Category Theory Pset 2

September 26, 2018

- 1. Let Σ be the one-sorted first-order signature consisting of a function symbol $f: S \to S$. Show that every Σ -structure \mathcal{M} can be expressed as a functor $\mathcal{M}_{\mathcal{M}}$ in the category \mathbf{Set}^{D} for some appropriately chosen D. Conversely, show that every functor \mathcal{M} in \mathbf{Set}^{D} gives rise to a Σ -structure $\mathcal{M}_{\mathcal{M}}$. Hence, prove that there is an equivalence between the category $\mathbf{Str}(\Sigma)$ with objects the Σ -structures and Σ -homomorphisms as arrows and the functor category \mathbf{Set}^{D} (for your appropriately chosen D).
- 2. *For R a ring, describe the category R-Mod of R-modules and R-module homomorphisms as a full subcategory of the functor category Ab^{R} .
- 3. For \mathcal{P} and \mathcal{Q} posets, describe the functor category $\mathcal{Q}^{\mathcal{P}}$ and prove that it is a poset.
- 4. Let \mathcal{C} be a category and c an object in \mathcal{C} .
 - (a) Prove that the category $(\mathcal{C}/c)^{op}$ is equivalent to the category of elements of the functor $\mathcal{C}(-,c)$. (read definition 2.4.1)
 - (b) Prove that the co-slice category c/C is equivalent to the category of elements of the functor C(c, -).
- 5. Given functors $T, S: \mathcal{D} \to \mathcal{C}$ show that a natural transformation $\tau: T \Rightarrow S$ is the same thing as a functor $\tau: \mathcal{D} \to (T \downarrow S)$ such that $P\tau = Q\tau = 1_{\mathcal{D}}$, with $P: T \downarrow S \to \mathcal{D}$ the projection functor that on objects sends $(a, b, f) \mapsto a$ and $Q: T \downarrow S \to \mathcal{D}$ the projection functor that on objects sends $(a, b, f) \mapsto b$. (read definition in 1.3.vi)
- 6. *Show that the functor $\mathcal{O}: \mathbf{Top} \to \mathbf{Set}$ which sends a topological space X to its set of open subsets is represented by the Sierpinski space, i.e. by the topology on $\{0, 1\}$ where exactly one of its two proper subsets is open.
- 7. Define a functor $M: \mathbf{Cat} \to \mathbf{Set}$ that sends a (small) category to the set of all its morphisms. Hence, prove that it is representable.

8. For $F: \mathcal{C} \to \mathbf{Set}$ and any a in \mathcal{C} prove that there is an isomorphism

$$\operatorname{Nat}(F, \mathcal{C}(a, -)) \simeq \operatorname{Nat}(\hat{a}, P)$$

natural in F and a, where $P: \int F \to C$ is the canonical projection functor that on objects sends $(a, x) \mapsto a$ and \hat{a} is the constant functor on a.