Post-Zeroizing Obfuscation

New Mathematical Tools and the Case of Evasive Circuits

Saikrishna Badrinarayanan – UCLA
Eric Miles – UCLA
Amit Sahai – UCLA
Mark Zhandry – MIT & Princeton
Obfuscation [BGIRSVY’01,GGHRSW’13]

Compiler: “scrambles” program, hiding implementation

“Industry accepted” security notion: indist. Obfuscation

\[P_1(x) = P_2(x) \quad \forall (x) \quad \Rightarrow \quad iO(P_1) \cong_c iO(P_2) \]

“Crypto complete”:

![Diagram showing iO leading to "Most" Crypto]

[GGHRSW’13,SW’13,BZ’13,BST’13,GGHR’13,BP’14,HJKSWZ’14,CLTV’14,...]
Multilinear Maps (a.k.a. graded encodings) [BS’03, GGH’13, CLT’13, GGH’15]

Main tool for all constructions of obfuscation

Levels $1, \ldots, k$, Field/Ring F

<table>
<thead>
<tr>
<th>Secret</th>
<th>public</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a \in F$, $i \in [k]$</td>
<td>$[a]_i \times [b]_j$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+</th>
<th>$[a+b]_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]_i + [b]_i$</td>
<td>$[a+b]_i$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\times</th>
<th>$[ab]_{i+j}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]_i \times [b]_j$</td>
<td>$[ab]_{i+j}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IsZero</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[a]_k$</td>
<td>IsZero</td>
</tr>
</tbody>
</table>
Multilinear Maps (a.k.a. graded encodings) [BS’03, GGH’13, CLT’13, GGH’15]

k levels: compute arbitrary degree **k** polynomials

Asymmetric mmaps: additional restrictions
 • E.g. multilinear polynomials

Note: current mmaps not ideal
 • Non-unique encodings
 • Encodings may leak op’s that created them
 • Ex: \([a+b]_i \times [c]_j\) vs \([ac]_{i+j} + [bc]_{i+j}\)

• Solution: “re-randomize” by adding encodings of zero
Obfuscation From Multilinear Maps

Obfuscate(P):

\[\text{Eval}(x): \]

\[\text{Enc} \]

\[[p_x]_k \]

\[\text{IsZero} \]

\[P(x) = 1 \iff p_x = 0 \]
Applications of Multilinear Maps
“Zeroizing” Attacks on MMaps
“Zeroizing” Attacks on MMaps

(Note: apps still possible using obfuscation)
Central Questions

Q1: Is obfuscation secure?

Q2: If so, how to show it?
Flavors of Obfuscation

<table>
<thead>
<tr>
<th>Branching Program Obfuscation</th>
<th>NC¹ Obfuscation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GGHRSW’13, BR’14, BGKPS’14, PST’14, GLSW’14, AGIS’14, MSW’14,…]</td>
<td>[Zim’14, AB’15, BD’16]</td>
</tr>
<tr>
<td>• Better understood ✔</td>
<td>• Generally more efficient ✔</td>
</tr>
<tr>
<td>• Conceptually simpler? ✔</td>
<td>• Directly handle NC¹ circuits ✔</td>
</tr>
<tr>
<td>• Prime order mmaps ✔</td>
<td>• Composite-order mmaps ✗</td>
</tr>
<tr>
<td>• Need NC¹ → BP ✗</td>
<td></td>
</tr>
</tbody>
</table>

Boost to obfuscation for all circuits [GGHRSW’13, App’13,…]
This Work: BP Obfuscation

<table>
<thead>
<tr>
<th>Branching Program Obfuscation</th>
<th>NC¹ Obfuscation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GGHRSW’13,BR’14,BGKPS’14,PST ’14,GLSW’14,AGIS’14,MSW’14,...]</td>
<td>[Zim’14,AB’15,BD’16]</td>
</tr>
<tr>
<td>• Better understood</td>
<td>✓</td>
</tr>
<tr>
<td>• Conceptually simpler?</td>
<td>✔</td>
</tr>
<tr>
<td>• Prime order mmaps</td>
<td>✔</td>
</tr>
<tr>
<td>• Need NC¹ → BP</td>
<td>✘</td>
</tr>
<tr>
<td>• Generally more efficient</td>
<td>✓</td>
</tr>
<tr>
<td>• Directly handle NC¹ circuits</td>
<td>✔</td>
</tr>
<tr>
<td>• Composite-order mmaps</td>
<td>✘</td>
</tr>
</tbody>
</table>

Boost to obfuscation for all circuits [GGHRSW’13,App’13,...]
How To Argue Security of iO Candidates?

Option 1: Reduction to “simple” assumption
- Easier to analyze assumption than candidate
- Several ways to do this obfuscation:
 - Directly: [GLSW’15]
 - Through FE: [AJ’15, BV’15], [GGHZ’16]
- Currently only known for BP obfuscation

Essentially all “simple” assumptions broken by zeroizing attacks
How To Argue Security of iO Candidates?

Option 2: Argue security in ideal mmap model

- [BR’14,BGKPS’14,PST’14,Zim’14,AB’15,...]
- Prove that no “generic” attacker exists (i.e. one that only interacts with system through interfaces)
- May be reasonable if no non-generic attacks known
 - Ex: random oracle model, generic group model for ECC

Zeroizing attacks are non-generic, so ideal mmap model no longer compelling
Zeroizing Attacks (for \[GGH’13, CLT’13\])

\[GGH’13, CHLRS’15, BWZ’14, CGHLMRST’15, HJ’15, BGHST1’5, Hal’15, CLR’15, MF’15, MSZ’16a\]

Implications:
- “Simple” assumptions & most direct applications broken
- Notable exceptions: some iO, WE, ORE candidates
Post-Zeroizing Security?

Option 1: avoid zeros entirely
- New ideal model: zero gives complete break

Option 2: Analyze structure of zeros obtained
- More refined ideal model [CGHLMRST’15, MSZ’16a]
- Subject of follow-up works [MSZ’16a, GMS’16, MSZ’16b]

This work: Focus on 1, gives tools for 1 & 2
Post-Zeroizing Security?

Option 1: avoid zeros entirely
- New ideal model: zero gives complete break

Option 2: Analyze structure of zeros obtained
- More refined ideal model [CGHLMMRST’15, MSZ’16]
- Subject of follow-up works [MSZ’16a, GMS’16, MSZ’16b]

This work: Focus on 1, gives tools for 1 & 2

Going forward, must figure out when adversary can get zeros, what the zeros “look like”
Limitations of Prior Security Arguments

Prior works prove following theorem:

Thm ([BR’14,BGPKS’14,AGIS’14]): View of generic adversary (in old model) can be simulated with black box access to P

In particular, if $P_1(x) = P_2(x) \forall (x)$, views are the same in old model (actually get VBB obfuscation in old model)

Problem: analysis gives no indication of when an adversary can find zeros, what the zeros look like
Our Main Result

We give a new obfuscator from mmmaps
• Construction very similar to prior works

Brand new analysis:
• Let p_x be element that is zero-tested when running $P(x)$

Thm (This work, informal): Only zeros adversary can obtain are $[p_x]_k$ for known accepting x

Holds for any “level respecting” model
Implications: Post-Zeroizing Security

Immediate corollary:

Corollary: If P is evasive (hard to find accepting input), can never find a zero \Rightarrow (VBB) security in zero-avoiding model

Fist compelling post-zeroizing security argument for evasive function obfuscation
- Subsequent work: similar result for NC1 obfuscation [BD’16]

Also crucially used in [GMS’16,MSZ’16b]: Obfuscator for all programs secure in refined ideal model
- Captures all known attacks
Implications: Efficiency Improvements

Prior analysis: security for “full rank” BP’s only
- Puts constraints on NC¹ → BP conversion
- Can’t directly handle automata

Our Analysis: security for “essentially all” BPs
- Allows for much more efficient NC¹ → BP conversion
 - Still not quite as efficient as direct NC¹ obfuscators
- Can directly handle automata
- Tools useful in other settings [BLRSZZ’15]

Improved security analysis ⇒ improved efficiency
Proof Overview

Consider arbitrary polynomial of encoded terms

Our analysis:
\[p_x \neq 0 \]

Tools:
- Prior characterization of level-respecting polys \([\text{BGKPS'14,MSW'14}]\)
- Schwartz-Zippel \(\Rightarrow\) anything but \(p_x\), gives non-zero whp
Summary

New tools for analyzing obfuscation

• First obfuscation for evasive functions with compelling “post-zeroizing” security arguments

• Improved efficiency of BP obfuscation

• Basis for subsequent results

Thanks!