COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017
Project 1 – 2nd Bonus

Still at 40 decrypts...

• Tristan Pollner and Zachary Stier

• Prinstun Criptoe (Heather Newman, Iris Rukshin, Jacob Wachspress)
Previously on COS 433...
Left-or-Right Experiment

\[\text{Challenger} \]

\[k \leftarrow K \]

\[c \leftarrow \text{Enc}(k,m_b) \]

\[b \]

\[\text{LoR-Exp}_b(\text{Alice}) \]

\[m_0, m_1 \in M \]

\[c \]

\[b' \]
Pseudorandom Functions

Functions that “look like” random functions

Syntax:
- Key space K (usually $\{0,1\}^\lambda$)
- Domain X (usually $\{0,1\}^m$)
- Co-domain/range Y (usually $\{0,1\}^n$)
- Function $F:K \times X \rightarrow Y$
Pseudorandom Functions

Security:

\[x \in X \]

Challenger

\[b \]

\[b' \]
Pseudorandom Functions

Security:

```
\text{Challenger}

b = 0

k \leftarrow K

y \leftarrow F(k, x)

PRF-Exp_0() 
```
Pseudorandom Functions

Security:

\(b' \)

\[\begin{align*}
 & x \in X \\
 & y = H(x) \\
 & \text{Challenger} \quad H \leftarrow \text{Funcs}(X,Y) \\
 & b=1 \\
 & \text{PRF-Exp}_1(\cdot)
\end{align*} \]
Using PRFs to Build Encryption

\textbf{Enc}(k, m):
- Choose random \(r \leftarrow X \)
- Compute \(y \leftarrow F(k, r) \)
- Compute \(c \leftarrow y \oplus m \)
- Output \((r, c)\)

\textbf{Dec}(k, (r, c)):
- Compute \(y' \leftarrow F(k, r) \)
- Compute and output \(m' \leftarrow c \oplus y' \)

\textbf{Correctness}:
- \(y' = y \) since \(F \) is deterministic
- \(m' = c \oplus y = y \oplus m \oplus y = m \)
Today

Security for arbitrary-length messages

Block ciphers

Modes of operation
Security for Arbitrary-Length Messages

Impossible in general to hide message length
Security for Arbitrary-Length Messages

\[m_0, m_1 \text{ s.t. } |m_0| = |m_1| \]

\[c \leftarrow \text{Enc}(k, m_b) \]

\[\text{IND-Exp}_b(\text{Challenger}) \]
Theorem: Given any CPA-secure \((\text{Enc,Dec})\) for fixed-length messages (even single bit), it is possible to construct a CPA-secure \((\text{Enc,Dec})\) for arbitrary-length messages.
Construction

Let \((\text{Enc}, \text{Dec})\) be CPA-secure for single-bit messages

\[\text{Enc}'(k, m):\]
For \(i = 1, \ldots, |m|\), run \(c_i \leftarrow \text{Enc}(k, m_i)\)
Output \((c_1, \ldots, c_{|m|})\)

\[\text{Dec}'(k, (c_1, \ldots, c_l)):\]
For \(i = 1, \ldots, l\), run \(m_i \leftarrow \text{Dec}(k, c_i)\)
Output \(m = m_1m_2\ldots,m_l\)
Theorem: If \((Enc, Dec)\) is \((t, q, \varepsilon)\)-LoR secure, then \((Enc', Dec')\) is \((t - t', q/n, \varepsilon)\)-LoR secure for messages of length up to \(n\)
Proof

Assume toward contradiction that there exists a running in time at most $t-t'$, making q/n LoR queries on messages of length up to n, which has advantage ε in breaking (Enc',Dec')

Construct that has advantage ε in breaking (Enc,Dec)
Proof (sketch)

\[m_0, m_1 \]

\[(m_0)_1, (m_1)_1 \xleftarrow{c_1} \]

\[(m_0)_2, (m_1)_2 \xleftarrow{c_2} \]

\[(m_0)_3, (m_1)_3 \xleftarrow{c_3} \]

\[\ldots \]

\[c \xleftarrow{(c_1, \ldots)} \]
Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires $\lambda + 1$ bits

\Rightarrow encrypting l-bit message requires $\approx \lambda l$ bits

Ideally, ciphertexts would have size $\approx \lambda + l$
Solution 1: Add PRG/Stream Cipher

Enc(k, m):
- Choose random \(r \leftarrow X \)
- Compute \(y \leftarrow F(k,r) \)
- Get \(|m| \) pseudorandom bits \(z \leftarrow G(y) \)
- Compute \(c \leftarrow z \oplus m \)
- Output \((r,c)\)

Dec(k, (r,c)) :
- Compute \(y' \leftarrow F(k,r) \)
- Compute \(z' \leftarrow G(y') \)
- Compute and output \(m' \leftarrow c \oplus z' \)
Solution 1: Add PRG/Stream Cipher

\[r \leftarrow X \]

\[k \]

\[F \]

\[y \]

\[G \]

\[z \oplus m \]

\[(c, \quad \quad) \]
Proof Sketch

Hybrid 0: \((m_0, m_1) \rightarrow (r, G(F(k,r)) \oplus m_0) \)

Hybrid 1: \((m_0, m_1) \rightarrow (r, G(s) \oplus m_0) \)

Hybrid 2: \((m_0, m_1) \rightarrow (r, t \oplus m_0) \)

Hybrid 3: \((m_0, m_1) \rightarrow (r, t \oplus m_1) \)

Hybrid 4: \((m_0, m_1) \rightarrow (r, G(s) \oplus m_1) \)

Hybrid 5: \((m_0, m_1) \rightarrow (r, G(F(k,r)) \oplus m_1) \)
Solution 2: Counter Mode

\textbf{Enc}(k, m):
- Choose random \(r \leftarrow \{0,1\}^{\lambda/2} \)
- For \(i=1,\ldots,|m| \),
 - Compute \(y_i \leftarrow F(k, r \Vert i) \)
 - Compute \(c_i \leftarrow y_i \oplus m_i \)
- Output \((r, c) \) where \(c=(c_1,\ldots,c_{|m|}) \)

\textbf{Dec}(k, (r,c)):
- For \(i=1,\ldots,l \),
 - Compute \(y_i \leftarrow F(k, r \Vert i) \)
 - Compute \(m_i \leftarrow y_i \oplus c_i \)
- Output \(m=m_1,\ldots,m_l \)

\footnotesize{Write \(i \) as \(\lambda/2 \)-bit string

Handles any message of length at most \(2^{\lambda/2} \)}
Solution 2: Counter Mode

\[\begin{align*}
X &\rightarrow r_1 \\
F &\oplus k \\
(, &\downarrow)
\end{align*} \]
Block ciphers/Pseudorandom Permutations
Pseudorandom Permutations
(also known as block ciphers)

Functions that “look like” random permutations

Syntax:
• Key space K (usually $\{0,1\}^\lambda$)
• Domain=Range= X (usually $\{0,1\}^n$)
• Function $F:K \times X \rightarrow X$
• Function $F^{-1}:K \times X \rightarrow X$

Correctness: $\forall k, x, F^{-1}(k, F(k, x)) = x$
Pseudorandom Permutations

Security:

\[x \in X \]

Challenger

\[b \]

\[y \]

\[b' \]
Pseudorandom Permutations

Security:

\[x \in X \quad \downarrow \quad b' \]

\[b = 0 \]

Challenger

\[k \leftarrow K \]

\[y \leftarrow F(k, x) \]

PRF-Exp_o(\cdot)
Pseudorandom Permutations

Security:

$$x \in X$$

Challenger

$$b = 1$$

$$H \leftarrow \text{Perms}(X, X)$$

$$y = H(x)$$

$$\text{PRF-Exp}_1(\cdot)$$
Definition: F is a (t, q, ε)-secure PRP if, for all running in time at most t and making at most q queries,

$$\left| \Pr[1 \leftarrow \text{PRF-Exp}_0(\cdot)] - \Pr[1 \leftarrow \text{PRF-Exp}_1(\cdot)] \right| \leq \varepsilon$$
Theorem: A PRP (F, F^{-1}) is (t, q, ε)-secure iff F is $(t, q, \varepsilon + q^2/2|X|)$-secure as a PRF
Proof

Secure as PRP \implies Secure as PRF

• Assume hybrids

Hybrid 0:

$$x \in X$$

Challenger

$$k \leftarrow K$$

$$y \leftarrow F(k, x)$$
Proof

Secure as PRP \Rightarrow Secure as PRF

• Assume hybrids

Hybrid 1:

Challenger $H \leftarrow \text{Perms}(X,X)$

$b' \\ x \in X \\ b' \\ y \\ y \leftarrow H(x)$
Proof

Secure as PRP \Rightarrow Secure as PRF
• Assume \mathcal{C}, hybrids

Hybrid 2:

Challenger $\mathcal{H}\leftarrow\mathcal{F}_{\mathcal{F}_{\mathcal{F}}} (X,X)$

b'
Proof

Secure as PRP ⇒ Secure as PRF
• Assume hybrids

Hybrids 0 and 1 are indistinguishable by PRP security

Hybrids 1 and 2?
• In Hybrid 1, sees random distinct answers
• In Hybrid 2, sees random answers
• Except with probability $\approx \frac{q^2}{2|X|}$, random answers will be distinct anyway
Proof

Secure as PRF \Rightarrow Secure as PRP
• Assume hybrids

Proof essentially identical to other direction
Suppose (F, F^{-1}) is a secure PRP

Is (F^{-1}, F) also a secure PRP?
Counter Example

Suppose (F, F^{-1}) is a secure PRP. Assume $X = \{0,1\}^n$

Define (H, H^{-1}) as follows:
• Given k, let i be smallest input such that $F^{-1}(i)$ begins with a 0
• Let $x_0 = F^{-1}(0^n)$, $x_1 = F^{-1}(i)$
• $H(k, x) = \begin{cases}
0^n & \text{if } x = x_1 \\
i & \text{if } x = x_0 \\
F(k, x) & \text{otherwise}
\end{cases}$
How to use block ciphers for encryption
Counter Mode (CTR)

\[\text{IV} \oplus F(k) \oplus \text{IV} \]

\[\text{IV} \oplus F(k) \oplus \text{IV} \]
Electronic Code Book (ECB)

Enc(k, m):
- Break m into t blocks m_i of n bits
- For each block m_i, let $c_i = F(k, m_i)$
- Output $c = (c_1, ..., c_t)$

Dec(k, c):
- Break c into t blocks c_i of n bits
- For each block c_i, let $m_i = F^{-1}(k, c_i)$
- Output $m = (m_1, ..., m_t)$

substitution cipher for n-bit alphabet
Electronic Code Book (ECB)
ECB Decryption
Security of ECB?

Is ECB mode CPA secure?

Is ECB mode one-time secure?
Security of ECB

Plaintex | Ciphertext | Ideal
Cipher Block Chaining (CBC) Mode

(For now, assume all messages are multiples of the block length)
CBC Mode Decryption
Theorem: If (F, F^{-1}) is a (t, q, ϵ)-secure pseudorandom permutation, then CBC mode encryption is $(t - t', q/n, 2\epsilon + q^2/|X|)$ CPA secure for messages of length up to n.
Proof Sketch

Assume toward contradiction an adversary 🐜 for CBC mode

Hybrids...
Proof Sketch

Hybrid 0

\[\mathbf{IV} \oplus \mathbf{F} \oplus \mathbf{F} \oplus \mathbf{F} \oplus \mathbf{F} \oplus m_0 \]

\[(\mathbf{IV}, \ldots, \mathbf{IV}) \]
Proof Sketch

Hybrid 1

(IV, m_0)

(,)
Proof Sketch

Hybrid 2

\(\oplus \)

\(m_1 \)

\(IV \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(IV \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(H \)

\(\oplus \)

\(\oplus \)

\(\oplus \)

\(\oplus \)
Proof Sketch

Hybrid 3

\[\text{IV} \oplus F \quad F \quad F \quad F \quad \oplus \quad m_1 \]

(\text{IV} \quad , \quad \text{IV})
Proof Sketch

Hybrid 0,1 differ by replacing calls to F with calls to random permutation H

- Indistinguishable by PRP security

Same for Hybrids 2,3

All that is left is to show indistinguishability of 1,2
Proof Sketch

Hybrid 1

(IV ⊕ H ⊕ H ⊕ H ⊕ H ⊕ m₀)

(IV , H , H , H , H , H)
Proof Sketch

Hybrid 2

\((\text{IV}, m_1) \)

\(\mathbf{H} \)
Proof Sketch

Idea:
• As long as, say, the sequence of left messages queried by does not result in two calls to \(F \) on the same input, all outputs will be random (distinct) outputs
• For each message, first query to \(F \) will be uniformly random
• Second query gets XORed with output of first query to \(F \) \(\Rightarrow \approx \) uniformly random
Proof Sketch

Idea:
• Since queries to \mathcal{F} are (essentially) uniformly random, probability of querying same input twice is exponentially small
• Ciphertexts will be essentially random
• True regardless of encrypting m_0 or m_1
Stateful Variants of CBC

Chained CBC
• IV is set to last block of previous ciphertext

Deterministic IV
• Sender keeps a counter
• To encrypt, IV is set to counter, and counter is incremented

Both variants mean no need to send IV
Deterministic IV

ctr

()

()

ctr ++
Is Deterministic IV Secure?
Chained CBC

\[\text{IV} \xrightarrow{\oplus} \mathcal{F} \xrightarrow{k} \mathcal{F} \xrightarrow{\oplus} \mathcal{F} \xrightarrow{k} \mathcal{F} \xrightarrow{\oplus} \mathcal{F} \xrightarrow{k} \mathcal{F} \xrightarrow{\oplus} \mathcal{F} \xrightarrow{k} \mathcal{F} \xrightarrow{\oplus} \mathcal{F} \]
Is Chained CBC Secure?
CBC Mode with Predictable IV

In general, if you can predict the IV of the next message, you can break CBC-mode encryption.

Idea:
• Set first block of next message to be the next IV
• Then F will be applied to 0
• First block of ciphertext will be $F(k,0)$

So if we set left messages in this way, all first blocks will be the same.
Output Feedback Mode (OFB)

```
IV \rightarrow \text{F} \rightarrow k \rightarrow \text{F} \rightarrow k \rightarrow \text{F} \rightarrow k \rightarrow \text{F} \rightarrow k \rightarrow \text{F} \rightarrow \cdots
```

Turn block cipher into stream cipher
OFB Decryption

\[k \rightarrow F \rightarrow k \rightarrow F \rightarrow k \rightarrow F \rightarrow k \rightarrow F \]

\[\text{IV} \oplus \rightarrow \text{Output} \]

\[F_k \oplus \]

\[F_k \oplus \]

\[F_k \oplus \]

\[F_k \oplus \]
What happens if a block is lost in transmission?

OFB decryption:

\[\text{Same goes for CTR mode} \]
Cipher Feedback (CFB)

Turn block cipher into self-synchronizing stream cipher
CFB Decryption

\[\text{IV} \oplus F_k \oplus F_k \oplus F_k \oplus F_k \]
What happens if a block is lost in transmission?

CFB decryption:
What happens if a block is lost in transmission?

What about CBC?
Security of OFB, CFB modes

Security very similar to CBC

Define 4 hybrids
• 0: encrypt left messages
• 1: replace PRP with random permutation
• 2: encrypt right messages
• 3: replace random permutation with PRP

0,1 and 2,3 are indistinguishable by PRP security

1,2 are indistinguishable since ciphertexts are essentially random
Summary

PRPs/Block Ciphers

Modes of operations: ECB, Counter, CBC, OFB, CFB
Next Time

Designing PRPs/PRFs
Reminders

My OH today are delayed until 5pm
• Resume normal schedule next week

HW2 due tomorrow

Project 1 due next week