Obfuscation and Weak Multilinear Maps

Mark Zhandry – Princeton University

Joint work with Saikrishna Badrinarayanan, Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan
Obfuscation [BGIRSVY’01, GGHRSW’13]

Compiler: “scrambles” program, hiding implementation

“Industry accepted” security notion: indist. Obfuscation

$$P_1(x) = P_2(x) \forall (x) \Rightarrow iO(P_1) \approx_c iO(P_2)$$

“Crypto complete”:

[GGHRSW’13, SW’13, BZ’13, BST’13, GGHR’13, BP’14, HJKSWZ’14, CLTV’14, ...]
Multilinear Maps (a.k.a. graded encodings) [BS’03, GGH’13, CLT’13, GGH’15]

Main tool for all constructions of obfuscation

Levels 1,...,k, Field/Ring F

secret

$\{a \in F, i \in [k]\}$

$[a]_i + [b]_i \rightarrow [a+b]_i$

$[a]_i \times [b]_j \rightarrow [ab]_{i+j}$

public

$[a]_k \rightarrow \text{IsZero} \rightarrow \text{Yes/No}$
Multilinear Maps (a.k.a. graded encodings) [BS’03, GGH’13, CLT’13, GGH’15]

k levels: compute arbitrary degree **k** polynomials

Asymmetric mmaps: additional restrictions
- E.g. multilinear polynomials
Obfuscation From Multilinear Maps

\[\text{Obfuscate}(P): \]

\[\text{Eval}(x): \quad X \]

\[\text{Enc} \]

\[[p_x]_k \]

\[\text{IsZero} \]

\[P(x) = 1 \iff p_x = 0 \]
Applications of Multilinear Maps
“Zeroizing” Attacks on MMaps
“Zeroizing” Attacks on MMaps

(Note: apps still possible using obfuscation)
Central Questions

Q1: Is obfuscation secure?

Q2: If so, how to show it?
This Work: Focus on GGH’13 Mmaps
Background...
High-level description GGH13

Level i encoding of x: $\frac{x + g^s}{z^i} \pmod{q}$
High-level description GGH13

Level i encoding of x: \[
\frac{x + gs}{{z_i}^{\text{"short"}}} \pmod{q}
\]

• Add within levels

\[
\frac{x_1 + gs_1}{{z_i}^i} + \frac{x_2 + gs_2}{{z_i}^i} = \frac{(x_1 + x_2) + g(s_1 + s_2)}{{z_i}^i}
\]
High-level description GGH13

Level \(i\) encoding of \(x\): \(\frac{x + gs}{z^i} \text{“short” (mod } q)\)

- Add within levels
- Multiplication makes levels add

\[
\frac{x_1 + gs_1}{z^i} \cdot \frac{x_2 + gs_2}{z^j} = \frac{(x_1 x_2) + g(s_1 x_2 + s_2 x_1 + gs_1 s_2)}{z^{i+j}}
\]
High-level description GGH13

Level i encoding of x: $\frac{x + gs}{zi} \pmod{q}$

- Add within levels
- Multiplication makes levels add
- Test for zero at “top level” k

Public parameter $p_{zt} = \frac{h z^k}{g}$ “not too big”

$$p_{zt} \frac{gs}{z^k} = hs \quad "not\ too\ big"$$

$$p_{zt} \frac{x + gs}{z^k} = \frac{hx}{g} + hs \quad "big"$$
High-level description GGH13

Level \(i \) encoding of \(x \): \(\frac{x + gs}{zi} \) \(\pmod{q} \)

- Add within levels
- Multiplication makes levels add
- Test for zero at “top level” \(k \)

Notes:
- \(z \) must be secret (else can go down levels)
- \(g \) must be secret ([GGH’13] show attack otherwise)
Encodings of Zero – A Necessary Evil

Required for (Most) Applications

“Re-randomization”
• Needed for most (direct) applications
• Needed to use any “simple” assumption on mmaps

Add random subset of low-level zeros

Successful zero test \Rightarrow top level zero
Encodings of Zero – A Necessary Evil

Required for (Most) Applications

Two low-level zeros:

\[e_1 = g \frac{s_1}{z^i}, \quad e_2 = g \frac{s_2}{z^{k-i}} \]

\[p_{z^i} e_1 e_2 \mod q = hgs_1 s_2 \text{ (over } \mathbb{Z}) \]

Dangerous For Security
Encodings of Zero – A Necessary Evil

Required for (Most) Applications

Zeroizing attacks:
• GGH’13: “Source group” assumptions (e.g. DLin, Subgroup decision) are false
• CGHLMMRST’15: Immunizations don’t work
• HJ’16: MDDH is false, multiparty NIKE broken
• Probably other assumptions broken too (MDHE, etc)

Dangerous For Security
Encodings of Zero – A Necessary Evil

Required for (Most) Applications

Dangerous For Security
What about Obf/WE/SKFE?

Good News:
No re-randomization needed in application
no low-level zeros (explicit or implicit)

Bad News:
Top level zeros may still be generated during use
Re-rand still needed for “simple” assumptions
Central Questions (Restated)

Q1: Can top-level zeros be used to attack iO?

Q2: How to argue security against zeroizing attacks?
Q1: Affirmative!

Thm* [MSZ’16]: The branching program obfuscators in [BGKPS’14, PST’14, AGIS’14, BMSZ’16] over GGH’13 do not satisfy iO

Small heuristic component
(Single input) Branching Programs

\[\text{x} = 11001: \]

\[\text{IMP}_x(\{ A_{i,b} \}) = 1 \]

If \(\text{IMP}_x = 0 \), output 1, otherwise output 0
[BMSZ’16] Obfuscator
Building on [GGHRSW’13, BR’14, BGKPS’14, AGIS’14, ...]

“asymmetric” mmap
[BMSZ’16] Over GGH’13

Randomized Branching Program

\[B_{i,b} = \alpha_{i,b} R_i^{-1} A_{i,b} R_{i+1} \]

Encoding randomness

\[S_{i,b} \]

Obfuscation encodings

\[C_{i,b} = B_{i,b} + g S_{i,b} \mod q \]

Evaluation:

\[T_x = \text{IMP}_x(C_{i,b}) \mod q \]

\(\rightarrow \) test if “not too big”
Attack: Annihilating Polynomials

\[T_X = p_{zt} \times \text{IMP}_x(C_{i,b}) \mod q \]

\[= \frac{h}{g} \times \text{IMP}_x(B_{i,b} + gS_{i,b}) \mod q \]

\[= \frac{h}{g} \times \text{IMP}_x(B_{i,b}) + D_X(\alpha_{i,b}, S_{i,b}, R_i) \]

\[+ g \times E_X(\alpha_{i,b}, S_{i,b}, R_i) \mod q \]
Suppose $P(x) = 1$ \implies $\text{IMP}_x(B_{i,b}) = 0$

\[T_x = \frac{h}{g} \times \text{IMP}_x(B_{i,b}) + D_x(\alpha_{i,b}, S_{i,b}, R_i) + g \times E_x(\alpha_{i,b}, S_{i,b}, R_i) \mod q \]

“not too big”, so holds over \mathbb{Z}
Attack: Annihilating Polynomials

Suppose $P(x) = 1$

$$T_x = D_x(\alpha_{i,b}, S_{i,b}, R_i) + g \times E_x(\alpha_{i,b}, S_{i,b}, R_i)$$

Efficiency: Poly-many free vars

Exp-many inputs: Pick larger poly set of D_x

Algebraic dependence: \exists poly Q: $Q(D_{x1}, D_{x2}, \ldots) = 0$
Attack: Annihilating Polynomials

Algebraic dependence:
\[\exists \text{poly } Q: Q(D_{x_1}, D_{x_2}, \ldots) = 0 \]

\[Q(T_{x_1}, T_{x_2}, \ldots) = Q(D_{x_1}+gE_{x_1}, D_{x_2}+gE_{x_2}, \ldots) \]
\[= Q(D_{x_1}, D_{x_2}, \ldots) + gQ' + g^2Q'' + \ldots \]
\[= gQ' + g^2Q'' + \ldots \]
Goal: find Q that annihilates P_1, but not P_2

Distinguishing Attack*

Extends to any “purely algebraic” obfuscator

Problem: in general, annihilation is hard

Thm ([Kay’09]): Unless PH collapses, there are dependent polys for which an annihilating polynomial requires super-polynomial sized circuits

Question: Can annihilating polys be found for particular obfuscators/programs?

* Additional work needed to test for multiple of g
Attack: Annihilating Polynomials

Consider “single-input” setting (used to prove iO)
Suppose “trivial” branching program: \(A_{i,0} = A_{i,1} = A_i \)

Explicit annihilating polynomial for [BMSZ’16]:

\[
q = (D_{000}D_{111})^2 + (D_{001}D_{110})^2 + (D_{010}D_{101})^2 + (D_{100}D_{011})^2 \\
- 2D_{000}D_{111}D_{001}D_{110} - 2D_{000}D_{111}D_{010}D_{101} - 2D_{000}D_{111}D_{100}D_{011} \\
- 2D_{001}D_{110}D_{010}D_{101} - 2D_{001}D_{110}D_{100}D_{011} - 2D_{010}D_{101}D_{100}D_{011} \\
+ 4D_{000}D_{011}D_{101}D_{111} + 4D_{111}D_{001}D_{010}D_{100}
\]

Computed by reducing problem to finite size, then brute-force search
Attack: Annihilating Polynomials

For dual input:
• First, reduce problem to finite size
• Brute-force annihilating poly in constant time
• Haven’t found it yet, but still gives poly-time attack

Other obfuscators:
• [BR’14, BGKPS’14, PST’14, AGIS’14]: similar analysis

Also attack ORE (SKFE) [BLRSZZ’15] over GGH’13
Now What?

Goal: Argue security of other schemes

Problem: Cannot use “simple” assumptions

Solution: Argue security in abstract attack models
Restricted Black Box Fields

\(\mathcal{F} = \text{Field}, \mathcal{P} = \text{class of polynomials on } n \text{ variables} \)

Generic Groups*:
\[\mathcal{P} = \{ \text{Linear functions} \} \]

Black Box Fields*:
\[\mathcal{P} = \{ \text{Polys with small algebraic circuits} \} \]

Symmetrix multilinear maps*:
\[\mathcal{P} = \{ \text{Degree } k \text{ polynomials} \} \]

Asymmetric multilinear maps*:
\[\mathcal{P} = \{ \text{More complicated restrictions} \} \]

* Often need greater functionality requirements for protocols. This model suffices for our discussion.
Obfuscation in Restricted BBFs

(model used by [BR’14,BGKPS’14,AGIS’14,Z’15,AB’15,BMSZ’16])

Obfuscate(C):

\[\text{Eval}(x) : \text{IsZero}(p(a_1, a_2, \ldots, a_n)) \]

- If \text{IsZero} gives “True”, output 1
- If \text{IsZero} gives “False”, output 0

Our Attack: Model is false for GGH’13
A Conservative Model [BMSZ’16]

\[
\begin{align*}
\text{BBF with restricted polynomial class } P \\
\text{If } \text{IsZero}(p(a_1, a_2, ..., a_n)), \\
\Rightarrow \\
\text{ADVERSARY WINS}
\end{align*}
\]
Obfuscation for evasive functions [BMSZ’16]

Honest executions always give non-zero

Thm([BMSZ’16]): Only way for “level respecting” adversary to get zero is through honest program executions

Impossible to find zeros anywhere for evasive funcs

Compare to prior “abstract model” theorems:

Thm([BR’14, BGKPS’14, ...]): For “level respecting” adversary, can guess output of `IsZero` just by knowing `P(x)`

Doesn’t say if/when finding a zero is possible
A Conservative Model [BMSZ’16]

Model useless in “non-evasive” settings, e.g. iO, SKFE

Need model that allows for zeros to occur
Characterizing Attacks

All Known Classical Attacks

Compute polynomials obeying level restrictions

Several top level zero encodings

Attack
Characterizing Attacks

All Known Classical Attacks

- Compute polynomials obeying level restrictions
- Several top level zero encodings
- Polynomial in the zeros
- Multiple of g
- Attack
Refined Abstract Model for Mmap attacks

\[a_1, a_2, \ldots, a_n \in F \]
\[s_1, s_2, \ldots, s_n \leftarrow \$ F \]

Write \(p(a_1+gs_1, \ldots, a_n+gs_n) \)
\[= c + dg + \ldots \]

If \(c \neq 0 \), output “False”
If \(c = 0 \), output “True”, \(d \)

Efficient polys*

\[q \in Q \]

Unrestricted BBF

\[d_1 \ d_2 \ d_3 \ldots \]

If \(q(d_1, d_2, \ldots) = 0 \), adversary wins

* Also need to assume degree \(\ll |F| \)
Refined Abstract Model for Mmap attacks

• Seems to capture intuition behind attacks

Proof in refined model → Heuristic evidence of security against current attacks

But keep in mind that:

Attack in refined model → Attack on actual protocol
Not trivially
Blocking Attacks [GMMSSZ’16]

Notably absent from attacked schemes: [GGHRSW’13]

Random diagonal converts even “trivial” branching programs into non-trivial ones

\[A'_{i,b}: \]

\[A_{i,b}, D_{i,b} \]

size > multilinearity
Blocking Attacks [GMMSSSZ’16]

Our fix: append random block matrix

\[A'_{i,b} : \]

\[\begin{array}{c|c}
 A_{i,b} & E_{i,b} \\
 \hline
 \end{array} \]

Potentially as small as 2×2
Blocking Attacks [GMMSSZ’16]

Let \mathbf{BP}_E be branching program defined by E matrices
Let E_x be evaluation of \mathbf{BP}_E on input x

Thm: If polynomial Q annihilates $\{D_x\}^*$, then it annihilates $\{E_x\}$ as well

Let \mathbf{BP}_F be any \mathbf{BP}, F_x evaluation of \mathbf{BP}_F

Thm: If polynomial Q annihilates $\{E_x\}^*$, then it annihilates $\{F_x\}$ as well

$^* = \text{with noticeable probability}$
Example Proof Sketch

Thm: If polynomial Q annihilates $\{E_x\}^*$, then it annihilates $\{F_x\}$ as well

Let $E_{i,b} = F_{i,b} + r E'_{i,b}$

⇒ $E_x = F_x + r F'_x + r^2 F''_x + \ldots$

⇒ $Q(\{E_x\}) = Q(\{F_x\}) + r Q' + r^2 Q'' + \ldots$

By Schwartz-Zippel, if $\Pr[Q = 0] = \text{non-negl}$, Then Q must be identically 0

⇒ $Q(\{F_x\}) = 0$
Branching Program Unannihilateability

Assumption: For any efficient polynomial \(Q^* \), there is a branching program not annihilated by \(Q \).

“Easy” fact: PRFs in \(\text{NC}^1 \) give unannihilateable branching programs.

Corollary: Assuming BPUA (or \(\text{NC}^1 \) PRFs), our obfuscator is secure in the weak mmap model for [GGH’13].

* of not too high degree
Future Directions

• Substantiate BPUA ($P \neq NP$, general OWF, etc)

• Attack GGH’13 without annihilating polys

• Extend to obfuscation for circuits
 Mostly solved: [DGGMM’16] assuming NC^1 PRFs

• Extend attacks to CLT’13, GGH’15
 Partial progress: [CLLT’16] for single-input iO over CLT’13

• Useful abstract attack model for CLT’13, GGH’15

Thanks!