = (Ta, µa) FTGT FTa = (T2a, µTa)

FTa = (Ta, µa)

FTη

εFT=µTa

which commutes by the associative square of µ.
Similarly,

GT(a, h) = a GT FTGT(a, h) = Ta

GT(a, h) = a

ηGT=η

GTε(a,h)=h

which commutes by the fact that h is the left inverse of ηa.

Lastly, if C is a category, let AdjT(C) be the category of adjunctions whose objects are fully spec-
ified adjunctions and morphisms are adjunctions transformations. We show that CT and CT are re-
spectively the initial and terminal objects in this category, in the following sense:

Theorem 3. Let (T, µ, η) be a monad acting on C. If F : C → D and G : D → C is an adjunction that
gives rise to this monad, then there is a unique functor K : CT → D and L : D → CT such that the following
diagram commutes:

CT D CT

C
GT

K

G

L

GTFT F
FT

Proof. The left triangle commutes just in case the following squares commute:

CT C CT

D C D

GT

K

FT

K

G F

Now the commutativity of the right square forces

KFTa = Ka = Fa, ∀a : obC.

Moreover, note that

CT(a, b) = C(a, Tb) = C(a, GT FTb) = C(a, GKFTb) ∼= D(Fa, KFTb) = D(KFTa, KFTb).

Recall that if F a G, then

C a GKFTb

D Fa FGKFTb KFTb

f

F f εKFT b

But εKFTb = εFb. So K f = εFb · F f .

Hence K exists and is unique.
Now the right triangle commutes just in case the following squares commute:

CT C CT

D C D

GT FT

L

G F

L
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Since GT is the projection functor, the commutativity of the left square forces

Ld = (Gd, γd), ∀d : obD

We verify that γd = Gεd. By previous observation, we know γd = εT
(Gd,γd) = εT

Ld. By the triangle
inequality Gε · ηG, we have

Gd = GT Ld GT FTGT Ld = GFGd

GT Ld = Gd

ηGd

GTεT
Ld=γd

Gεd

Therefore, γd = Gεd. On morphisms, since LGT = G, we have L f = G f , which one can verify is
indeed a a structure morphism.

Example 1 (Powerset Monad). Consider the powerset monad (P , µ, η) on Set defined by

µX : PPX → PX S 7→
⋃

S

ηX : X → PX x 7→ {x}

This gives content to our Moral 2: PX is a “generalized set” associated with X; µX de-generalizes
PPX to PX by collapsing the set-brackets; ηX embeds X into PX.

The crucial observation is that SetP , the Kleisli category of the powerset monad, is the category of
sets with relations!

Here is a short argument why:

SetP (X, Y) = Set(X,PY)

= Set(X, Set(Y, 2))

= Set(X×Y, 2)

= P(X×Y)

So morphisms in SetP are precisely set-theoretic relations!

Example 2 (Giry Monad). Recall that the Giry monad is the triple (M, µ, η) on Meas where

• M sends each measurable space (X,F ) to the measurable space of its probability measures,
i.e.M(X) = {ν : ν is a probability measure on X}.

(Crash course on measure theory for those who are keen) A measurable space is a set X
endowed with a σ-algebra F , where F is a field of subsets of X (subsets that are “measur-
able”) such that F contains ∅ and is closed under complementation as well as countable
union.

Given two measurable space (X,F ) and (Y,G), we say a function f : X → Y is measurable
if f−1(A) ∈ F for all A ∈ G. That is, the preimage of a measurable set under f is also
measurable (but f does not need to send a measurable set to a measurable set; in particular,
f (X) does not need to be measurable).

Given a measurable space (X,F ), the canonical σ-algebra associated with M(X) is the
coarsest σ-algebra such that the functions evA : M(X) → [0, 1] given by evA(ν) = ν(A)

is measurable (with respect to the Borel algebra of [0, 1] - the σ-algebra generated by open
intervals in [0, 1]) for all A ∈ F .

• µX : M(M(X)) → M(X) is given by π 7→ E(π), where E(π) is a probability measure on X
that assigns each measurable set A the probability

∫
ν∈M(X) ν(A)π(dν) - the average probability

of A weighted by π.
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• νX : X →M(X) sends each element x ∈ X to the Dirac measure δx.

Again our Moral 2 and Moral 3 apply in this example: we can think of M(X) as a (randomized)
generalized space associated with X; µX as de-randomization, and νX as a canonical embedding of X
into its stochastic generalization (where elements in X correspond to deterministic measures).

The Kelisli category of this monad is rather beautiful. Note that morphisms in MeasM are mea-
surable functions Q : X → M(Y). Alternatively (by currying), we can think of Q as as a two-place
function that takes (x, A) as input (with x ∈ X, and A a measurable set in Y), and returns a probabil-
ity. This is precisely the conditional probability function (just rewrite Q(x, A) as Q(A|x)). So morphisms
in MeasM are also called Markov kernels or transition probabilities, and MeasM is often referred to
as the stochastic category Stoch.

In particular, it is not hard to see that the terminal object in MeasM is (1, {∅, 1}). Morphisms P :
1  X in MeasM are, according to the proposed interpretation, conditional probabilities P(.|1 = 1).
But since there is no stochasticity associated with 1 = 1, these are indeed the unconditional probability
measures defined on X! So this gives us an alternative perspective on probability theory: probability
measures on (X,F ) are morphisms from 1 to X in MeasM. Moreover, just as we can think of set-
theoretic elements as injective functions f : 1 → X in Set, we can also think of probability functions
P : 1 X as stochastic elements in X!
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