Category Theory Pset 1

September 24, 2018

- 1. Is there a faithful functor $F: C \to D$ such that there exist distinct arrows f, g in C with F(f) = F(g)? Provide an example, or prove that no example exists.
- 2. Let C be a category and C_g its associated groupoid. Define a faithful functor $C_g \to C$. Hence, or otherwise, prove that if C is equivalent to C_g then C is also a groupoid.
- 3. Let $F: \mathcal{C} \to \mathcal{D}$ be a full and faithful functor.
 - (a) Show that *F* is *conservative*: For any arrow $f: a \rightarrow b$, if *Ff* is an isomorphism then *f* is an isomorphism.
 - (b) Show that *F* creates isomorphisms: For any objects *a*, *b* in *C*, if $Fa \cong Fb$ then $a \cong b$.
- 4. Riehl, Exercise 1.1.iii (p.8)
- 5. Let (\mathbb{P}, \leq) be a partially ordered set ("poset").
 - (a) Describe a category structure on \mathbb{P} such that there is an arrow between any $a, b \in \mathbb{P}$ iff $a \leq b$.
 - (b) Hence, define a category **Poset** with objects posets and morphisms the order-preserving maps between posets. (Given posets (P₁, <) and (P₂, ≤) a map *f* : P₁ → P₂ is *order preserving* iff *a* < *b* ⇒ *f*(*a*) ≤ *f*(*b*)).
 - (c) Use your previous construction to define a full functor **Poset** \rightarrow **Cat**.
 - (d) Prove that **Poset** is equivalent to the category of (small) categories that have at most one arrow between any two of their objects.
- 6. Find a set A such that Set(A, -) is naturally isomorphic to the identity functor on Set.
- 7. Let C be a locally small category. Prove that $f: a \to b$ is an isomorphism if and only if for any c in C the "precomposition" function

$$\mathcal{C}(b,c) \longrightarrow \mathcal{C}(a,c)$$

 $g \longmapsto g \circ f$

is a bijection.