Obfuscating Low-Rank Matrix Branching Programs

Amit Sahai
UCLA
sahai@cs.ucla.edu

Mark Zhandry
Stanford University
mzhandry@stanford.edu

Abstract

In this work, we seek to extend the capabilities of the “core obfuscator” from the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters (FOCS 2013), and all subsequent works constructing general-purpose obfuscators. This core obfuscator builds upon approximate multilinear maps, and applies to matrix branching programs. All previous works, however, limited the applicability of such core obfuscators to matrix branching programs where each matrix was of full rank. As we illustrate by example, this limitation is quite problematic, and intuitively limits the core obfuscator to obfuscating matrix branching programs that cannot “forget.” At a technical level, this limitation arises in previous work because all previous work relies on Kilian’s statistical simulation theorem, which is false when applied to matrices not of full rank.

In our work, we build the first core obfuscator that can apply to matrix branching programs where matrices can be of arbitrary rank. We prove security of our obfuscator in the generic multilinear model, demonstrating a new proof technique that bypasses Kilian’s statistical simulation theorem. Furthermore, our obfuscator achieves two other notable advances over previous work:

• Our construction allows for non-square matrices of arbitrary dimensions. We also show that this flexibility yields concrete efficiency gains.
• Our construction allows for a single obfuscation to yield multiple bits of output. All previous work yielded only one bit of output.

Our work leads to significant efficiency gains for obfuscation. Furthermore, our work can be applied to achieve efficiency gains even in applications not directly using obfuscation.
1 Introduction

Obfuscation is a tool that allows cryptographers to achieve a powerful new capability: software that can keep a secret. That is, consider a piece of software that makes use of a secret to perform its computation. Then obfuscation allows us to transform this software so that it can be run \textit{publicly}: anyone can obtain the full code of the program, run it, and see its outputs, but no one can learn anything about the embedded secret, beyond what can be learned by examining the outputs of the program. At least as far back as the work of Diffie and Hellman in 1975 [DH76] — who suggested using general-purpose obfuscation to convert private-key encryption to public-key encryption — researchers have contemplated applications of general-purpose obfuscation. However, until 2013, even heuristic constructions for secure general-purpose obfuscation were not known.

This changed with the work of Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], which gave the first candidate cryptographic construction for a general-purpose obfuscator. Formal exploration of the applications of general-purpose obfuscation began shortly thereafter [GGH+13b, SW14]. Since then, the floodgates have opened, and many remarkable applications of general-purpose obfuscation have been explored (see the introduction and references of [AGIS14] for a list of recent works).

At the heart of the construction of [GGH+13b], and all subsequent works constructing obfuscators [BR14, BGK+14, PST14a, GLSW14, AGIS14], is a “core obfuscator” for obfuscating programs represented as certain classes of matrix branching programs. All proposed core obfuscators have been built upon Multilinear Jigsaw Puzzles [GGH+13b], a relaxation of approximate multilinear maps [GGH13a, CLT13]. In general, attempting to apply a core obfuscation method directly to circuits requires overhead that grows exponentially with depth. This occurs for two reasons: First, and perhaps most problematically, the level of multilinearity required by known core obfuscators grows exponentially with the depth of the circuit being obfuscated, and known implementations of Multilinear Jigsaw Puzzles have complexity that grows polynomially with the level of multilinearity [GGH13a, CLT13]. Furthermore, the only known method for converting circuits to full-rank matrix branching programs requires the size of the representation to grow exponentially with the depth of the circuit [Bar86].

The work of [GGH+13b] shows that, nevertheless, such a core obfuscator can be used to obfuscate general (high depth) circuits with a polynomial overhead through a “bootstrapping” procedure. However, attempting such bootstrapping for obfuscation [GGH+13b, GIS+10, App13] based on existing core obfuscators encounters overheads that are asymptotically polynomial but easily reach above 2^{100}. Such large overheads primarily arise due to the depth of the circuit that needs to be obfuscated by the core obfuscator (even though asymptotically, this circuit has depth logarithmic in the security parameter). Indeed, similarly large overheads arise when attempting to apply the core obfuscator to other programs represented in circuit form, since few interesting and non-learnable families of circuits have depth below, say, 50.

This suggests that perhaps representing programs as circuits may not be the best approach toward efficient obfuscation. Indeed, if we can expand the classes of program representations that are amenable to direct obfuscation by our core obfuscator, then this may allow for alternative methods of bootstrapping that yield substantially better efficiency (see also [AGIS14] for a speculative discussion of one such approach). Thus, improving the capabilities of the core obfuscator is a critical goal in...
obfuscation research.

Aside from the efficiency motivations outlined above (see also applications below), another goal is also of independent interest: By improving the core obfuscator, we seek to understand what general mathematical representations of computations are amenable to secure obfuscation. This goal is the focus of our paper.

Our Results. In our work, we expand the class of matrix branching programs that can be directly obfuscated to *any* matrix branching program satisfying a mild natural condition called non-shortcutting\(^2\). Specifically, we present a core obfuscator that directly obfuscates such branching programs. This is a substantial generalization compared to existing core obfuscators \[GGH^{+13b}, BR14, BGK^{+14}, PST14a, GLSW14, AGIS14\], where the program was restricted to consist of square and invertible matrices. As we elaborate below, this limitation of previous work is quite restrictive. Furthermore, our work achieves two other advances over previous work:

- **Our construction allows for sequences of non-square matrices of arbitrary compatible dimensions.** We also show that this flexibility yields concrete efficiency gains (see Section 3 for details).

- **Our construction allows for a single obfuscation to yield multiple bits of output contained in different entries in the output matrix \(M\).** This is in contrast to previous work that yielded only one bit of output, and required many parallel obfuscations to obtain multiple bits.

We then show how to exploit our results to yield efficiency improvements over previous obfuscations of both Boolean formulas and layered graphical branching programs. These improvements are summarized in Tables 1 and 2.

Furthermore, our analysis can also be used in settings where obfuscation is not directly used, but where low-rank matrix branching programs are considered in the context of multilinear maps. Indeed, subsequent to our work, our theorems were used by \[BLR^{+14}\] to yield substantial efficiency improvements in the context of multi-input functional encryption and semantically secure order-revealing encryption.

To obtain our results for Boolean formulas, in Section 3, we give a simple conversion from formulas to (low-rank) matrix branching programs that achieves qualitatively better parameters than was previously known \[Cle91\]. This conversion may be of independent interest.

Following \[BGK^{+14}, AGIS14\], we analyze our core obfuscator in the generic multilinear model, and show that it (unconditionally) achieves the strong Virtual Black-Box (VBB) definition of security in this model. We refer the reader to \[BGK^{+14}\] for discussions concerning the generic multilinear model and security results in this model. (See also \[PST14b\] for methods for converting generic security proofs like ours into proofs of indistinguishability obfuscation security based on explicit, strong, families of assumptions over multilinear maps.) We leave the question of adapting our techniques to yield a proof of indistinguishability obfuscation security based on simple assumptions, as was recently done by \[GLSW14\], as an important open question.

\(^2\)Non-shortcutting is defined in Section 2.2. Intuitively, this condition requires that no intermediate product of matrices yields the all-zero matrix.
We use \tilde{O} to suppress the multiplicative polynomial dependence on the security parameter and other poly-logarithmic terms and O_ϵ to suppress multiplicative constants which depend on ϵ. Here s is the formula size, $\epsilon > 0$ is an arbitrarily small constant, and ϕ is a constant such that for κ-level multilinear encodings, the size of each encoding is $\tilde{O}(\kappa^\phi)$. The current best known constructions have $\phi = 2$. Evaluation time is given in the form $a \cdot b$, where a denotes the number of multilinear operations (up to lower order additive terms) and b denotes the time for carrying out one multilinear operation.

<table>
<thead>
<tr>
<th>Work</th>
<th>Levels of Multilinearity</th>
<th>Size of Obfuscation/ Evaluation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AGIS14] (previous work) {AND, NOT}-basis</td>
<td>s</td>
<td>$4s^3 \cdot \tilde{O}(s^\phi)$</td>
</tr>
<tr>
<td>[AGIS14] + [Gie01] (previous work) {AND, XOR, NOT}-basis</td>
<td>$O(s^{1+\epsilon})$</td>
<td>$O(2^{(2^{1/\epsilon})s^{(1+\epsilon)}}) \cdot \tilde{O}(s^{(1+\epsilon)\phi})$</td>
</tr>
<tr>
<td>This work (direct) {AND, XOR, NOT}-basis</td>
<td>s</td>
<td>$\frac{1}{4}s \log_2(s)^2 \cdot \tilde{O}(s^\phi)$</td>
</tr>
</tbody>
</table>

Table 2: Comparing the efficiency of obfuscation schemes for keyed layered graphical branching programs, as defined in Section 2.2. For a layered graphical branching program, ℓ denotes the length of the branching program, and w is the width. Other notation is as in Table 1.

<table>
<thead>
<tr>
<th>Work</th>
<th>Levels of Multilinearity</th>
<th>Size of Obfuscation/ Evaluation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AGIS14] (previous work)</td>
<td>ℓ</td>
<td>$4\ell^3 w^2 \cdot \tilde{O}(\ell^\phi)$</td>
</tr>
<tr>
<td>This work</td>
<td>ℓ</td>
<td>$\ell w^2 \cdot \tilde{O}(\ell^\phi)$</td>
</tr>
</tbody>
</table>

The rank constraint in matrix branching programs. Let us begin by examining the kinds of matrix branching programs that current core obfuscators can handle, and see why the limitation to full-rank square matrices presents a bottleneck. Recall that a matrix branching program [GGH+13b] is defined by a sequence of pairs of full-rank square matrices $(B_{1,0}, B_{1,1}), \ldots, (B_{\ell,0}, B_{\ell,1})$. Then this program is evaluated on an input $x \in \{0, 1\}^n$ by computing the following matrix product:

$$M = \prod_{i \in [\ell]} B_{i,x_i \mod n}$$

In the original formulation of matrix branching programs [GGH+13b], the resulting matrix M was required to be one of two fixed matrices M_0, M_1, with $M = M_b$ indicating that the output of the program is b. In the recent work of [AGIS14], the notion of a relaxed matrix branching program was defined, which allowed the product M to be arbitrary, but where the output of the computation would be encoded by whether a particular entry in the matrix M is zero or non-zero. As demonstrated in [AGIS14], this relaxation already allows for much more efficient obfuscation of natural functionalities (such as obfuscating a Hamming ball) than would arise from attempting to obfuscate a circuit for the same functionality.
As we look deeper into how to represent natural functionalities as relaxed matrix branching programs, however, we immediately see that the full-rank requirement imposes problematic constraints: As a running example, consider the simple functionality of an exact match, where a program P_w, on input $x \in \{0,1\}^n$, checks if $x = w$ and if so outputs 1, otherwise outputs 0. There is a very simple representation of this program as a branching program: We think of a layered graph with n layers, where each layer i has two nodes: One node G_i represents the notion that all letters so far have matched w, and another node F_i represents that at least some letter has not matched. In layer i, if the next input bit is w_i, then node G_i should connect to G_{i+1} and F_i should connect to F_{i+1}. On the other hand if the next input bit is \overline{w}_i, then both nodes G_i and F_i should connect to F_{i+1}. By associating with each layer the (bipartite) adjacency matrix of layer i and layer $i + 1$, this naturally yields a matrix branching program with square matrices of size 2 by 2.

However, there is a problem: the matrix corresponding to the case of an input bit equal to \overline{w}_i is not full rank. Indeed, this is for a very natural reason: When we see that a particular bit does not match, we want to “forget” everything about what state we were in until now, and just remember that there is no possibility of a match existing from now on. The constraint that all matrices be full-rank means that every matrix is invertible – in other words, information about what state we were in cannot be forgotten. As the amount of state information roughly corresponds to the width of the branching program (i.e. the number of nodes in each layer), this creates a substantial blowup in branching program width and size. In [AGIS14], this was dealt with by increasing the size of every matrix to the size of the entire graph, not just the portion of the graph between adjacent layers, and adding self-loops to maintain full rank of the adjacency matrices. Is this added overhead really necessary? More fundamentally, can we directly obfuscate programs that can “forget”?

The technical barrier – Kilian’s statistical simulation. Before we proceed to answer these questions, let us consider the technical roots of the full-rank requirement in matrix branching programs. In every paper constructing secure obfuscation so far [GGH+13b, BR14, BGK+14, PST14a, GLSW14, AGIS14] and in every different model that has been considered, one theorem has played a starring role in all security analyses: Kilian’s statistical simulation theorem [Kil88]. As relevant here, Kilian’s theorem considers the setting where we randomize each matrix as follows:

$$\overline{B}_{i,b} = R_{i-1}^{-1}BR_i$$

where R_i are random invertible matrices for $i \in [\ell - 1]$, and identity otherwise. Note that this randomization does not affect the iterated product considered above. Then, for any particular input x, if the iterated product is M, Kilian’s theorem states that we can statistically simulate the collection of matrices $\{B_{i,x_i \mod n}\}_{i \in [\ell]}$ knowing only M but with no knowledge of the original matrices $\{B_{i,b}\}$.

Kilian’s statistical simulation theorem has been a keystone in all previous analyses of obfuscation: in one way or another, all previous security analyses for obfuscation methods have found some way to isolate the adversary’s view of the obfuscation to a single input. Once this isolation was accomplished, Kilian’s theorem provided the assurance that the adversary’s view of the obfuscation, as it related to this single input, only encoded information about the output of the computation within M, and nothing more.

However, note that Kilian’s statistical simulation theorem is false when applied to matrix branching programs without the full-rank guarantee. To see a simple and natural example, again consider the case of the exact match matrix branching program without full-rank matrices outlined
above. Now consider an input \(x^{(i)}\) that differs from \(w\) only on a single bit position \(i\). In this case, among the matrices \(B_j^{(i)} = B_{j|x^{(i)}}\) relevant to the input \(x\), only \(B_i^{(i)} = B_{i|x^{(i)}}\) is not full rank. Therefore, for any \(i\), among the randomized matrices \(\hat{B}_j^{(i)} = \hat{B}_{i|x^{(i)}}\), only \(\hat{B}_i^{(i)}\) is not full rank. However, as we vary \(i\) across all possible values, the output is the same — none of these inputs \(x^{(i)}\) are an exact match for \(w\). Thus, statistical simulation is impossible knowing only the output, since the actual distribution of matrices depends on \(i\), but the output does not.

If we are to obtain a method for obfuscation that works with low-rank matrices, then we would need to avoid Kilian’s theorem entirely, deviating from all previous analyses of obfuscation.

Our Techniques. Our key technical challenge is to replace the use of Kilian’s theorem \([\text{Kil88}]\) in the previous work of [BGK+14, AGIS14]. As noted above, it is not possible to simply extend Kilian’s theorem to our setting (as was done in [AGIS14] for relaxed matrix branching programs), because Kilian’s theorem is false when matrices can have arbitrary ranks. Nevertheless, even though we will not rely on Kilian’s simulation theorem, we will use a matrix randomization scheme that is essentially\(^3\) identical to the one outlined above.

To obtain our result, we must directly analyze what kinds of polynomials an adversary can generate using multilinear operations. Before continuing, we remark that our analysis at this stage will not be efficient. Nevertheless, this analysis will allow us to obtain an efficient VBB simulator in the generic multilinear model.

Roughly speaking, we can model the multilinear setting as follows: There is a universe set \([\ell]\). For every subset \(S \subset [\ell]\), we have a copy of \(\mathbb{Z}_q\) that we name \(G_S\). Then, the adversary has access to the following operations:

- **ADD**: \(G_S \times G_S \rightarrow G_S\), for every subset \(S \subset [\ell]\).
- **MULT**: \(G_S \times G_T \rightarrow G_{S \cup T}\), for every pair of disjoint subsets \(S, T \subset [\ell]: S \cap T = \emptyset\).
- **ZEROTest**: \(G_{[\ell]} \rightarrow \{\text{True}, \text{False}\}\).

This is sometimes called the “asymmetric” multilinear setting, is natively supported by known instantiations of Multilinear Jigsaw Puzzles [GGH13a, CLT13], and was used in the previous works of [BGK+14, AGIS14]. Observe that in this setting, if the adversary is given a matrix entirely encoded in \(G_{[1]}\), for example, then it will not be possible for the adversary to compute the rank of this matrix. This is because no two entries within this matrix can be multiplied together, since they both reside in the same group \(G_{[1]}\), and multiplication is only possible across elements of groups corresponding to disjoint index sets. This is essential: if the adversary could compute ranks, then our goal would be impossible.

Our analysis proceeds by considering the most general polynomial that the adversary can construct in \(G_{[\ell]}\). More precisely, we consider every possible monomial \(m\) that can exist over the matrix entries that are given to the adversary. For each such monomial \(m\), we associate with it a coefficient \(\alpha_m\) that the adversary could potentially choose arbitrarily. Finally, the adversary’s polynomial is a giant sum \(p = \sum_m \alpha_m m\) over all these potential monomials. We first observe that

\(^3\)Because we consider rectangular matrices in general, we do need to modify this slightly. Also, for technical simplification, we consider the adjugate matrix rather than the inverse. However, for the purposes of this technical overview, these variations can be ignored.
the adversary can only extract useful information from this polynomial by passing it to ZeroTest, thereby determining if it is zero or not. However, recall that the matrices \{R_{i,b}\} are randomly chosen during obfuscation. Therefore, by the Schwartz-Zippel lemma, we know that unless the adversary’s polynomial \(p\) is the zero polynomial over the entries of the \(R_{i,b}\) matrices, ZeroTest will declare the polynomial to be nonzero with overwhelming probability. So, we restrict ourselves to analyzing adversarial polynomials that end up being the zero polynomial over the entries of the \(R_{i,b}\) matrices.

Our analysis proceeds inductively. At its heart, in the inductive step, we consider what a single \(R_{i,b}\) matrix and its inverse \(R_{i,b}^{-1}\) can contribute to the adversary’s polynomial. At a high level, we divide the monomials \(m\) into two categories: First, we consider all those monomials that do not arise from standard matrix multiplication. By the examining the structure of the \(R_{i,b}^{-1}\) matrix together with the constraint that the adversary’s polynomial must be identically zero over the entries of \(R_{i,b}\), we are able to conclude that these monomials must have zero coefficients: \(\alpha_m = 0\), because otherwise this monomial’s contributions over the entries of \(R_{i,b}\) would survive and the adversary’s polynomial cannot be identically zero over the entries of \(R_{i,b}\). Next, we do the same for those monomials that do arise in standard matrix multiplication; however this time we instead conclude that the coefficients of these monomials must be the same: that is, \(\alpha_m = \alpha_{m'}\) for monomials \(m\) and \(m'\) that both arise in matrix multiplication.

As a result, inductively, we can conclude that any adversarial polynomial that is identically zero over the entries of the \(\{R_{i,b}\}\) matrices must in fact be the result of an honest iterated matrix multiplication. In other words, such an adversarial polynomial can be simulated knowing only the outcome of the iterated matrix multiplication, as desired. Even though this analysis is not efficient, as mentioned above, we are still able to use it to yield an efficient VBB simulator in the generic multilinear model. At a high level, this is done by using the Schwartz-Zippel lemma to “weed out” most adversarial polynomials without needing to simulate their structure at all.

Our analysis is detailed in Section 5, and its use to obtain a VBB simulator is sketched in Section 6 and further detailed in Section 7.

2 Preliminaries

2.1 Obfuscation

We now give the definition of virtual black-box obfuscation in an idealized model, identical to the model studied in Barak et al. [BGK+14] and Ananth et al. [AGIS14], with one exception: we also consider giving both the adversary and simulator an auxiliary input determined by the program.

Definition 2.1 (“Virtual Black-Box” Obfuscation in an \(\mathcal{M}\)-idealized model). For a (possibly randomized) oracle \(\mathcal{M}\), a circuit class \(\{C_{\ell}\}_{\ell \in \mathbb{N}}\), and an efficiently computable deterministic function \(\text{Aux}_{\ell} : C_{\ell} \to \{0,1\}^{t_{\ell}}\), we say that a uniform PPT oracle machine \(O\) is a “Virtual Black-Box” Obfuscator for \(\{C_{\ell}\}_{\ell \in \mathbb{N}}\) in the \(\mathcal{M}\)-idealized model with respect to auxiliary information \(\text{Aux}_{\ell}\), if the following conditions are satisfied:

- Functionality: For every \(\ell \in \mathbb{N}\), every \(C \in C_{\ell}\), every input \(x\) to \(C\), and for every possible coins for \(\mathcal{M}\):

\[
\Pr[(O^{\mathcal{M}}(C))(x) \neq C(x)] \leq \text{negl}(|C|) ,
\]

where the probability is over the coins of \(C\).
Polynomial Slowdown: there exist a polynomial p such that for every $\ell \in \mathbb{N}$ and every $C \in \mathcal{C}_\ell$, we have that $|O^\mathcal{M}(C)| \leq p(|C|)$.

Virtual Black-Box: for every PPT adversary \mathcal{A} there exist a PPT simulator \mathcal{Sim}, and a negligible function μ such that for all PPT distinguishers \mathcal{D}, for every $\ell \in \mathbb{N}$ and every $C \in \mathcal{C}_\ell$:

$$\left| \Pr \left[D \left(\mathcal{A}^\mathcal{M} \left(O^\mathcal{M}(C), \text{Aux}_\ell(C) \right) \right) = 1 \right] - \Pr \left[D \left(\mathcal{Sim}^\mathcal{C} \left(1^{|C|}, \text{Aux}_\ell(C) \right) \right) = 1 \right] \right| \leq \mu(|C|),$$

where the probabilities are over the coins of $D, \mathcal{A}, \mathcal{Sim}, \mathcal{O}$ and \mathcal{M}.

Note that in this model, both the obfuscator and the evaluator have access to the oracle \mathcal{M} but the function family that is being obfuscated does not have access to \mathcal{M}.

2.2 Branching Programs

We now define branching programs. We will actually define three notions of branching programs. The first, layered (graphical) branching programs, corresponds to the standard notion of branching programs found in the literature. Second, we define the notion of a matrix branching program, which can be seen as a generalization of graphical branching programs. Finally, we define a matrix branching program sampler, which is again a generalization of matrix branching programs.

Layered Graphical Branching Programs. Our notion of a layered graphical branching program corresponds to the traditional notion of branching programs.

Definition 2.2. A (graphical) branching program is a finite directed acyclic graph with two special nodes, a source node and a sink node, also referred to as an “accept” node. Each non-sink node is labeled with a variable x_i and can have arbitrary out-degree. Each of the out-edges is either labeled with $x_i = 0$ or $x_i = 1$. The sink node has out-degree 0. We denote a branching program by BP and denote the restriction of the branching program consistent with input x by $BP|_x$. BP accepts an input $x \in \{0, 1\}^n$ if and only if there is at least one path from the source node to the accept node in $BP|_x$. The length ℓ of BP is the maximum length of any such path in the graph. The node size t of the branching program is the total number of nodes in the graph.

A layered (graphical) branching program is a branching program such that nodes can be partitioned into a sequence of layers L_0 through L_ℓ where all the nodes in L_{i-1} have only outgoing edges to L_i, and all of the outgoing edges from L_{i-1} are labeled with the same input variable, denoted $x_{\text{inp}(i)}$ where $\text{inp} : [\ell] \rightarrow [n]$. We can assume without loss of generality that L_0 contains only the source node and L_ℓ contains only the sink node. The length of a layered branching program is ℓ, and the shape (d_0, \ldots, d_ℓ) counts the number of nodes in each layer: $d_i = |L_i|$. Finally, the width w is the maximum d_i. The node size t of BP is still the total number of nodes in the graph, $\sum_{i=0}^\ell d_i$. We also define an additional quantity, the total size u is the sum of the products of sizes of adjacent layers $\prod_{i=1}^\ell d_{i-1}d_i$. Consider a slight modification to BP where there is an edge from every node in L_i to every node in L_{i+1}, and the edges are labeled with either $x_i = 0$, $x_i = 1$, $x_i = 0, 1$ (representing that this edge is always used), or $x_i = \perp$ (representing that this edge is never used). Then u counts the total number of edges in BP, and therefore represents the actual size of the description of BP.

Matrix Branching Programs. Note that our definition of a matrix branching program will depart in several ways from the standard definitions of matrix branching programs in the literature. At a high level, a matrix branching program consists of a sequence of pairs of matrices \((B_{i0}, B_{i1})\). To evaluate the branching program on an input \(x\), select one matrix from each pair based on the input, and multiply all of the matrices together. The matrices are shaped so that the products are valid and the end result is a scalar; otherwise, there are no restrictions on the shapes of the matrices. The branching program evaluates to 0 if and only if the product of all the matrices is 0, and otherwise it evaluates to 1. We can also easily generalize to multi-bit outputs by having the final matrix product be an actual matrix, and test each component independently for zero.

Definition 2.3. A generalized matrix branching program of length \(\ell\) and shape \((d_0, d_1, \ldots, d_\ell)\) \(\in (\mathbb{Z}^+)^{\ell+1}\) for \(n\)-bit inputs is given by a sequence

\[
BP = \left(\text{inp}, (B_{i0}, B_{i1})_{i \in [\ell]}\right)
\]

where \(B_{i,k} \in \mathbb{Z}^{d_{i-1} \times d_i}\) are \(d_{i-1} \times d_i\) matrices, and \(\text{inp} : [\ell] \rightarrow [n]\) is the evaluation function of \(BP\). \(BP\) defines the following three functions:

- \(BP_{\text{arith}} : \{0, 1\}^n \rightarrow \mathbb{Z}^{d_0 \times d_\ell}\) computed as
 \[
 BP_{\text{arith}}(x) = \prod_{i=1}^{n} B_{i,x,\text{inp}(i)}
 \]

- \(BP_{\text{bool}} : \{0, 1\}^n \rightarrow \{0, 1\}^{d_0 \times d_\ell}\) computed as
 \[
 BP_{\text{bool}}(x)_{j,k} = \begin{cases}
 0 & \text{if } BP_{\text{arith}}(x)_{j,k} = 0 \\
 1 & \text{if } BP_{\text{arith}}(x)_{j,k} \neq 0
 \end{cases}
 \]

- \(BP_{\text{bool}(q)} : \{0, 1\}^n \rightarrow \{0, 1\}^{d_0 \times d_\ell}\) computed as
 \[
 BP_{\text{bool}(q)}(x)_{j,k} = \begin{cases}
 0 & \text{if } BP_{\text{arith}}(x)_{j,k} = 0 \mod q \\
 1 & \text{if } BP_{\text{arith}}(x)_{j,k} \neq 0 \mod q
 \end{cases}
 \]

A matrix branching program is \(t\)-bounded if \(|BP_{\text{arith}}(x)_{j,k}| \leq t\) for all \(x, j, k\). In other words, \(t\) bounds the possible output values of \(BP_{\text{arith}}\).

We define the width \(w = \max_{i \in [0,\ell]} d_i\), node size \(t = \sum_{i=0}^{\ell} d_i\), and total size \(u = \sum_{i=1}^{\ell} d_{i-1}d_i\).

Fact 2.4. Any graphical layered branching program \(BP\) of length \(\ell\) and shape \((d_0, \ldots, d_\ell)\) can be converted into a generalized matrix branching program \(BP'\) of length \(\ell\), shape \((d_0, \ldots, d_\ell)\), and bound \(t = \prod_{i=0}^{\ell-1} d_i \leq w^{\ell-1}\) such that \(BP'_{\text{bool}}(x) = BP(x)\) for all \(x\).

For our obfuscator, similar to existing works, we will need to actually consider dual-input generalized matrix branching programs:

Definition 2.5. A dual-input generalized matrix branching program of length \(\ell\) and shape \((d_0, d_1, \ldots, d_\ell)\) \(\in (\mathbb{Z}^+)^{\ell+1}\) for \(n\)-bit inputs is given by a sequence

\[
BP = \left(\text{inp}_0, \text{inp}_1, (B_{i,b_0,b_1})_{i \in [\ell], b_0, b_1 \in \{0, 1\}}\right)
\]

where \(B_{i,b_0,b_1} \in \mathbb{Z}^{d_{i-1} \times d_i}\) are \(d_{i-1} \times d_i\) matrices, and \(\text{inp} : [\ell] \rightarrow [n]\) is the evaluation function of \(BP\). \(BP\) defines the following three functions:
\[BP_{\text{arith}} : \{0, 1\}^n \to \mathbb{Z}^{d_0 \times d_\ell} \text{ computed as} \]
\[BP_{\text{arith}}(x) = \prod_{i=1}^{n} B_{i, x^{\text{inp}_0(i)}, x^{\text{inp}_1(i)}} \]

- \[BP_{\text{bool}} : \{0, 1\}^n \to \{0, 1\}^{d_0 \times d_\ell} \text{ computed as} \]
\[BP_{\text{bool}}(x)_{j,k} = \begin{cases} 0 & \text{if } BP_{\text{arith}}(x)_{j,k} = 0 \\ 1 & \text{if } BP_{\text{arith}}(x)_{j,k} \neq 0 \end{cases} \]

- \[BP_{\text{bool}(q)} : \{0, 1\}^n \to \{0, 1\}^{d_0 \times d_\ell} \text{ computed as} \]
\[BP_{\text{bool}(q)}(x)_{j,k} = \begin{cases} 0 & \text{if } BP_{\text{arith}}(x)_{j,k} = 0 \mod q \\ 1 & \text{if } BP_{\text{arith}}(x)_{j,k} \neq 0 \mod q \end{cases} \]

A matrix branching program is \(t \)-bounded if \(|BP_{\text{arith}}(x)_{j,k}| \leq t \) for all \(x, j, k \).

We note that it is easy to transform any normal matrix branching program into a dual input matrix branching program of the same length, shape, and bound: set \(\text{inp}_0 = \text{inp}_1 = \text{inp} \), and \(B_{i,b,b} = B_{i,b} \) (the values \(B_{i,b,1-b} \) can be set arbitrarily).

Unlike previous obfuscation constructions \cite{GGH13b, BR13, BGK14, PST14b, AGIS14}, we allow the matrices in the branching program to be singular, and even to be rectangular. This gives us the ability to have the product matrix have any desired shape — in particular, it can be a scalar for single-bit outputs. Thus, we do not need the “bookends” used in previous works to turn the matrix product into a scalar.

We will impose one requirement on matrix branching program, called non-shortcutting, which will be important in the security analysis of our obfuscator. We say that a branching program shortcuts on an input \(x \) if there is an interval \([j, k] \subset \ell \) strictly smaller than \(\ell \) such that the sub-product
\[\prod_{i=j}^{k} B_{i, x^{\text{inp}_0(i)}, x^{\text{inp}_1(i)}} = 0 . \]
In other words, for the input \(x \), it is possible to determine that \(BP(x)_{j,k} = 0 \) prematurely without evaluating the entire product. We say that a branching program is non-shortcutting if it does not shortcut on any \(x \):

Definition 2.6. A dual-input generalized matrix branching program is non-shortcutting if, for any input \(x \), and any \(j \in [d_0] \) and any \(k \in [d_\ell] \), the following holds:
\[e_j^T \cdot \left(\prod_{i=1}^{\ell-1} B_{i, x^{\text{inp}_0(i)}, x^{\text{inp}_1(i)}} \right) \neq 0^{d_{\ell-1}} \quad \text{and} \quad \left(\prod_{i=2}^{\ell} B_{i, x^{\text{inp}_0(i)}, x^{\text{inp}_1(i)}} \right) \cdot e_k \neq 0^{d_1} \]
where \(e_j \) and \(e_k \) are the \(j \)th and \(k \)th standard basis vectors of the correct dimension. Equivalently, each row of the product \(\prod_{i=1}^{\ell-1} B_{i, x^{\text{inp}_0(i)}, x^{\text{inp}_1(i)}} \) and each column of the product \(\prod_{i=2}^{\ell} B_{i, x^{\text{inp}_0(i)}, x^{\text{inp}_1(i)}} \) has at least one non-zero entry.
A similar definition holds for regular (non-dual-input) branching programs.

We will see in the next section that it is easy to convert any matrix branching program into a non-shortcutting branching program, and only increasing its width by 2.

A final property of matrix branching programs, which we call exactness, says that the outputs of \(BP_{\text{arith}} \) and \(BP_{\text{bool}} \) are the same on all inputs:

Definition 2.7. A matrix branching program \(BP \) is exact if, for all inputs \(x \), it holds that

\[
BP_{\text{arith}}(x) \in \{0, 1\}^{d_0 \times d_\ell}
\]

In other words,

\[
BP_{\text{arith}}(x) = BP_{\text{bool}}(x)
\]

In this case, we simply write \(BP(x) \) to denote \(BP_{\text{arith}}(x) = BP_{\text{bool}}(x) = BP_{\text{bool}}(q) \) for all \(q \geq 2 \).

Matrix Branching Program Samplers. We now define a matrix branching program sampler (MBPS). Roughly, an MBPS is a procedure that takes as input a modulus \(q \), and outputs a matrix branching program \(BP \). However, we will be interested mainly in the function \(BP_{\text{bool}}(q) \).

Definition 2.8. A matrix branching program sampler (MBPS) is a possibly randomized procedure \(BP_S \) that takes as input a modulus \(q \) satisfying \(q > t \) for some bound \(t \). It outputs a matrix branching program.

Fact 2.9. Any matrix branching program \(BP \) with bound \(t \) can trivially be converted into a matrix branching program sampler \(BP^S \) with the same bound \(t \), such that if \(BP' \leftarrow BP^S(q) \), then \(BP'_{\text{bool}}(x) = BP_{\text{bool}}(x) \).

2.3 The Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has been taken almost verbatim from [BGK+14] and [AGIS14]. All parties have access to an oracle \(M \), implementing an ideal graded encoding. The oracle \(M \) implements an idealized and simplified version of the graded encoding schemes from [GGH13a]. The parties are provided with encodings of various elements at different levels. They are allowed to perform arithmetic operations of addition/multiplication and testing equality to zero as long as they respect the constraints of the multilinear setting. We start by defining an algebra over the elements.

Definition 2.10. Given a ring \(R \) and a universe set \(U \), an element is a pair \((\alpha, S) \) where \(\alpha \in R \) is the value of the element and \(S \subseteq U \) is the index of the element. Given an element \(e \) we denote by \(\alpha(e) \) the value of the element, and we denote by \(S(e) \) the index of the element. We also define the following binary operations over elements:

- For two elements \(e_1, e_2 \) such that \(S(e_1) = S(e_2) \), we define \(e_1 + e_2 \) to be the element \((\alpha(e_1) + \alpha(e_2), S(e_1)) \), and \(e_1 - e_2 \) to be the element \((\alpha(e_1) - \alpha(e_2), S(e_1)) \).

- For two elements \(e_1, e_2 \) such that \(S(e_1) \cap S(e_2) = \emptyset \), we define \(e_1 \cdot e_2 \) to be the element \((\alpha(e_1) \cdot \alpha(e_2), S(e_1) \cup S(e_2)) \).

We will often use the notation \([\alpha]_S \) to denote the element \((\alpha, S) \). Next, we describe the oracle \(M \). \(M \) is a stateful oracle mapping elements to “generic” representations called handles. Given handles to elements, \(M \) allows the user to perform operations on the elements. \(M \) will implement the following interfaces:
Initialization. \(\mathcal{M} \) will be initialized with a ring \(R \), a universe set \(U \), and a list \(L \) of initial elements. For every element \(e \in L \), \(\mathcal{M} \) generates a handle. We do not specify how the handles are generated, but only require that the value of the handles are independent of the elements being encoded, and that the handles are distinct (even if \(L \) contains the same element twice). \(\mathcal{M} \) maintains a handle table where it saves the mapping from elements to handles. \(\mathcal{M} \) outputs the handles generated for all the elements in \(L \). After \(\mathcal{M} \) has been initialized, all subsequent calls to the initialization interface fail.

Algebraic operations. Given two input handles \(h_1, h_2 \) and an operation \(\circ \in \{+, -, \cdot\} \), \(\mathcal{M} \) first locates the relevant elements \(e_1, e_2 \) in the handle table. If any of the input handles does not appear in the handle table (that is, if the handle was not previously generated by \(\mathcal{M} \)) the call to \(\mathcal{M} \) fails. If the expression \(e_1 \circ e_2 \) is undefined (i.e., \(S(e_1) \neq S(e_2) \) for \(\circ \in \{+, -\} \), or \(S(e_1) \cap S(e_2) \neq \emptyset \) for \(\circ \in \{\cdot\} \)) the call fails. Otherwise, \(\mathcal{M} \) generates a new handle for \(e_1 \circ e_2 \), saves this element and the new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle \(h \), \(\mathcal{M} \) first locates the relevant element \(e \) in the handle table. If \(h \) does not appear in the handle table (that is, if \(h \) was not previously generated by \(\mathcal{M} \)) the call to \(\mathcal{M} \) fails. If \(S(e) \neq U \), the call fails. Otherwise, \(\mathcal{M} \) returns 1 if \(\alpha(e) = 0 \), and returns 0 if \(\alpha(e) \neq 0 \).

2.4 Straddling Set Systems

We describe the straddling set system which is same as the one considered in [BGK+14]:

Definition 2.11. A straddling set system \(S_n = \{S_{i,b} : i \in [n], b \in \{0,1\}\} \) with \(n \) entries over the universe \(U = \{1,2, \ldots , 2n-1\} \) is as follows:

\[
S_{i,0} = \{1\}, S_{2,0} = \{2,3\}, \ldots , S_{i,0} = \{2i - 2, 2i - 1\}, \ldots , S_{n,0} = \{2n - 2, 2n - 1\}
\]

\[
S_{1,1} = \{1,2\}, S_{2,1} = \{3,4\}, \ldots , S_{i,1} = \{2i - 1, 2i\}, \ldots , S_{n-1,1} = \{2n - 3, 2n - 2\}, S_{n,1} = \{2n - 1\}
\]

3 Building Low-Rank Branching Programs

In this section, we describe some procedures to be carried out on branching programs. We will use these procedures to show how to make any branching program non-shortcutting, and how to convert formulas into matrix branching programs.

In particular, we will describe a way to convert any formula of size \(s \) over NOT, AND, XOR gates into an exact matrix branching program of length \(s + 1 \) and maximum width \(\lceil \log_2(s + 2) \rceil \). Our result gives a qualitative improvement to a result of Cleve [Cle91], which achieves similar asymptotics, but only for balanced formula, and only for formula over NOT, AND gates.

3.1 Operations on Generalized Matrix Branching Programs

We now describe several operations on generalized matrix branching programs. We will use these operations to build our branching program for formulas.
Transpose. Let $BP = (\inp, (B^{i,0}, B^{i,1})_{i \in [\ell]})$ be a branching program of length ℓ and shape $(d_0, d_1, \ldots, d_\ell) \in (\mathbb{Z}^+)^{\ell+1}$. The transpose of BP, denoted BP^T, is a branching program of length ℓ and shape (d_ℓ, \ldots, d_0), given by

$$BP^T = \left(\inp^T, (B^{T,T,0}_{\ell+1-i,0}, B^{T,T,1}_{\ell+1-i,1})_{i \in [\ell]}\right)$$

where $\inp^T(i) = \inp(\ell + 1 - i)$. Observe that $(BP^T)_{\text{arith/bool}}(x) = (BP_{\text{arith/bool}}(x))^T$. Note that if BP is exact, then so is BP^T.

Augment. Let BP be as above. The r-augmentation of BP is the branching program $BP' = \text{Augment}(BP, r)$ of length ℓ and shape $(d_0 + r, d_1 + r, \ldots, d_\ell + r)$ given by

$$BP' = \left(\inp, \left(B'_{i,0}, B'_{i,1}\right)_{i \in [\ell]}\right) \text{ where } B'_{i,b} = B_{i,b} \begin{bmatrix} 0^r \times d_i & I_r \end{bmatrix}$$

Observe that

$$BP'_{\text{arith/bool}}(x) = \begin{bmatrix} BP_{\text{arith/bool}}(x) \end{bmatrix} \begin{bmatrix} 0^r \times d_i & I_r \end{bmatrix}$$

Moreover, if BP is exact, then so is BP'. We will define $\text{Augment}(BP) = \text{Augment}(BP, 1)$.

Linear Operations. Let BP be as above. Given a $d'_0 \times d_0$ matrix L and a $d'_{\ell} \times d_{\ell}$ matrix R, we can compute the branching program $L \cdot BP \cdot R$ which has length ℓ, shape $(d'_0, d_1, \ldots, d_{\ell-1}, d'_{\ell})$, and is given by

$$L \cdot BP \cdot R = \left(\inp, \left(B'_{i,0}, B'_{i,1}\right)_{i \in [d'_{\ell}]}\right) \text{ where } B'_{i,b} = \begin{cases} B_{i,b} & \text{if } i \neq 1, \ell \\ L \cdot B_{1,b} & \text{if } i = 1 \\ B_{\ell,b} \cdot R & \text{if } i = \ell \end{cases}$$

Observe that $(L \cdot BP \cdot R)_{\text{arith}}(x) = L \cdot (BP_{\text{arith}}(x) \cdot R)$, and that if BP is non-shortcutting, then $L \cdot BP \cdot R$ is also non-shortcutting.

Merge. Let $BP^{(0)}, BP^{(1)}$ be two branching programs of length $\ell^{(b)}$ and shape $(d^{(b)}_0, \ldots, d^{(b)}_\ell)$ for $b \in \{0, 1\}$ with the property that $d^{(0)}_\ell = d^{(1)}_1$. Then we can compute the merge of $BP^{(0)}$ and $BP^{(1)}$ as

$$BP^{(0)} \cdot BP^{(1)} = \left(\inp, (B^{(i,0}, B^{i,1})_{i \in [\ell']})\right)$$

where $\ell' = \ell^{(0)} + \ell^{(1)}$, $\inp' : [\ell^{(0)} + \ell^{(1)}] \to [n]$ is defined as $\inp(i) = \begin{cases} \inp^{(0)}(i) & \text{if } i \leq \ell^{(0)} \\ \inp^{(1)}(i - \ell^{(0)}) & \text{if } i > \ell^{(1)} \end{cases}$, and

$$B_{i,b} = \begin{cases} B^{(0)}_{i,b} & \text{if } i \leq \ell^{(0)} \\ B^{(1)}_{i,\ell^{(0)}}, & \text{if } i > \ell^{(0)} \end{cases}$$

Observe that $(BP^{(0)} \cdot BP^{(1)})_{\text{arith}}(x) = (BP^{(0)}_{\text{arith}}(x) \cdot (BP^{(1)}_{\text{arith}}(x))$.\]
3.2 Making any branching program non-shortcutting

Let BP be an arbitrary matrix branching program of shape $(d_0, d_1, \ldots, d_\ell)$. Define

$$BP' = \left(\begin{array}{ccc} I_{d_0} & 1^{d_0 \times 1} & 0^{d_0 \times 1} \end{array} \right) \cdot \text{Augment}(BP, 2) \cdot \left(\begin{array}{c} I_{d_\ell} \\ 0^{1 \times d_\ell} \\ 1^{1 \times d_\ell} \end{array} \right)$$

Notice that the shape of BP' is $(d_0, d_1+2, \ldots, d_{\ell-1}+2, d_\ell)$. Moreover, BP_{arith}' computes the matrix

$$BP_{arith}' = \left(\begin{array}{ccc} I_{d_0} & 1^{d_0 \times 1} & 0^{d_0 \times 1} \end{array} \right) \cdot \left(\begin{array}{cc} BP_{arith} & 0^{d_0 \times 2} \\ 0^{2 \times d_\ell} & I_2 \end{array} \right) \cdot \left(\begin{array}{c} I_{d_\ell} \\ 0^{1 \times d_\ell} \\ 1^{1 \times d_\ell} \end{array} \right) = BP_{arith}$$

Finally, we have the following:

Lemma 3.1. BP', as defined above, is non-shortcutting.

Proof. The branching program $BP^{(L)} = \text{Augment}(BP, 2) \cdot \left(\begin{array}{c} I_{d_\ell} \\ 0^{1 \times d_\ell} \\ 1^{1 \times d_\ell} \end{array} \right)$ on input x computes the matrix

$$\left(\begin{array}{c} BP_{arith}(x) \\ 0^{d_\ell \times 1} \\ 1^{d_\ell \times 1} \end{array} \right)$$

which always has all columns not identically zero. Therefore the sub-product of $BP^{(L)}_{arith}(x)$ consisting of all matrices except the left-most matrix will always have non-zero columns. We obtain BP' from $BP^{(L)}$ by left-multiplying the left-most matrix by a matrix. Therefore, the sub-product of $BP_{arith}'(x)$ that drops the left-most matrix is identical to the sub-product of $BP^{(L)}_{arith}(x)$ that drops the left-most matrix, and therefore has non-zero columns. Similarly, we can conclude that any sub-product that does not include the right-most matrix has non-zero rows. Therefore, the branching program is non-shortcutting, as desired. □

3.3 Arithmetic Formulas to Matrix Branching Programs

We now give our conversion of formulas to matrix branching programs. We will build a a branching program for any arithmetic formula taking 0/1 inputs, where every gate is an arbitrary bilinear polynomial in its inputs. That is, for any such arithmetic formula f, we build a branching program BP such that $BP_{arith}(x) = f(x)$. We note, however, that BP_{bool} only reveals if $f(x)$ is zero or not.

As a first step, we build a branching program BP such that $BP_{arith}(x) = (1 \ f(x))$. The final branching program BP' is given as $BP' = BP \cdot \left(\begin{array}{c} 1 \\ f(x) \end{array} \right)$. The

For input wires x_i, the branching program is trivial: inp maps 1 to i, and $B_{1,i} = \left(\begin{array}{c} 1 \\ b \end{array} \right)$.

13
We now build BP recursively. Suppose $f = f_0 \text{OP} f_1$ for some bilinear OP. Write $y_0 \text{OP} y_1 = c_0 + c_1 y_0 + c_2 y_1 + c_3 y_0 y_1$. We observe that

$$
\begin{pmatrix}
1 & y_0 \\
c_1 & c_2 & 1 & 0
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\
y_1 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
0 & 1 & 0 \\
1 & 1 & c_0
\end{pmatrix} = \begin{pmatrix}
1 & y_0 \text{OP} y_1
\end{pmatrix}
$$

Therefore, we can compute the branching programs BP_0 and BP_1 for f_0 and f_1, and let

$$BP = BP_0 \cdot \left(\begin{pmatrix}
0 & c_2 & 1 & 0 \\
c_1 & c_3 & 0 & 1
\end{pmatrix} \cdot \text{Augment}(BP_1^T) \cdot \begin{pmatrix}
0 & 1 \\
1 & 1 & c_0
\end{pmatrix} \right)$$

It follows that $BP_{\text{arith}}(x) = (1 \cdot f(x))$, meaning BP computes the correct function.

Now notice that f_0 and f_1 are not treated symmetrically above. Indeed, the width w of the branching program BP is equal to $\max(w_0, 1 + w_1)$, where w_0 and w_1 are the widths of BP_0 and BP_1, respectively. For very unbalanced formula, this could lead the total width to be linear in the formula size.

However, we can easily exchange the roles of f_0 and f_1. In particular, for a gate OP, let OP^T be the operation defined as $y_0 \text{OP}^T y_1 = y_0 \text{OP} y_1$. Now we can write $f = f_0 \text{OP} f_1$ or $f = f_1 \text{OP}^T f_0$. In the first case, the total width becomes $w = \max(w_0, 1 + w_1)$, and in the second case, the width becomes $w = \max(w_1, 1 + w_0)$. Therefore, we can choose which recursion to perform to arrive at the minimum:

$$w = \min(\max(w_0, 1 + w_1), \max(w_1, 1 + w_0))$$

For reasons that make the proof below more straightforward, we actually choose the order based on the formula size, rather than the resulting branching program width. That is, we have $s_0 \geq s_1$ where s_b is the size of f_b.

Lemma 3.2. The length ℓ, width w, total nodes t and total size u of the branching program BP' satisfy

$$\ell = s + 1$$

$$w \leq \lceil \log_2(s + 2) \rceil$$

$$t \leq \lceil (s + 1)(1 + \frac{1}{2} \log_2(s + 2)) \rceil$$

$$u \leq \lceil (s + 1)(3 + \log_2(s + 2))^2/4 \rceil$$

Proof. The fact that $\ell = s + 1$ follows easily from the recurrence. We will prove that the profile of BP, (d_0, \ldots, d_{s+1}), satisfies the following:

$$d_0 = 1 \quad d_{s+1} = 2$$

$$2 \leq d_i \leq \lceil \log_2(s + 2) \rceil \quad \text{for } i \in [s]$$

$$\sum_{i=0}^{s+1} d_i \leq (s + 1)(1 + \frac{1}{2} \log_2(s + 2))$$

$$\sum_{i=0}^{s} d_id_{i+1} \leq (s + 1)(3 + \log_2(s + 2))^2/4$$

14
The final branching program BP' has the same profile, except that d_{s+1} is set to 1 instead of 2. The lemma easy follows.

The base case where $s = 0$ is trivial. For a formula $f = f_0OPf_1$ of size s, let the size of the sub-formulas f_0 and f_1 be s_0 and s_1: $s_0 + s_1 + 1 = s$. Then by induction the branching programs BP_0 and BP_1 have profiles $d^{(b)}_0, \ldots, d^{(b)}_{s_0+1}$ for $b = 0, 1$ where $d^{(b)}_0 = 1$, $d^{(b)}_{s_0+1} = 2$, and $2 \leq d^{(b)}_i \leq w_b$ where $\lceil \log_2(s_b + 2) \rceil$ for $i \in [1, s_b]$. Moreover, $\sum^{s_{b}+1}_{i=0} d^{(b)}_i \leq t_b$ where $t_b = 1 + \lceil (s_b + 1)(1 + 1/2 \log_2(s_b + 2)) \rceil$ and $\sum^{s_{b}}_{i=0} d^{(b)}_i d^{(b)}_{i+1} \leq u_b$ where $u_b = [(s + 1)(3 + \log_2(s + 2))^2/4]$

For now, suppose $s_0 \geq s_1$. The case $s_1 > s_0$ is handled similarly. Then BP has the profile

$$(1, d^{(0)}_1, d^{(0)}_2, \ldots, d^{(0)}_{s_0}, 2, d^{(1)}_1 + 1, d^{(1)}_{s_1-1} + 1, \ldots, d^{(1)}_1 + 1, 2)$$

If $s_0 > s_1$, the total width is at most $w_0 \leq \lceil \log_2(s + 2) \rceil$, as desired.

Now if $s_0 = s_1$, then the total width will be $w_0 + 1$. However, $s = 2s_0 + 1$ and so

$$w_0 + 1 = 1 + \lceil \log_2(s_0 + 2) \rceil = \lceil \log_2(2s_0 + 4) \rceil = \lceil \log_2(s + 3) \rceil$$

At first, this bound looks worse than what we are trying to prove. However, we know that s is odd. Suppose $\lceil \log_2(s + 3) \rceil > \lceil \log_2(s + 2) \rceil$. Then it must be that $s + 2$ is a power of 2, and $s + 3$ is one greater. However, this is impossible since s is odd. Therefore, $w \leq \lceil \log_2(s + 2) \rceil$ in this case as well.

The linear size t satisfies $t \leq t_0 + t_1 - 2 + s_1$. We have that

$$t \leq [(s_0 + 1)(1 + 1/2 \log_2(s_0 + 2))] + [(s_1 + 1)(1 + 1/2 \log_2(s_1 + 2))] + s_1$$

We can bound this expression as

$$t \leq 1 + [(s_0 + 1)(1 + 1/2 \log_2(s_0 + 2)) + (s_1 + 1)(1 + 1/2 \log_2(s_1 + 2)) + s_1]$$

Given that $s = s_0 + s_1 + 1$ and $s_0 \geq s_1$, it is straightforward but tedious to bound this as

$$t \leq 1 + [(s + 1)(1 + 1/2 \log_2(s + 2))]$$

Next, we observe that

$$u = \left(\sum^{s_0}_{i=0} d^{(0)}_i d^{(0)}_{i+1} \right) + 2(d^{(1)}_{s_1} + 1) + \left(\sum^{s_1-1}_{i=0} (d^{(1)}_i + 1)(d^{(1)}_{i+1} + 1) \right)$$

The term $\left(\sum^{s_0}_{i=0} d^{(0)}_i d^{(0)}_{i+1} \right)$ is equal to u_0. The term $\left(\sum^{s_1-1}_{i=0} (d^{(1)}_i + 1)(d^{(1)}_{i+1} + 1) \right)$ is equal to $\left(\sum^{s_1-1}_{i=0} d^{(1)}_i d^{(1)}_{i+1} \right) + 2 \left(\sum^{s_1}_{i=0} d^{(1)}_i \right) + s_1 - 1 - d^{(1)}_0 - d^{(1)}_{s_1}$. Using the fact that $d^{(1)}_{s_1+1} = 2$, $d^{(0)}_0 = 1$ and $d^{(1)}_i \geq 2$ for all other i, we can therefore, we can bound

$$u \leq u_0 + u_1 + 2t_1 + s_1 - 4$$

We can then bound this as

$$u \leq [(s_0 + 1)(3 + \log_2(s_0 + 2))^2/4 + (s_1 + 1)(3 + \log_2(s_1 + 2))^2/4 + 2(s_1 + 1)(1 + 1/2 \log_2(s_1 + 2)) + s_1 + 1]$$

It is straightforward but tedious to bound this as $u \leq [(s + 1)(3 + \log_2(s + 2))^2/4]$, as desired.

\[\square \]
Making the branching program non-shortcutting. We can make BP' non-shortcutting by increasing the profile by 2 as in Lemma 3.1. However, it turns out in this case it is sufficient to only increase the profile by 1. This is because the branching program BP' always has non-zero outputs, and we obtain BP' from BP by right-multiplying the rightmost matrix. Therefore, any sub-product of BP' that does not contain the rightmost matrix must be a non-zero row vector (so its one and only row is non-zero). Therefore, BP' is part-way to non-shortcutting already. However, there is still a possibility that sub-products that do contain the right-most matrix will be zero.

We will fix this by augmenting the branching program, and then collapsing it back to a scalar by modifying the left- and right-most matrices. We do this in such a way that leaving out the left-most matrix always gives a non-zero product. Our branching program is set to

$$BP_{\text{final}} = \left(\begin{array}{c}
1 \\
0
\end{array} \right) \cdot \text{Augment}(BP') \cdot \left(\begin{array}{c}
1 \\
1
\end{array} \right)$$

Lemma 3.3. BP_{final}, as constructed above, is non-shortcutting. Moreover, it satisfies

$$w \leq \lceil 1 + \log_2(s + 2) \rceil$$
$$t \leq \lceil (s + 1)(4 + \log_2(s + 2))/2 \rceil$$
$$u \leq \lceil (s + 1)(5 + \log_2(s + 2))/4 \rceil$$

Proof. By a similar analysis to Lemma 3.1 and the discussion above about BP' being partially non-shortcutting, we have that BP_{final} is non-shortcutting.

The augment procedure only increases the profile by one in each coordinate except d_0 and d_{s+1}. Therefore, the bound on w follows from the previous analysis. The linear size increases by exactly $s - 1$, so the bound of t follows from the previous analysis. Finally, it is straightforward to see that the actual size u only increases by less that twice the old linear size, plus 1. Therefore, the bound on u also follows from the previous analysis.

3.4 Extensions

Boolean Formula. Any boolean gate can be seen as a bilinear polynomial when its inputs and outputs are treated as integers. Therefore, for any boolean formula f, we can use the conversion above to build a matrix branching program BP such that $BP_{\text{arith}} = f(x)$. Since $f(x)$ is either 0 or 1, we see that $BP_{\text{bool}}(x) = BP_{\text{arith}}(x)$, and so the resulting matrix branching program is exact.

Arithmetic Formula With Integer Input. Given any arithmetic formula where the input variables are bounded in some range of size B, we can break each input variable x into $\lfloor \log_2(B + 1) \rfloor$ input bits x_i, which can then be assembled into x using $\lfloor \log_2(B + 1) \rfloor - 1$ gates. Thus we increase the size of the formula by approximately a factor of $\log_2 B$, but can handle large inputs. We note that while $BP_{\text{arith}}(x) = f(x)$, BP_{bool} still only reveals if $f(x)$ is 0 or not.

Arithmetic Formula With Bounded Outputs. One limitation of the above constructions is that for general arithmetic formula, the function BP_{bool} does not reveal $f(x)$, but only a single bit. When we build our obfuscators, we will see that the function BP_{bool} is what we can actually obfuscate. Therefore, we would like to build a branching program BP such that BP_{bool} reveals the entire output $f(x)$. Here we make partial progress towards this goal by solving the case where the
output $f(x)$ is confined to a small range. Let f be an arithmetic formula with the guarantee that $f(x) \in [B_0, B_1]$ for some integers B_0, B_1 where $B_1 - B_0$ is relatively small. We will construct a branching program BP such that BP_{boot} (rather than BP_{arith}) reveals the entire output of f.

First, construct the branching program BP where $BP_{arith}(x) = \left(\begin{array}{c} 1 \\ f(x) \end{array} \right)$ as above. Then construct the branching program

$$BP' = BP \cdot \left(\begin{array}{cccc} B_0 & B_0+1 & \cdots & B_1-1 \\ -1 & -1 & \cdots & -1 \end{array} \right)$$

Notice that

$$BP'_{arith}(x) = \left(\begin{array}{cccc} B_0 - f(x) & (B_0+1) - f(x) & \cdots & (B_1-1) - f(x) \\ B_1 - f(x) \end{array} \right)$$

Then $BP'_boot(x)$ is all 1’s, except for index $f(x) - B_0 + 2$, which will be zero. Therefore, there is a bijective mapping between $BP'_boot(x)$ and $f(x)$, as desired. Moreover, $BP'_{arith}(x)$ always contains a non-zero entry, so we can make the branching program non-shortcutting by only increasing the profile by 1 instead of 2.

While the above increases the maximum width to at least $B_1 - B_0 + 2$, it does not increase the total size of the branching program by much. Indeed, the above modification only increases the profile in the last position. Therefore, the vertex size increases by an additive $B_1 - B_0$, while the total size increases by at most an additive $(B_1 - B_0)w$ where w was the maximum width before the conversion. If we were restricted to using square matrices, the total size would increase by approximately $s(2(B_1 - B_0)w + (B_1 - B_0)^2)$, which is considerably worse for large $B_1 - B_0$ or large s.

4 Obfuscator for Low-Rank Branching Programs

We now describe our obfuscator for generalized matrix branching programs. Our obfuscator is essentially the same as the obfuscator of Ananth et al. [AGIS14]. The differences are as follows:

- We view branching programs as including the bookends. While the bookends of previous works did not depend on the input, they can in our obfuscator. However, for [AGIS14], this distinction is superficial: the bookends of [AGIS14] can be “absorbed” into the branching program by merging them with the left-most and right-most matrices of the branching program. This does not change functionality, since this merging always happens during evaluation, and it does not change security, since the adversary can perform the merging himself.

- We allow our branching program to have singular and rectangular matrices. We do, however, require the branching program to be non-shortcutting. Note that a branching program with square invertible internal matrices and non-zero bookend vectors, such as in [AGIS14], necessarily is non-shortcutting.

- We allow branching programs to output multiple bits — that is, the function computed by our obfuscated program will be BP_{boot}, which is a matrix of 0/1 entries. In order to prove security, we will have to perform additional randomization. However, in the case of single-bit outputs, this additional randomization is redundant.
The input to our obfuscator is a dual-input matrix branching program sampler BP^S of length ℓ, shape $(d_0, d_1, \ldots, d_\ell)$, and bound t. The first step is to choose a large prime q for the graded encodings. Then sample $BP \leftarrow BP^S(q)$. Write

$$BP = (\text{inp}_0, \text{inp}_1, \{ B_{i,b_0,b_1} \})$$

We require BP^S to output BP satisfying the following properties:

- BP is non-shortcutting.
- For each i, $\text{inp}_0(i) \neq \text{inp}_1(i)$
- For each pair $(j, k) \in [n]^2$, there exists an $i \in [\ell]$ such that $(\text{inp}_0(i), \text{inp}_1(i)) = (j, k)$ or $(\text{inp}_1(i), \text{inp}_0(i)) = (j, k)$

For ease of notation in our security proof, we will also assume that each input bit is used exactly m times, for some integer m. In other words, for each $i \in [n]$, the sets $\text{ind}(i) = \{ j : \text{inp}_b(j) = i \text{ for some } b \in \{0,1\} \}$ have the same size. This requirement, however, is not necessary for security.

Step 1: Randomize BP. First, similar to previous works, we use Kilian [Kil88] to randomize BP, obtaining a randomized branching program BP'. This is done as follows.

- Let q be a sufficiently large prime of $\Omega(\lambda)$ bits.
- For each $i \in [\ell - 1]$, choose a random matrix $R_i \in \mathbb{Z}^{d_i \times d_i}_q$. Set R_0, R_ℓ to be identity matrices of the appropriate size. Define $\widehat{B}_{i,b_0,b_1} = R_{i-1}^{\text{adj}} \cdot B_{i,b_0,b_1} \cdot R_i$
- For each $s \in [d_0]$, choose a random β_s and set S to be the $d_0 \times d_0$ diagonal matrix with the β_s along the diagonal. For each $t \in [d_{\ell}]$, choose a random γ_t and set T to be the $d_\ell \times d_\ell$ diagonal matrix with γ_t along the diagonal. Set $\widehat{C}_{i,b_0,b_1} = S \cdot \widehat{B}_{i,b_0,b_1}$, $\widehat{C}_{\ell,b_0,b_1} = \widehat{B}_{i,b_0,b_1} \cdot T$, $\widehat{C}_{i,b_0,b_1} = \widehat{B}_{i,b_0,b_1}$ for each $i \in [2, \ell - 1]$

We note that this additional randomization step is not present in previous works, but is required to handle multi-bit outputs.

- For each $i \in [\ell], b_0, b_1 \in \{0,1\}$, choose a random $\alpha_{i,b_0,b_1} \in \mathbb{Z}_p$, and define $\widehat{D}_{i,b_0,b_1} = C_{i,b_0,b_1} \cdot \alpha_{i,b_0,b_1}$

Then define $BP' = (\text{inp}_0, \text{inp}_1, \{ D_{i,b_0,b_1} \})$. Observe that $BP'_\text{bool}(q)(x) = BP_{\text{bool}}(q)(x)$ for all x.

18
Step 2: Create set systems. Consider a universe \(\mathbb{U} \), and a partition \(\mathbb{U}_1, \ldots, \mathbb{U}_\ell \) of \(\mathbb{U} \) into equal sized disjoint sets: \(|\mathbb{U}_i| = 2m - 1 \). Let \(\mathcal{S}^j \) be a straddling set system over the elements of \(\mathbb{U}_j \). Note that \(\mathcal{S}^j \) will have \(m \) entries, corresponding to the number of times each input bit is used. We now associate the elements of \(\mathcal{S}^j \) to the indicies of \(BP \) that depend on \(x_j \):

\[
\mathcal{S}^j = \{ S^j_{k,b} : k \in \text{ind}(j), b \in \{0, 1\} \}
\]

Next, we associate a set to each element output by the randomization step. Recall that in a dual-input relaxed matrix branching program, each step depends on two fixed bits in the input defined by the evaluation functions \(\text{inp}_0 \) and \(\text{inp}_1 \). For each step \(i \in [n], b_0, b_1 \in \{0, 1\} \), we define the set \(S(i, b_0, b_1) \) using the straddling sets for input bits \(\text{inp}_0(i) \) and \(\text{inp}_1(i) \) as follows:

\[
S_{i,b_0,b_1} = \mathcal{S}_{i,b_0}^{\text{inp}_0(i)} \cup \mathcal{S}_{i,b_1}^{\text{inp}_1(i)}
\]

Step 3: Initialization. \(\mathcal{O} \) initializes the oracle \(\mathcal{M} \) with the ring \(\mathbb{Z}_p \) and the universe \(\mathbb{U} \). Then it asks for the encodings of the following elements:

\[
\{(D_{i,b_0,b_1}[j,k], S_{i,b_0,b_1})\}_{i \in [\ell], b_0, b_1 \in \{0, 1\}, j \in [d_{i-1}], k \in [d_i]}
\]

\(\mathcal{O} \) receives a list of handles back from \(\mathcal{M} \). Let \([\beta]_S \) denote the handle for \((\beta, S) \), and for a matrix \(M \), let \([M]_S \) denote the matrix of handles \(([M]_S)[j,k] = [M[j,k]]_S \). Thus, \(\mathcal{O} \) receives the handles:

\[
\{[D_{i,b_0,b_1}]_{S_{i,b_0,b_1}}\}_{i \in [\ell], b_0, b_1 \in \{0, 1\}}
\]

Output. \(\mathcal{O}(BP^S) \) outputs these handles, along with the length \(\ell \), shape \(d_0, \ldots, d_\ell \), and input functions \(\text{inp}_0, \text{inp}_1 \), as the obfuscated program. Denote the resulting obfuscated branching program as \(BP^\mathcal{O} \)

Evaluation. To evaluate \(BP^\mathcal{O} \) on input \(x \), use the oracle \(\mathcal{M} \) to add and multiply encodings in order to compute the product

\[
h = \left[\prod_{i \in [\ell]} D_{i,\text{inp}_0(i),\text{inp}_1(i)} \right]_{\mathbb{U}} = \left[\prod_{i \in [\ell]} D_{i,\text{inp}_0(i),\text{inp}_1(i)} S_{i,\text{inp}_0(i),\text{inp}_1(i)} \right]
\]

\(h \) is a \(d_0 \times d_\ell \) matrix of encodings relative to \(\mathbb{U} \). Next, use \(\mathcal{M} \) to test each of the components of \(h \) for zero, obtaining a matrix \(h_{\text{boot}} \in \{0, 1\}^{d_0 \times d_\ell} \). That is, if the zero test on returns a 1 on \(h[s,t] \), \(h_{\text{boot}}[s,t] \) is 0, and if the zero test returns a 0, \(h_{\text{boot}}[s,t] \) is 1.

Correctness of evaluation. The following shows that all calls to the oracle \(\mathcal{M} \) succeed:

Lemma 4.1 (Adapted from [AGIS14]). All calls made to the oracle \(\mathcal{M} \) during obfuscation and evaluation succeed.

It remains to show that the obfuscated program computes the correct function. Fix an input \(x \), and define \(b^i_c = x_{\text{inp}_c(i)} \) for \(i \in [\ell], c \in \{0, 1\} \). From the description above, \(BP^\mathcal{O} \) outputs 0 at position \([s,t] \) if and only if
over the Theorem 5.2. Namely, these works queried the function oracle to determine what

\[R \]

of variables.

matrices. Therefore, we need to replace the Kilian randomization theorem with a new theorem

need to be able to handle generalized matrix branching programs with rectangular and low-rank

the analysis requires the branching program to consist of square invertible matrices. However, we

Crucially, previous works relied on the fact that the matrices the polynomial is tested on come from

matrices, subject to the requirement that the product equaled

the same distribution as the matrices would in the branching program. Unfortunately, this step of

Previous works showed the single-input case using Kilian simulation [BR13, BGK+14], or a

variant of it [PST14b, AGIS14].

In this section, we prove a theorem about polynomials on the Kilian-randomized matrices from the

previous section. Our high level goal is to show polynomials the adversary tries to construct other

than the correct matrix products will be useless to the adversary. In this section, we focus on a

previous section. In the following section, we use the results of this section to prove the general case.

In this section, we prove a theorem about polynomials on the Kilian-randomized matrices from the

previous section. Let

\[A \]

be positive integers and \(d \) \(1 \times d_k \) matrices of variables for

\(k \) \(\in \mathbb{N} \) be as above. Consider a multilinear polynomial

\(p \)

allowable if each monomial in the expansion of \(p \) contains at most one variable

from each of the \(A_k \).

As an example of an allowable polynomial, consider the the matrix product polynomial \(\hat{A}_1 \cdot \hat{A}_2 \cdot \ldots \cdot \hat{A}_n \).

Now fix a field \(\mathbb{F} \), and let \(A_k \in \mathbb{F}^{d_k \times d_k} \) for \(k = 1, \ldots, n \) be a collection of matrices over \(\mathbb{F} \). Let

\(R_k \) be \(d_k \times d_k \) matrices of variables for \(k \) \(\in \mathbb{N} \), and let \(R_k^{adj} \) be the adjugate matrix of \(R_k \). Let

\(R_0 = R_{n+1} = 1 \). Now suppose we set

\[\hat{A}_k = R_{k-1} \cdot A_k \cdot R_k^{adj} \]

\[\hat{A}_k \]

be as above. Consider an allowable polynomial \(p \) in the \(\hat{A}_k \), and suppose \(p \), after making the substitution \(\hat{A}_k = R_{k-1} \cdot A_k \cdot R_k^{adj} \), is identically 0 as a polynomial

over the \(R_k \). Then the following is true:

\[0 = \left(\prod_{i \in [t]} D_{i,b_i,b_i'} \right) [s,t] = \beta_s \gamma_t \left(\prod_{i \in [t]} \alpha_{i,b_i,b_i'} R_{i-1} \cdot B_{i,b_i,b_i} \cdot R_i \right) [s,t] \]

\[= \beta_s \gamma_t \left(\prod_{i \in [t]} \alpha_{i,b_i,b_i'} \right) \prod_{i \in [t]} B_{i,b_i,b_i} [s,t] = \left(\beta_s \gamma_t \prod_{i \in [t]} \alpha_{i,b_i,b_i'} \right) \left(BP_{arith}(x)[s,t] \right) \]

With high probability \(\beta_s, \gamma_t, \alpha_{i,b_i,b_i'} \neq 0 \), meaning \(BP_{arith}(x)[s,t] = 0 \) mod \(q \) if and only if the zero test procedure on position \([s,t]\) gives 0. Therefore, \(BP^O(x) = BP_{bool(q)}(x) \) for the branching program \(BP \) sampled from \(BP^S \).

5 Polynomials on Kilian-Randomized Matrices

In this section, we prove a theorem about polynomials on the Kilian-randomized matrices from the

previous section. Our high level goal is to show polynomials the adversary tries to construct other

than the correct matrix products will be useless to the adversary. In this section, we focus on a

simpler case where the polynomial is only over matrices corresponding to a single input. In the

following section, we use the results of this section to prove the general case.

Previous works showed the single-input case using Kilian simulation [BR13, BGK+14], or a

variant of it [PST14b, AGIS14]. Namely, these works queried the function oracle to determine what

the result of the matrix product \(P(x) \) should be. Then, they tested the polynomial on random

matrices, subject to the requirement that the product equaled \(P(x) \), to see what the result was.

Crucially, previous works relied on the fact that the matrices the polynomial is tested on come from

the same distribution as the matrices would in the branching program. Unfortunately, this step of

the analysis requires the branching program to consist of square invertible matrices. However, we

need to be able to handle generalized matrix branching programs with rectangular and low-rank

matrices. Therefore, we need to replace the Kilian randomization theorem with a new theorem

suitable in this setting.

Let \(d_1, \ldots, d_{n-1} \) be positive integers and \(d_0 = d_n = 1 \). Let \(\hat{A}_k \) for \(k \) \(\in \mathbb{N} \) be \(d_{k-1} \times d_k \) matrices of variables.

Definition 5.1. Let \(d_k, \hat{A}_k \) be as above. Consider a multilinear polynomial \(p \) on the variables in

\(\{ \hat{A}_k \}_{k \in \mathbb{N}} \). We call \(p \) allowable if each monomial in the expansion of \(p \) contains at most one variable

from each of the \(\hat{A}_k \).

As an example of an allowable polynomial, consider the the matrix product polynomial \(\hat{A}_1 \cdot \hat{A}_2 \cdot \ldots \cdot \hat{A}_n \).

Now fix a field \(\mathbb{F} \), and let \(A_k \in \mathbb{F}^{d_k \times d_k} \) for \(k = 1, \ldots, n \) be a collection of matrices over \(\mathbb{F} \). Let

\(R_k \) be \(d_k \times d_k \) matrices of variables for \(k \) \(\in \mathbb{N} \), and let \(R_k^{adj} \) be the adjugate matrix of \(R_k \). Let

\(R_0 = R_{n+1} = 1 \). Now suppose we set

\[\hat{A}_k = R_{k-1} \cdot A_k \cdot R_k^{adj} \]

\[\hat{A}_k \]

be as above. Consider an allowable polynomial \(p \) in the \(\hat{A}_k \), and suppose \(p \), after making the substitution \(\hat{A}_k = R_{k-1} \cdot A_k \cdot R_k^{adj} \), is identically 0 as a polynomial

over the \(R_k \). Then the following is true:
• If \(\mathbf{A}_1 \cdot \mathbf{A}_2 \cdots \cdot \mathbf{A}_n \neq 0 \), then \(p \) is identically zero as a polynomial over its formal variables, namely the \(\hat{\mathbf{A}}_k \).

• If \(\mathbf{A}_1 \cdot \mathbf{A}_2 \cdots \cdot \mathbf{A}_n = 0 \) but

\[
\mathbf{A}_1 \cdot \mathbf{A}_2 \cdots \cdot \mathbf{A}_{n-1} \neq 0^{1 \times d_n} \\
\mathbf{A}_2 \cdots \cdot \mathbf{A}_{n-1} \cdot \mathbf{A}_n \neq 0^{d_2 \times 1}
\]

then \(p_k \) as a polynomial over the \(\hat{\mathbf{A}}_k \), is a constant multiple of the matrix product polynomial \(\hat{\mathbf{A}}_1 \cdot \hat{\mathbf{A}}_2 \cdots \cdot \hat{\mathbf{A}}_n \).

Proof. If \(n = 1 \), there are no \(\mathbf{R}_k \) matrices, a single \(\mathbf{A}_1 \) matrix of dimension \(1 \times 1 \), with entry \(a \). Then \(p = p(a) = ca \) for some constant \(c \). As a polynomial over the (non-existent) \(\mathbf{R}_1 \) matrices, \(p \) is just a constant polynomial, so \(p = 0 \) means \(ca = 0 \). In the first case above, \(a \neq 0 \), so \(c = 0 \), meaning \(p \) is identically 0. The second case above is trivially satisfied since the matrix product polynomial is also a constant.

We will assume that \(\mathbf{A}_1 \) is non-zero in every coordinate. At the end of the proof, we will show this is without loss of generality.

Now we proceed by induction on \(n \). Assume Theorem 5.2 is proved for \(n - 1 \). Consider an arbitrary allowable polynomial \(p \). We can write \(p \) as

\[
p = \sum_{j_1,i_2,j_2 \ldots j_{n-1},i_n+1} \alpha_{j_1,i_2 \ldots j_{n-1},i_n} \hat{\mathbf{A}}_{1,1,j_1} \hat{\mathbf{A}}_{2,i_2,j_2} \cdots \hat{\mathbf{A}}_{n-1,i_{n-1},j_{n-1}} \hat{\mathbf{A}}_{n,i_n,1}
\]

Where \(i_{k+1}, j_k \in [d_k] \), and \(\hat{\mathbf{A}}_{k,i,j} \) is the \((i,j)\) entry of the matrix \(\hat{\mathbf{A}}_{k} \). From this point forward, for convenience, we will no longer explicitly refer to the bounds \(d_k \) on the \(i_{k+1}, j_k \).

Now we can expand \(p \) in terms of the \(\mathbf{R}_1 \) matrix:

\[
p = \sum_{j_1,i_2,j_2 \ldots j_{n-1},i_n+1} \alpha_{j_1,i_2 \ldots j_{n-1},i_n} \mathbf{A}_{1,1,m} \mathbf{R}_{1,m,j_1} \mathbf{R}_{1,j_2,\ell}^{adj} (\mathbf{A}_2 \cdot \mathbf{R}_2)_{\ell,j_2} \hat{\mathbf{A}}_{3,i_3,j_3} \cdots \hat{\mathbf{A}}_{n,i_n,1}
\]

where

\[
\alpha'_{j,i,\ell} = \sum_{j_2 \ldots j_{n-1},i_n+1} \alpha_{j_2 \ldots j_{n-1},i_n} (\mathbf{A}_2 \cdot \mathbf{R}_2)_{\ell,j_2} \hat{\mathbf{A}}_{3,i_3,j_3} \cdots \hat{\mathbf{A}}_{n,i_n,1}
\]

Recall that

\[
\mathbf{R}_{1,j_2,\ell}^{adj} = \sum_{\sigma : \sigma(i) = \ell} \text{sign}(\sigma) \left(\prod_{t \neq i} \mathbf{R}_{1,\sigma(t),t} \right)
\]

where the sum is over all permutations satisfying \(\sigma(i) = \ell \). Thus we can write \(p \) as

\[
p = \sum_{j,i,\sigma,m} \text{sign}(\sigma) \alpha'_{j,i,\sigma(i)} \mathbf{A}_{1,1,m} \mathbf{R}_{1,m,j} \left(\prod_{t \neq i} \mathbf{R}_{1,\sigma(t),t} \right)
\]

Now, since \(p \) is identically zero as a polynomial over the \(\mathbf{R}_k \) matrices, it must be that for each product \(\mathbf{R}_{1,m,j} \left(\prod_{t \neq i} \mathbf{R}_{1,\sigma(t),t} \right) \), the coefficient of the product (which is a polynomial over the \(\mathbf{R}_k : k \geq 2 \) matrices) must be identically 0. We now determine the coefficients.
First, we examine the types of products of entries in \(R_1 \) that are possible. Products can be thought of as arising from the following process. Choose a permutation \(\sigma \), which corresponds to selecting \(d_1 \) entries of \(R_1 \) such that each row and column of \(R_1 \) contain exactly one selected entry. Then, for some \(i \), un-select the selected entry from column \(i \) and instead select any entry from \(R_1 \) (possibly selecting the same entry twice). We observe that the following products are possible:

- \(\prod_i R_{1,\sigma(i),t} \) for a permutation \(\sigma \). This corresponds to re-selecting the un-selected entry from column \(i \). The resulting list of entries determines the permutation \(\sigma \) used to select the original entries (since it is identical to the original list), but allows the column \(i \) of the un-selected/re-selected entry to vary. Thus in the summation above, this fixes \(\sigma \), \(j = i \) and \(m = \sigma(i) \), but allows \(i \) to vary over all values, corresponding to the fact that if we remove any entry and replace it with itself, the result is independent of which entry we removed. Call such products \textit{well-formed}. Well-formed products give the following equation:

\[
\sum_i \alpha'_{i,i,\sigma(i)} A_{1,1,\sigma(i)} = 0 \quad \text{for all } \sigma
\] (5.1)

- \(R_{1,m,j} \prod_{i \neq j} R_{1,\sigma(i),t} \) where \(j \neq i \) and \(m \neq \sigma(i) \). This corresponds to, after un-selecting the entry in column \(i \), selecting a another entry that is in both a different row and a different column. Note that, given final list of selected entries, it is possible to determine the newly selected entry as the unique selected entry that shares both a column with another selected entry and a row with another selected entry. It is also possible to determine the un-selected entry as the only entry that shares both a column with another selected entry. Thus, in the summation above, the selected entries fix \(\sigma, i, j, \) and \(m \). In other words, there is no other selection process that gives the same list of entries from \(R_1 \).

We call such products \textit{malformed type 1}. Malformed type 1 products have the coefficient

\[
\alpha'_{j,i,\sigma(i)} A_{1,1,m}
\]

Given any \(i, j \neq i, m, \ell \neq m \), pick \(\sigma \) so that \(\sigma(i) = \ell \). Since \(A_{1,1,m} \neq 0 \) for all \(m \), this gives

\[
\alpha'_{j,i,\ell} = 0 \quad \text{for all } i, j \neq i, \ell
\] (5.2)

- \(R_{1,m,i} \prod_{i \neq j} R_{1,\sigma(i),t} \) where \(m \neq \sigma(i) \). This corresponds to, after un-selecting the entry \(R_{1,\sigma(i),i} \), selecting a different entry \(R_{1,m,i} \) in the same column. Let \(i', m', \sigma' \) be some other selection process that leads to the same product.

Given the final selection of entries, it is possible to determine \(m' = m \) as the only row with two selected entries. It is also possible to determine \(\sigma'(i') = \sigma(i) \) as the only row with no selected entries (though \(i' \) has not been determined yet). Moreover, \(i' \) must be one of the two columns selected in row \(m \), call the other \(i'' \). All entries outside of these two rows must have come from the original selection of entries, so this determines \(\sigma'(t) = \sigma(t) \) on all inputs outside of \(i, i'' \). Notice that if \(i = i' \), then \(\sigma' \) agrees with \(\sigma \) on \(d_1 - 1 \) entries, and since they are both permutations, this sets \(\sigma' = \sigma \). In this case, \((i', m', \sigma') = (i, m, \sigma)\).

Otherwise \(i' \neq i \), so \(i'' = i \), which leaves \(\sigma'(i) = \sigma(i') = m \). At this point, \(\sigma' \) is fully determined as \(\sigma \circ (i \ i') \) where \((i \ i')\) is the transposition swapping \(i \) and \(i' \). Therefore, there are two possibilities leading to this product, one corresponding to \(i \) and the other corresponding to \(i' \).
We call these products malformed type 2. Notice that σ' and σ only differ by a transposition swapping i and i', and so they have opposite parity, meaning the corresponding terms in p have the opposite sign. Given $i, i' \neq i, m, \ell \neq m$, choose σ so that $\sigma(i) = \ell$. This gives us $(\alpha'_{i,i,\ell} - \alpha'_{i',i',\ell})A_{1,1,\ell} = 0$. Since $A_{1,1,\ell} \neq 0$ for all ℓ, we therefore have that $\alpha'_{i,i,\ell} = \alpha'_{i',i',\ell}$ for all i, i'. We can thus choose β_ℓ such that:

$$\alpha'_{i,i,\ell} = \beta_\ell \text{ for all } i, \ell \tag{5.3}$$

- $R_{1,\sigma(i),j} \prod_{\ell \neq i} R_{1,\sigma(1),\ell}$ where $j \neq i$. We call such products malformed type 3. The coefficients of these products are linear combinations of the $\alpha'_{i,j,\ell}$ for $i \neq j$, which we already know to be 0. Therefore, these equations are redundant, and we will not need to consider them.

Setting $\sigma(i) = i$ in Equation 5.1 and combining with Equation 5.3, we have that

$$\sum_{\ell} \beta_\ell A_{1,1,\ell} = 0 \tag{5.4}$$

Now we can expand $\alpha'_{j,i,\ell}$ and β_ℓ in Equations 5.2 and 5.4, obtaining:

$$0 = \alpha'_{j,i,\ell} = \sum_{j_2,j_3,\ldots,j_{n-1},i_n} \alpha_{j,i,j_2,j_3,\ldots,j_{n-1},i_n} (A_2 \cdot R_2)_{\ell,j_2} \hat{A}_{3,i_3,j_3} \ldots \hat{A}_{n,i_n,1} \text{ for all } \ell, i, j \neq i \tag{5.5}$$

$$0 = \sum_{\ell} \beta_\ell A_{1,1,\ell} = \sum_{\ell,j_2,j_3,\ldots,j_{n-1},i_n} \alpha_{i,i,j_2,j_3,\ldots,j_{n-1},i_n} A_{1,1,\ell} (A_2 \cdot R_2)_{\ell,j_2} \hat{A}_{3,i_3,j_3} \ldots \hat{A}_{n,i_n,1}$$

$$= \sum_{j_2,j_3,\ldots,j_{n-1},i_n} \alpha_{i,i,j_2,j_3,\ldots,j_{n-1},i_n} (A_1 \cdot A_2 \cdot R_2)_{1,j_2} \hat{A}_{3,i_3,j_3} \ldots \hat{A}_{n,i_n,1} \text{ for all } i \tag{5.6}$$

Now we invoke the inductive step multiple times. Let $A_{2,\ell}$ be the ℓth row of A_2, and let $\hat{A}_{2,\ell} = A_{2,\ell} \cdot R_2$. Since $A_2 \cdot A_3 \ldots A_n \neq 0$, there is some ℓ such that $A_{2,\ell} \cdot A_3 \ldots A_n \neq 0$. Then the matrices $A_{2,\ell}, A_3, \ldots, A_n$ satisfy the first set of requirements of Theorem 5.2 for $n-1$. Moreover, the right side of Equation 5.5 gives an allowable polynomial that is identically zero as a polynomial over the $R_k, k \geq 2$, and therefore, by induction, it is identically 0 as a polynomial over $A_{2,\ell}, A_3, \ldots, A_n$. This shows us that

$$\alpha_{j,i,j_2,j_3,\ldots,j_{n-1},i_n} = 0 \text{ for all } j \neq i \tag{5.7}$$

Next, Let $A'_2 = A_1 \cdot A_2$, and let $\hat{A}'_2 = A'_2 \cdot R_2$. There are two cases:

- $A_1 \cdot A_2 \ldots A_n \neq 0$. Then $A'_2 \cdot A_3 \ldots A_n \neq 0$. Therefore, A'_2, A_3, \ldots, A_n satisfy the first set of requirements in Theorem 5.2. Moreover, for each i, Equation 5.6 gives an allowable polynomial that is identically zero as a polynomial over the $R_k, k \geq 2$. Therefore, by induction, the polynomial is identically zero as a polynomial over A'_2, A_3, \ldots, A_n. This means

$$\alpha_{i,i,j_2,j_3,\ldots,j_{n-1},i_n} = 0 \text{ for all } i \tag{5.8}$$

Combining with Equation 5.7, we have that all the α values are 0. Therefore p is identically zero as a polynomial over the A_1, A_2, \ldots, A_n.

23
We now explain how to use Theorem 5.2 to prove the VBB security of our obfuscator. The full which consists of a list of handles corresponding to elements in the graded encoding. The adversary works [BGK 6 Sketch of VBB Security Proof

It remains to show the case where \(A_1 \) has zero entries. Since \(A \) is non-zero (as a consequence of our assumptions), and \(A \) is a single row vector, it is straightforward to build an invertible matrix \(B \) such that \(A' = A \cdot B \) is non-zero in every coordinate.

Let \(A_2' = B^{-1}A_2 \). Let \(R_1' = B^{-1} \cdot R_1 \), \(\hat{A}_1' = A_1' \cdot R_1' = \hat{A}_1 \), and \(\hat{A}_2' = (R_1')^{adj} \cdot A_2' \cdot R_2 = \hat{A}_2 \). Now \(A_1', A_2', A_3', \ldots, A_n \) satisfy the same conditions of Theorem 5.2 as the original \(A_k \). Moreover, \(p \) is still allowable as a polynomial over \(\hat{A}_1', \hat{A}_2', \hat{A}_3', \ldots, \hat{A}_n \). Moreover, we can relate \(p \) as a polynomial over \(R_k \) to \(p \) as a polynomial over \(R_1', R_2', \ldots, R_{n-1} \) by a linear transformation on the \(R_j \) variables. Therefore, \(p \) is identically zero as a polynomial over the \(R_k \) if and only if it is identically zero as a polynomial over \(R_1', R_2', \ldots, R_n \). Thus we can invoke Theorem 5.2 on \(A_1', A_2', \ldots, A_n \) using the same polynomial \(p \), and arrive at the desired conclusion. This completes the proof.

\[\] 6 Sketch of VBB Security Proof

We now explain how to use Theorem 5.2 to prove the VBB security of our obfuscator. The full security proof appears in Section 7.

In this sketch, we will pay special attention to the steps in our proof that deviate from previous works [BGK+14, AGIS14]. The adversary is given an obfuscation of a branching program \(BP \), which consists of a list of handles corresponding to elements in the graded encoding. The adversary can operate on these handles using the graded encoding interface, which allows performing algebraic operations and zero testing. Our goal is to build a simulator that has oracle access only to the output of \(BP \), and is yet able to simulate all of the handles and interfaces seen by the adversary.

The simulator will choose random handles for all of the encodings in the obfuscation, leaving the actual entries of the \(\mathbf{D}_{i,b_0,b_1} \) as formal variables\(^4\). Simulating the algebraic operations is

\[\]

\(^4\)The simulator does not know the branching program, and so it has no way of actually sampling the \(\mathbf{D}_{i,b_0,b_1} \).
straightforward; the bulk of the security analysis goes in to answering zero-test queries. Any handle the adversary queries the zero test oracle on corresponds to some polynomial p on the variables D_{i,b_0,b_1}, which the adversary can determine by inspecting the queries made by the adversary so far.

The simulator’s goal is to decide if p evaluates to zero, when the formal variables in the D_{i,b_0,b_1} are set to the values in the randomized matrix branching program BP'. However, the simulator does not know BP', and must instead determine if p gives zero knowing only the outputs of BP.

The analysis of [BGK+14] and [AGIS14] (and some extra analysis of our own to handle multi-bit outputs) reduces the problem of determining if p evaluates to zero to solving the following problem. There is an unknown sequence of matrices $A_i \in \mathbb{Z}_q^{d_i \times d_i}$ for $i \in [\ell]$, where $d_0 = d_\ell = 1$ (the shapes of the A_i ensure that the product $\prod_{i \in [\ell]} A_i$ is valid and results in a scalar). We are also given an allowable polynomial p' on matrices of random variables \hat{A}_i. Our goal is to determine, if the \hat{A}_i are set to the Kilian-randomized matrices $\hat{A}_i = R_{i-1} \cdot A \cdot R_i^{adj}$, whether or not p' evaluates to zero. We note that by applying the Schwartz-Zippel lemma, it suffices to decide if p' is identically zero, when considered a polynomial over the formal variables R_i.

It is not hard to see that this simpler problem is impossible in general: p' could be the polynomial computing the iterated matrix product $\prod_{i \in [\ell]} \hat{A}_i$, which is equal to $\prod_{i \in [\ell]} A_i$. Therefore, to decide if p' is identically zero in this case, we at a minimum need to know if $\prod_{i \in [\ell]} A_i$ evaluates to 0.

The analysis shows that the A_i are actually equal to $B_{i,x_{inp}(i)} \cdot x_{inp}(i)$ for some (known) input x, where B_{i,b_0,b_1} are the matrices in the branching program BP. Therefore, we can determine if $\prod_{i \in [\ell]} A_i = 0$ by querying the BP oracle on x. In the case where p' is the iterated matrix product, this allows us to determine if p' is identically zero. What about other, more general, polynomials p'?

In previous works, A_1 and A_ℓ are bookend vectors, and the A_i for $k \in [2, \ell - 1]$ are square invertible matrices. In this setting, Kilian’s statistical simulation theorem allows us to sample from the distribution of \hat{A}_i, knowing only the product of the A_i, but not the individual values. Then we can apply p' to the sample, and the Schwartz-Zippel lemma shows that p' will evaluate to zero, with high probability, if and only if it is identically zero. This allows deciding if p' is identically zero.

In our case, we cannot sample from the correct distribution of \hat{A}_i. Instead, we observe that our branching program is non-shortcutting, which means the \hat{A}_i and p' satisfy the requirements of Theorem 5.2. Theorem 5.2 implies something remarkably strong: if p' is not (a multiple of) the iterated matrix product, it cannot possibly be identically zero as a polynomial over the formal variables R_k. Thus, we first decide if p' is a multiple of the iterated matrix product, which is possible using the Schwartz-Zippel lemma. If p' is a multiple, then we know it is identically zero if and only if the product $\prod_{i \in [\ell]} A_i$ is zero, and we know whether this product is zero by using our BP oracle.

7 VBB Security of our Construction

We now argue the virtual black box security of our construction. Security is given by the following theorem:

Theorem 7.1. If BP^S outputs non-shortcutting branching programs, then for any PPT adversary A, there is a PPT simulator Sim such that

$$\left| \Pr[A^\mathcal{M}(\mathcal{O}^\mathcal{M}(BP^S)) = 1] - \Pr_{BP \leftarrow BP^S}[\text{Sim}^{BP}(\ell, d_0, \ldots, d_\ell, inp_0, inp_1)] \right| < \text{negl}$$
Proof. We construct a simulator Sim that, on input a description of an adversary A, simulates the view of A on input $BP^O = O(BP^S)$, given only oracle access to BP. Sim is also given $\ell, d_0, \ldots, d_\ell, inp_0, inp_1$.

Most steps in the simulator are identical to [AGIS14], with the exception being the simulation of zero-test queries. First, the simulator emulates the obfuscator O on BP. Since Sim only has oracle access to BP and thus has no way to determine the matrices B_{i,b_0,b_1}, Sim instead initializes M with formal variables. More precisely, Sim will maintain a table of handles and corresponding level of encodings that have been initialized so far. Sim initializes the table with random handles corresponding to the randomized matrices C_{i,b_0,b_1}. Sim then easily emulates all of the interfaces of M except for zero testing. The simulator also computes the set system used for the encodings from inp_0, inp_1.

Simulating Zero-test queries. We now describe how to simulate zero-test queries by the adversary, given only oracle access to BP. Just as in [AGIS14], when the adversary submits a handle h for zero testing, Sim looks up the corresponding polynomial p in its table. As a first step, we decompose p into single-input elements:

Definition 7.2. A single-input element for an input x is a polynomial p_x whose variables are the $C_{i,x,inp_0(x)}$ matrices, and p_x is allowable in the sense of Definition 5.1: each monomial in the expansion of p_x contains exactly one variable from each of the $C_{i,x,inp_0(x)}$ matrices.

Lemma 7.3 (Adapted from [BGK+14, AGIS14]). The polynomial p can be efficiently decomposed into the sum

$$p = \sum_{x \in D} \alpha_x p_x$$

where $\alpha_x = \prod_{i \in [\ell]} \alpha_{i,x,inp_0(x)}$, each p_x is a single-input element for input x, and D is polynomial in size.

The first part of Lemma 7.3 follows from the decomposition in previous works. The absence of bookends, the multi-bit outputs, and the singular and rectangular matrices does not affect this part of the simulation. The fact that p_x are allowable is not mentioned or proved in previous works, but follows easily from the graded encoding structure.

Because we have multi-bit outputs, we will actually need to decompose the polynomials even further.

Definition 7.4. A single-input/single-output element for an input x and output position $(s, t) \in [d_0] \times [d_\ell]$ is a polynomial $p_{x,s,t}$ whose variables are the $B_{i,x,inp_0(i),inp_1(i)}$ matrices, and $p_{x,s,t}$ is allowable in the sense, and $p_{x,s,t}$ is allowable in the sense of Definition 5.1: each monomial in the expansion of $p_{x,s,t}$ contains exactly one variable from each of the $B_{i,x,inp_0(i),inp_1(i)}$ matrices. Moreover, the variable from the matrix $B_{1,x,inp_0(1),inp_1(1)}$ comes from row s, and the variable from the matrix $B_{\ell,x,inp_0(1),inp_1(1)}$ comes from column t.

Lemma 7.5. Each single-input element $p_{x,s,t}$ can be efficiently decomposed into a sum

$$p_{x,s,t} = \sum_{x \in [d_0], t \in [d_\ell]} \beta_{s \gamma t} p_{x,s,t}$$

where $p_{x,s,t}$ are single input/single output elements for x, s, t.

26
Proof. Write the \(C \) in terms of the \(\widehat{B} \) and \(S, T \), where \(S \) and \(T \) are the diagonal matrices with \(\beta_s \) and \(\gamma_t \) on the diagonal, respectively. That is,

\[
C_{1,b_1,b_2} = S \cdot \widehat{B}_{1,b_1,b_2} \quad C_{\ell,b_1,b_2} = \widehat{B}_{1,b_1,b_2} \cdot T \quad C_{i,b_1,b_2} = \widehat{B}_{i,b_1,b_2} \text{ for each } i \in [2, \ell - 1]
\]

For each \(s \in [d_0], t \in [d_1] \), set \(\beta_s = 1, \gamma_t = 1 \) and \(\beta_{s'} = \gamma_{t'} = 0 \) for all \(s' \neq s, t' \neq t \). Let \(p_{x,s,t} \) be the polynomial remaining. Then \(p_{x,s,t} \) is exactly a single-input/single-output element for \(x, s, t \).

Moreover, after doing this for all \(s, t \), we have that

\[
p_x = \sum_{s \in [d_0], t \in [d_1]} \beta_s \gamma_t p_{x,s,t}
\]

as desired.

Next, for each \(x \in D \), we query the function oracle to learn \(BP(x) \), and use \(BP(x) \) to determine an input distribution on which we test the various polynomials \(p_{x,s,t} \). Starting at this point, our simulation and analysis departs from previous works. Existing works rely on Kilian \cite{Kil88} simulation to argue that the distribution of test inputs matches the distribution in the actual obfuscator. This allows them to determine whether \(p_x \) should evaluate to zero or not with overwhelming probability.

Unfortunately for us, Kilian simulation only applies to square invertible matrices. Therefore, we need to modify the simulation and/or analysis to handle this.

Fix \(x, s, t \), and let \(b_i = x_{\text{inp}_c(i)} \). For \(i \in [0, \ell - 1] \), let \(\widehat{A}_i \) denote \(\widehat{B}_{i,b_0,b_1} \) and \(A_i = B_{i,b_0,b_1} \). Let \(\widehat{A}_1 \) be row \(s \) of \(\widehat{B}_{1,b_0,b_1} \) and \(\widehat{A}_t \) be row \(t \) of \(B_{1,b_0,b_1} \).\footnote{The simulator does not actually compute the \(A_i \); we are just using them for the analysis.}

Then \(p_{x,s,t} \) is an allowable polynomial in the \(\widehat{A}_i \).

For each polynomial \(p_{x,s,t} \), we determine whether \(p_{x,s,t} \) evaluates to zero. We do this as follows:

- If \(BP(x)[s,t] = 1 \), we choose totally random matrices \(\widehat{A}_i \), and test if \(p_{x,s,t} \) evaluates to zero on these matrices. If the result is zero, we say \(p_{x,s,t} \) evaluates to zero, and if the result is non-zero, we say \(p_{x,s,t} \) evaluates to non-zero. There are two cases:
 - \(p_{x,s,t} \) is identically zero. Then our test will give zero with probability 1, and \(p_{x,s,t} \) evaluates to zero in the actual scheme with probability 1. Therefore, we correctly determine if \(p_{x,s,t} \) evaluates to zero.
 - \(p_{x,s,t} \) is not identically zero. Then, by Schwartz-Zippel, our test will, with overwhelming probability, obtain non-zero, and we will report non-zero. In the actual scheme, since \(BP(x)[s,t] = 1 \), the \(A_i \) satisfy the first set of requirements of Theorem 5.2. Therefore, since \(p_{x,s,t} \) is allowable, Theorem 5.2 shows that \(p_{x,s,t} \) is also not identically zero as a polynomial over the randomization matrices \(R_i \). Schwartz-Zippel then shows that in the actual scheme, with overwhelming probability, \(p_{x,s,t} \) will evaluate to non-zero. Thus we correctly guess whether \(p_{x,s,t} \) evaluates to non-zero with overwhelming probability.

- If \(BP(x)[s,t] = 0 \), we choose random matrices \(\widehat{A}_i \) subject to the restriction that their product is zero, and test \(p_{x,s,t} \) on these matrices. This is done as follows. Choose random \(A_i \) for \(i \in [\ell - 1] \). Let \(v = (v_1, \ldots, v_{d_{x-1}}) \) be the row vector \(\prod_{i=0}^{\ell-1} A_i \). Now we sample values

27
\(w_2, \ldots, w_{d-1}\) at random, and let \(\hat{A}_t\) be the column vector
\[
\hat{A}_t = \begin{pmatrix}
-\sum_{i=2}^{d-1} v_i w_i \\
v_1 w_2 \\
v_1 w_3 \\
\vdots \\
v_1 w_{d-1}
\end{pmatrix}
\]
(7.1)

Then \(v \cdot \hat{A}_t = 0\). We now make the following claim:

Claim 7.6. If a polynomial \(p\), after making the substitution in Equation 7.1, becomes identically zero, then \(p\) was originally a multiple of the matrix product polynomial.

Proof. \(p\) being identically zero in the substitution in Equation 7.1 is equivalent to \(p\) being identically zero after making the substitution
\[
\hat{A}_{t,1,i} \leftarrow -\sum_{i=2}^{d-1} \frac{v_i \hat{A}_{t,i,1}}{v_1}
\]
If this substitution gives a zero polynomial, it must be that
\[
\hat{A}_{t,1,1} + \sum_{i=2}^{d-1} \frac{v_i \hat{A}_{t,i,1}}{v_1}
\]
divides \(p\). Since \(p\) is a polynomial, we can remove the \(v_1\) in the denominator and conclude that, in fact,
\[
v_1 \hat{A}_{t,1,1} + \sum_{i=2}^{d-1} v_i \hat{A}_{t,i,1} = \sum_{i=1}^{d-1} v_i \hat{A}_{t,i,1}
\]
divides \(p\). But the polynomial above is exactly the matrix product polynomial, as desired.

Now we test \(p_{x,s,t}\) on the samples \(\hat{A}_i\). If the result is zero, we say \(p_{x,s,t}\) evaluates to zero, and if the result is non-zero, we say \(p_{x,s,t}\) evaluates to non-zero. There are two cases:

- \(p_{x,s,t}\) is a multiple of the matrix product polynomial. Then our test will give zero with probability 1, and \(p_{x,s,t}\) evaluates to zero in the actual scheme with probability 1. Therefore, we correctly determine if \(p_{x,s,t}\) evaluates to zero.

- \(p_{x,s,t}\) is not a multiple of the matrix product polynomial. Claim 7.6 then shows \(p_{x,s,t}\) must be not identically zero after making the substitutions in Equation 7.1. Therefore, Schwartz-Zippel shows that the polynomial evaluates to non-zero with overwhelming probability. Therefore, we will say the value is non-zero. In the actual scheme, since \(BP(x)[s, t] = 0\) and \(BP\) is non-shortcutting, the \(A_i\) satisfy the second set of requirements for Theorem 5.2. Since \(p_{x,s,t}\) is not a multiple of the matrix product polynomial but is allowable, Theorem 5.2 shows that the polynomial is not identically zero as a polynomial over the randomization matrices \(R_i\). Schwartz-Zippel then shows that in the actual scheme, with overwhelming probability, \(p_{x,s,t}\) will evaluate to non-zero. Thus we correctly guess whether \(p_{x,s,t}\) evaluates to non-zero with overwhelming probability.
Therefore, we will correctly determine whether $p_{x,s,t}$ evaluates to 0 for each x, s, t with overwhelming probability. Now recall that

$$p = \sum_{x \in D, s \in [d_0], t \in [d_\ell]} \left(\prod_{i \in [\ell]} \alpha_{i,x_{\text{inp}_0(i)}},x_{\text{inp}_1(i)}(i) \right) \beta_{s,t} p_{x,s,t}$$

If any of the $p_{x,s,t}$ evaluate to non-zero, we respond to the zero-test with non-zero. If all evaluate to zero, we respond to the zero-test with zero. Since the number of $p_{x,s,t}$ is polynomial (namely $|D| \times d_0 \times d_\ell$), we can test each $p_{x,s,t}$ efficiently. In the case where any of the $p_{x,s,t}$ are non-zero, we again appeal to Schwartz-Zippel (this time on the αs, βs, and γs) to see that with overwhelming probability the polynomial p evaluates to non-zero. If all of the p_s are zero, then with probability 1 p will evaluate to zero. Therefore, we correctly guess the value of p with overwhelming probability.

\[\square \]

References

