APPLICATIONS OF SOFTWARE OBFUSCATION

Mark Zhandry – Stanford University

*Joint work with Dan Boneh
Program Obfuscation

Intuition: Scramble a program
• Preserve functionality
• Hide implementation details

Applications:
• IP Protection
• Software Watermarking
• Crypto
Indist. Obfuscation (iO) [BGI’01, GR’07]

If two programs have same functionality, obfuscations are indistinguishable

\[P_1(x) = P_2(x) \quad \forall x \]

Big questions: How to build? How to use?
Indistinguishability Obfuscation (iO)

An exploding field:

- [GGH+’13] First candidate iO construction
 - Built from multilinear maps
 - First application: functional encryption
- [BR’13, BGK+’13, …] Additional constructions
- [SW’13, GGHR’13, BZ’13, ABGSZ’13, …] Uses
 - Public key encryption, signatures, deniable encryption, multiparty key exchange, MPC, …
- [BCPR’13, MR’13, BCP’13, …] Further Investigation
Our Results

Non-interactive multiparty key exchange
 • First scheme without trusted setup

Efficient broadcast encryption
 • Constant size ciphertext and secret keys
 • First distributed system: users generate keys themselves

Efficient traitor tracing
 • Shortest secret keys, ciphertexts, known
 • Resolves open problem in Differential Privacy [DNR+09]
MULTIPARTY KEY EXCHANGE
(Non-Interactive) Multiparty Key Exchange

Public bulletin board

\[K_{ABCD} \]

\[K_{ABCD} \]

\[K_{ABCD} \]

\[K_{ABCD} \]
History

2 parties: Diffie Hellman Protocol [DH’76]

3 parties: Bilinear maps [Joux’2000]

n>3 parties: Multilinear maps [BS’03, GGH’13, CLT’13]
 • Requires trusted setup phase

Our work: n parties, no trusted setup
Prior Constructions for $n>3$

First achieved using multilinear maps [GGH'13, CLT'13]

- These constructions all require trusted setup before protocol is run
- Trusted authority can also learn group key
Prior Constructions for $n > 3$

First achieved using multilinear maps [GGH'13, CLT'13]

- These constructions all require trusted setup before protocol is run
- Trusted authority can also learn group key

`params`
Starting point for our construction

Building blocks:
- One-way function $G:S \rightarrow X$
- Pseudorandom function (PRF) F

Shared key: $F_k(x_1, x_2, x_3, x_4) \leftarrow$ how to compute securely?
Introduce Trusted Authority (for now)

\[P(y_1, \ldots, y_n, s, i) \{
\text{If } G(s) \neq y_i, \text{ output } \bot \\
\text{Otherwise, output } F_k(y_1, \ldots, y_n)
\} \]
First attempt

Problems:
- k not guaranteed to be hidden using iO
- Still have trusted authority
Removing Trusted Setup

As described, our scheme needs trusted setup

Observation: Obfuscated program can be generated independently of publishing step

Untrusted setup: designate user 1 as “master party”
- generates \(P_{iO} \), sends with \(x_1 \)
Multiparty Key Exchange Without Trusted Setup

Security equivalent to security of previous scheme
Hiding k

Follow “punctured program” paradigm of SW’13

- Use pseudorandom generator for G
 $$G: S \rightarrow X \quad |X| \gg |S|$$
 $$G(s), s \leftarrow S \text{ indist. from } x \leftarrow X$$

- Use special “punctured PRF” for F [BW’13, KPTZ’13, BGI’13, SW’13]
 Punctured key $k^z \Rightarrow$ compute $F_k(x)$ everywhere but z
 $$k^z$$

$$x \xrightarrow{F} F(k,x) \quad \Downarrow \quad \begin{cases} t=F_k(z) & \text{if } x = z \\ \bot & \text{if } x \neq z \end{cases}$$

Security: given k^z, cannot compute $t=F_k(z)$

Construction: GGM’84
Security of Our Construction

\[P(y_1, \ldots, y_n, s, i) \{
\]
\[\text{If } G(s) \neq y_i, \]
\[\quad \text{output } \perp \]
\[\text{Otherwise,} \]
\[\quad \text{output } F_k(y_1, \ldots, y_n) \]
\[\} \]

Adversary’s goal:
Learn \(F_k(x_1, \ldots, x_n) \)
Step 1: Replace x_i

Real World

$$P(y_1, \ldots, y_n, s, i) \{$$
 If $G(s) \neq y_i$,
 output \bot
 Otherwise,
 output $F_k(y_1, \ldots, y_n)$
$$\}$$

Alternate World 1

$$P(y_1, \ldots, y_n, s, i) \{$$
 If $G(s) \neq y_i$,
 output \bot
 Otherwise,
 output $F_k(y_1, \ldots, y_n)$
$$\}$$

Security of $G \Rightarrow$ words indistinguishable
Step 1: Replace x_i

Observation:
Since $|X| \gg |S|$, w.h.p. no s,i s.t. $G(s)=x_i$

Never pass check when $y_1, \ldots, y_n = x_1, \ldots, x_n$
Step 2: Puncture

Alternate World 2

\[P(y_1, ..., y_n, s, i) \{
 \text{If } G(s) \neq y_i, \text{ output } \bot \\
 \text{If } (y_1, ..., y_n) = z, \text{ output } \bot \\
 \text{Otherwise, output } F_k(y_1, ..., y_n)
\}\]

Let \(z = (x_1, ..., x_n) \)

Alternate World 1

\[P(y_1, ..., y_n, s, i) \{
 \text{If } G(s) \neq y_i, \text{ output } \bot \\
 \text{If } (y_1, ..., y_n) = z, \text{ output } \bot \\
 \text{Otherwise, output } F_k(y_1, ..., y_n)
\}\]

W.h.p. programs identical \(+ iO \Rightarrow \) Worlds indistinguishable
Security

Alternate World 2

Let $z = (x_1, ..., x_n)$

Adversary’s goal: learn $F_k(z)$

Success in Real World
\Rightarrow success in World 2

In World 2:
Adversary only sees k^z
\Rightarrow cannot learn $F_k(z)$
Conclusion

Exciting time to study crypto

Future work:
• What else can we do with obfuscation?
• Bring obfuscation closer to practice

Thanks!