Previously on COS 433...
Perfect Security for Multiple Messages

Definition: A stateless scheme \((\text{Enc},\text{Dec})\) has perfect secrecy for \(n\) messages if, for any two sequences of messages \((m_0^{(i)})_{i \in [d]}, (m_1^{(i)})_{i \in [d]} \in \mathcal{M}^d\)

\[
(\text{Enc}(K, m_0^{(i)}))_{i \in [d]} \overset{d}{=} (\text{Enc}(K, m_1^{(i)}))_{i \in [d]}
\]

Notation: \((f(i))_{i \in [d]} = (f(1), f(2), ..., f(n))\)
Theorem: No stateless deterministic encryption scheme can have perfect security for multiple messages.
Randomized Encryption

Syntax:
• Key space K (usually $\{0,1\}^\lambda$)
• Message space M (usually $\{0,1\}^n$)
• Ciphertext space C (usually $\{0,1\}^m$)
• $Enc: K \times M \rightarrow C$ (potentially probabilistic)
• $Dec: K \times C \rightarrow M$ (usually deterministic)

Correctness:
• For all $k \in K$, $m \in M$,
 \[\Pr[Dec(k, Enc(k,m)) = m] = 1 \]
Theorem: No stateless randomized encryption scheme can have perfect security for multiple messages
What do we do now?

Tolerate tiny probability of distinguishing
• If $\Pr[c^{(0)} = c^{(1)}] = 2^{-128}$, in reality never going to happen

How small is ok?
• Usually 2^{-80}, 2^{-128}, or maybe 2^{-256}

Next time: formalize weaker notion of secrecy to allow for small probability of detection
Statistical Distance

Given two distributions D_1, D_2 over a set X, define

$$\Delta(D_1,D_2) = \frac{1}{2} \sum_x | \Pr[D_1=x] - \Pr[D_2=x] |$$

Observations:

$$0 \leq \Delta(D_1,D_2) \leq 1$$

$$\Delta(D_1,D_2) = 0 \iff D_1 \equiv D_2$$

$$\Delta(D_1,D_2) \leq \Delta(D_1,D_3) + \Delta(D_3,D_2)$$

(Δ is a metric)
Another View of Statistical Distance

Theorem: $\Delta(D_1, D_2) \geq \varepsilon$ iff $\exists A$ s.t.

$\left| \Pr[A(D_1) = 1] - \Pr[A(D_2) = 1] \right| \geq \varepsilon$

Terminology: for any A,

$\left| \Pr[A(D_1) = 1] - \Pr[A(D_2) = 1] \right|$

is called the “advantage” of A in distinguishing D_1 and D_2
Another View of Statistical Distance

Theorem: $\Delta(D_1, D_2) \geq \varepsilon$ iff $\exists A$ s.t. $\left| \Pr[A(D_1) = 1] - \Pr[A(D_2) = 1] \right| \geq \varepsilon$

To lower bound Δ, just need to show adversary A with that advantage
Examples

\(D_1 = \) Uniform distribution over \(\{0,1\}^n \)
- \(\Pr[D_1=x] = 2^{-n} \)

\(D_2 = \) Uniform subject to even parity
- \(\Pr[D_2=x] = 2^{-(n-1)} \) if \(x \) has even parity, 0 otherwise

\[
\Delta(D_1,D_2) = \frac{1}{2} \sum_{x \text{ even}} |2^{-n} - 2^{-(n-1)}| + \frac{1}{2} \sum_{x \text{ odd}} |2^{-n} - 0|
\]

\[
= \frac{1}{2} \sum_{x \text{ even}} 2^{-n} + \frac{1}{2} \sum_{x \text{ odd}} 2^{-n}
\]

\[= \frac{1}{2} \]
Examples

\[D_1 = \text{Uniform over } \{1, \ldots, n\} \]
\[D_2 = \text{Uniform over } \{1, \ldots, n+1\} \]

\[\Delta(D_1, D_2) = \frac{1}{2} \sum_{x=1}^{n} |1/n - 1/(n+1)| + \frac{1}{2} |0 - 1/(n+1)| \]

\[= \frac{1}{2} \sum_{x=1}^{n} 1/n(n+1) + \frac{1}{2} 1/(n+1) \]

\[= \frac{1}{2} 1/(n+1) + \frac{1}{2} 1/(n+1) = 1/(n+1) \]
Statistical Security

Definition: A scheme \((\text{Enc}, \text{Dec})\) has \(\varepsilon\)-statistical secrecy for \(d\) messages if \(\forall\) two sequences of messages \((m_0^{(i)})_{i \in [d]}, (m_1^{(i)})_{i \in [d]} \in M^d\)

\[
\Delta\left[(\text{Enc}(K, m_0^{(i)}))_{i \in [d]}, (\text{Enc}(K, m_1^{(i)}))_{i \in [d]} \right] < \varepsilon
\]

We will call such a scheme \((d, \varepsilon)\)-secure
Statistical Security

We will consider a scheme “secure” for d messages if it is (d, ε)-secure for very small ε

- E.g. 2^{-80}, 2^{-128}, etc

For comparison: chance of
- Being struck by lightning twice: 2^{-23}
- Winning the lottery: 2^{-26}
- World-ending asteroid while on this slide: 2^{-46}
Stateless Encryption with Multiple Messages

Ex:

\[M = C = \mathbb{Z}_p \quad (p \text{ a prime of size } 2^{-128}) \]
\[K = \mathbb{Z}_p^* \times \mathbb{Z}_p \]
\[\text{Enc((a,b), m) = (am + b) mod p} \]
\[\text{Dec((a,b), c) = (c-b)/a mod p} \]

Q: Is this statistically secure for two messages?
Example

Ex:

\[M = \mathbb{Z}_p \text{ (} p \text{ a prime of size } 2^{-128}) \]
\[C = \mathbb{Z}_p^2 \]
\[K = \mathbb{Z}_p^2 \]

\[\text{Enc}((a,b), m) = (r, (ar+b) + m) \]
\[\text{Dec}((a,b), (r,c)) = c - (ar+b) \]

Q: Is this statistically secure for two messages?
Proof of Example

Let D_b be distribution of $(\text{Enc}(k,m_b^{(i)}))_I$

Let D_b' be D_b, but conditioned on $r_0 \neq r_1$

Fix $r_0 \neq r_1, m_0, m_1, c_0, c_1$

\[
\Pr[ar_0+b+m_0=c_0, ar_1+b+m_1=c_1] = \frac{1}{p^2}
\]

So $D_0' \overset{d}{=} D_1'$ ($\Delta(D_0', D_1') = 0$)
Proof of Example

Lemma: \(\Delta(D_1, D_2) \leq \Pr[\text{bad}|D_1] + \Pr[\text{bad}|D_2] \\
+ \Delta(D_1', D_2') \)

Where:
- “\text{bad}” is some event
- \(\Pr[\text{bad}|D_b] \) is probability “\text{bad}” when sampling from \(D_b \)
- \(D_b' \) is \(D_b \), but conditioned on not “\text{bad}”
Proof of Lemma

\[\Delta(D_1,D_2) = \sum_x \left| \Pr[D_1=x] - \Pr[D_2=x] \right| \]

\[= \sum_{x:\text{bad}} \left| \Pr[D_1=x] - \Pr[D_2=x] \right| \]

\[+ \sum_{x:\text{good}} \left| \Pr[D_1=x] - \Pr[D_2=x] \right| \]

\[\leq \sum_{x:\text{bad}} \left| \Pr[D_1=x] \right| + \sum_{x:\text{bad}} \left| \Pr[D_2=x] \right| \]

\[+ \sum_{x:\text{good}} \left| \Pr[D_1=x] - \Pr[D_2=x] \right| \]

\[\leq \Pr[\text{bad}|D_1] + \Pr[\text{bad}|D_2] + \Delta(D_1,\text{good},D_2,\text{good}) \]
Proof of Example

Let D_b be distribution of $(\operatorname{Enc}(k, m_b^{(i)}))_I$
Let \textbf{bad} be when $r_0 = r_1$
Let D_b' be D_b, but conditioned on $\textbf{not bad}$

$\Pr[\text{bad}|D_b] = 1/p$
$\Delta(D_0', D_1') = 0$

Therefore, $\Delta(D_0, D_1) \leq 2/p$
Summary so Far

Stateless encryption for multiple messages ✓

But, key length grows with number of messages ✗

And, key length grows with length of message ✗
Limits of Statistical Security

Theorem: Suppose \((\text{Enc}, \text{Dec})\) has plaintext space \(M = \{0,1\}^n\) and key space \(K = \{0,1\}^t\). Moreover, assume it is \((d, \frac{1}{3})\)-secure. Then:

\[
t \geq d \cdot n
\]

In other words, the key must be at least as long as the total length of all messages encrypted.
Proof Idea

Use an encryption protocol to build a compression protocol

\[m \xrightarrow{\text{Comp}(m)} m' \]

\[m' \xleftarrow{\text{Decomp}(m')} m \]

Goal: \(|m'| < |m|\)
For Now: Easier Goal

\[\text{Goal: } |m'| < |m| \]
The Protocol

Let m_0 be some message in M

Setup():
• Choose random $k_0 \leftarrow K$
• Let $c_1 \leftarrow \text{Enc}(k_0, m_0), \ldots, c_d \leftarrow \text{Enc}(k_0, m_0)$
• Output (c_1, \ldots, c_d)

Comp($(c_1, \ldots, c_d), (m_1, \ldots, m_d)$):
• Find k, r_1, \ldots, r_d such that $c_i = \text{Enc}(k, m_i; r_i) \ \forall i$
• If no such values exist, abort
• Output k
The Protocol

Let \(m_0 \) be some message in \(M \)

\[\text{Comp}((c_1, \ldots, c_d), (m_1, \ldots, m_d)) : \]
- Find \(k, r_1, \ldots, r_d \) such that \(c_i = \text{Enc}(k, m_i; r_i) \ \forall i \)
- If no such values exist, abort
- Output \(k \)

\[\text{Decomp}((c_1, \ldots, c_d), k) : \]
- Compute \(m_i = \text{Dec}(k, c_i) \)
- Output \((m_1, \ldots, m_d)\)
Analysis of Protocol

If \textbf{Comp} succeeds, \textbf{Decomp} must succeed by correctness
• Since $c_i = \text{Enc}(k, m_i; r_i)$, \text{Dec}(k, c_i) must give m_i

Therefore, must figure out when \textbf{Comp} succeeds

\textbf{Claim:} For any sequence of messages m_1, \ldots, m_d, \textbf{Comp} succeeds with probability at least $1 - \varepsilon$

(Probability over the randomness used by \textbf{Setup}())
Claim: For any sequence of messages m_1, \ldots, m_d, Comp succeeds with probability at least $1-\varepsilon$

Proof:
• Suppose Comp succeeds with probability $1-p$ for messages m_1, \ldots, m_d
• Let $A(c_1, \ldots, c_d)$ be the algorithm that runs $\text{Comp}((c_1, \ldots, c_d), (m_1, \ldots, m_d))$ and outputs 1 if Comp succeeds
• If $c_i = \text{Enc}(k_0, m_i)$, then $\Pr[A(c_1, \ldots, c_d) = 1] = 1$
• If $c_i = \text{Enc}(k_0, m_0)$, then $\Pr[A(c_1, \ldots, c_d) = 1] = 1-p$
• By (d, ε) statistical security of Enc, p must be $\leq \varepsilon$
Claim: For any sequence of messages m_1, \ldots, m_d, Comp succeeds with probability at least $1-\varepsilon$.

Claim: For a random sequence of messages m_1, \ldots, m_d, Comp succeeds with probability at least $1-\varepsilon$.

(Probability over the randomness used by Setup() and the random choices of m_1, \ldots, m_d.)
Next step: Removing Setup

We know:

$$\Pr[\text{Comp succeeds: } (c_1, \ldots, c_d) \leftarrow \text{Setup}(), \ m_i \leftarrow M] \geq 1 - \varepsilon$$

Therefore, there must exist some $$(c_1^*, \ldots, c_d^*)$$ such that

$$\Pr[\text{Comp succeeds: } m_i \leftarrow M] \geq 1 - \varepsilon$$

Define: $M' = \{(m_1, \ldots, m_d): \text{Comp succeeds}\}$

• Note that $|M'| \geq (1 - \varepsilon) |M|^d$
The Protocol

Find $k, r_1, ..., r_d$ such that
$c_i^* = Enc(k, m_i; r_i) \ \forall i$

For each i,
Let $m_i \leftarrow Dec(k, c_i^*)$
Output $(m_1, ..., m_d)$

By previous analysis,
• Alice always successfully compresses
• Bob always successfully decompresses
Final Touches

Can compress messages in \mathcal{M}' into keys in \mathcal{K}

Therefore, it must be that $|\mathcal{M}'| \leq |\mathcal{K}|

 Meaning $t = \log |\mathcal{K}|$

$\geq \log |\mathcal{M}'|$

$\geq \log \left[(1-\varepsilon) |\mathcal{M}|^d \right]$

$= d \log |\mathcal{M}| + \log [1-\varepsilon]$

$\geq dn - 2\varepsilon$

$\geq dn$ (as long as $\varepsilon < \frac{1}{2}$)
Takeaway

If you don’t want to physically exchange keys frequently, you cannot obtain statistical security

So, now what?
Computational Security

We are ok if adversary takes a really long time

Usually measure in machine operations
• Though depends on architecture, so rough approx
• 2^{80}, 2^{128}, or maybe 2^{256} are probably ok

For comparison:
• Lifetime of universe in nanoseconds: 2^{58}
• Number of atoms in known universe: 2^{265}
Brute Force Attacks

Simply try every key until find right one

Relevant as long as key length is smaller than total length of messages encrypted

If keys have length λ, 2^λ is upper bound on attack
Crypto and P vs NP

What if P = NP?

From this point forward, almost all crypto we will see depends on computational assumptions
[TRANSLTR]’s three million processors would all work in parallel ... trying every new permutation as they went.
“What’s the longest you’ve ever seen TRANSLTR take to break a code?”

“About an hour, but it had a ridiculously long key—ten thousand bits”
Defining Security

Consider an attacker as a probabilistic efficient algorithm

Attacker gets to choose the messages

All attacker has to do is distinguish them
Security Experiment/Game
(One-time setting)

Challenger

\[m_0, m_1 \in M \]

\[b \]

IND-Exp_b(\(\square\))
Security Definition (One-time setting)

Definition: \((\text{Enc}, \text{Dec})\) has \((t, \varepsilon)\)-ciphertext indistinguishability if, for all \(\beta\) running in time at most \(t\)

\[
\left| \Pr[1 \leftarrow \text{IND-Exp}_0(\beta)] - \Pr[1 \leftarrow \text{IND-Exp}_1(\beta)] \right| \leq \varepsilon
\]
Construction with $|k| \ll |m|$

Idea: use OTP, but have key generated by some expanding function G
What Do We Want Out of G?

Definition: $G: \{0,1\}^\lambda \rightarrow \{0,1\}^n$ is a (t,ε)-secure pseudorandom generator (PRG) if:

- $n > \lambda$
- G is deterministic
- For all \mathcal{A} running in time at most t,

$$\Pr[\mathcal{A}(G(s)) = 1 : s \leftarrow \{0,1\}^\lambda] - \Pr[\mathcal{A}(x) = 1 : x \leftarrow \{0,1\}^n] \leq \varepsilon$$
Secure PRG \rightarrow Ciphertext Indistinguishability

$$K = \{0,1\}^\lambda$$
$$M = \{0,1\}^n$$
$$C = \{0,1\}^n$$

$$\text{Enc}(k,m) = \text{PRG}(k) \oplus m$$
$$\text{Dec}(k,c) = \text{PRG}(k) \oplus c$$
Security?

Intuitively, security is obvious:
- \(\text{PRG}(k) \) ”looks” random, so should completely hide \(m \)
- However, formalizing this argument is non-trivial.

Solution: reductions
- Assume toward contradiction an adversary for the encryption scheme, derive an adversary for the PRG
Security

Assume towards contradiction that there is an $m_0, m_1 \in M$ such that

$$|\Pr[W_0] - \Pr[W_1]| \geq \varepsilon,$$

non-negligible

W_b: $b' = 1$ in IND-Exp$_b$
Security

Use $\mathbf{m}_0, \mathbf{m}_1 \in \mathcal{M}$ to build \mathbf{c}. \mathbf{b} will run \mathbf{b}' as a subroutine, and pretend to be \mathcal{M}.

$m_0, m_1 \in \mathcal{M}$

$\mathbf{b} \leftarrow \{0, 1\}$

$\mathbf{c} \leftarrow x \oplus m_b$

$1 \oplus b \oplus b'$

(either $G(s)$ or truly random)
Security

Case 1: \(x = \text{PRG}(s) \) for a random seed \(s \)

- \(\text{Nexx} \) “sees” \(\text{IND-Exp}_b \) for a random bit \(b \)

\[
\begin{align*}
\text{m}_0, \text{m}_1 & \in \mathcal{M} \\
b & \leftarrow \{0,1\} \\
s & \leftarrow K \\
c & \leftarrow \text{PRG}(s) \oplus \text{m}_b
\end{align*}
\]
Security

Case 1: \(x = \text{PRG}(s) \) for a random seed \(s \)

- \(\text{sees} \) IND-Exp \(b \) for a random bit \(b \)
- \(\Pr[1 \oplus b \oplus b' = 1] = \Pr[b = b'] \)

 \[
 = \frac{1}{2} \Pr[b' = 1 \mid b = 1]
 + \frac{1}{2} (1 - \Pr[b' = 1 \mid b = 0])
 \]

 \[
 = \frac{1}{2}(1 + \Pr[W_0] - \Pr[W_1])
 = \frac{1}{2}(1 \pm \varepsilon)
 \]
Security

Case 2: \times is truly random

- “sees” OTP encryption

\[
m_0, m_1 \in M_\lambda \quad b \leftarrow \{0,1\} \quad x \leftarrow \{0,1\}^n \\
\quad c \leftarrow x \oplus m_b \\
b' \quad c \leftarrow b \oplus m_b\]
Security

Case 2: \times is truly random

- 🕵️‍♂️ “sees” OTP encryption
- Therefore $\Pr[b'=1 \mid b=0] = \Pr[b'=1 \mid b=1]$
- $\Pr[1 \oplus b \oplus b'=1] = \Pr[b=b']$

 \[
 = \frac{1}{2} \Pr[b'=1 \mid b=1] \\
 \quad + \frac{1}{2} (1 - \Pr[b'=1 \mid b=0])
 \]

 \[
 = \frac{1}{2}
 \]
Security

Putting it together:

• $\Pr[(G(s)) = 1 : s \leftarrow \{0, 1\}^\lambda] = \frac{1}{2} (1 \pm \varepsilon(\lambda))$

• $\Pr[(x) = 1 : x \leftarrow \{0, 1\}^n] = \frac{1}{2}$

• Absolute Difference: $\frac{1}{2}\varepsilon$, \Rightarrow Contradiction!
Security

Thm: If G is a $(t + t', \epsilon/2)$-secure PRG, then (Enc, Dec) is has (t, ϵ)-ciphertext indistinguishability, where t' is the time to:

- Flip a random bit b
- XOR two n-bit strings
Thm: If G is a $(t+\text{poly},\varepsilon/2)$-secure PRG, then (Enc,Dec) is has (t,ε)-ciphertext indistinguishability.
An Alternate Proof: Hybrids

Idea: define sequence of “hybrid” experiments “between” IND-Exp\(_0\) and IND-Exp\(_1\)

In each hybrid, make small change from previous hybrid

Hopefully, each small change is undetectable

Using triangle inequality, overall change from IND-Exp\(_0\) and IND-Exp\(_1\) is undetectable
An Alternate Proof: Hybrids

Hybrid 0: IND-Exp₀

m₀, m₁ ∈ M → c → k ← K

k ← G(k) ⊕ m₀
An Alternate Proof: Hybrids

Hybrid 1:

\[m_0, m_1 \in M \]

\[x \leftarrow \{0,1\}^n \]

\[c \leftarrow x \oplus m_0 \]
An Alternate Proof: Hybrids

Hybrid 2:

\[m_0, m_1 \in M \]

\[x \leftarrow \{0,1\}^n \]

\[c \leftarrow x \oplus m_1 \]

\[b' \]
An Alternate Proof: Hybrids

Hybrid 3: IND-Exp_1

$m_0, m_1 \in M$

$k \leftarrow K$

$c \leftarrow G(k) \oplus m_1$

b'
An Alternate Proof: Hybrids

\[
\left| \Pr[b'=1 : \text{IND-Exp}_0] - \Pr[b'=1 : \text{IND-Exp}_1] \right|
\]
\[
= \left| \Pr[b'=1 : \text{Hyb } 0] - \Pr[b'=1 : \text{Hyb } 3] \right|
\]
\[
\leq \left| \Pr[b'=1 : \text{Hyb } 0] - \Pr[b'=1 : \text{Hyb } 1] \right|
+ \left| \Pr[b'=1 : \text{Hyb } 1] - \Pr[b'=1 : \text{Hyb } 2] \right|
+ \left| \Pr[b'=1 : \text{Hyb } 2] - \Pr[b'=1 : \text{Hyb } 3] \right|
\]

If \(\left| \Pr[b'=1 : \text{IND-Exp}_0] - \Pr[b'=1 : \text{IND-Exp}_1] \right| \geq \varepsilon\),
Then for some \(i=0,1,2,\)
\[
\left| \Pr[b'=1 : \text{Hyb } i] - \Pr[b'=1 : \text{Hyb } i+1] \right| \geq \frac{\varepsilon}{3}
\]
An Alternate Proof: Hybrids

Suppose \(b \) distinguishes Hybrid 0 from Hybrid 1 with advantage \(\varepsilon / 3 \)

\[
k \leftarrow K \\
m_0, m_1 \in M \\
c \leftarrow G(k) \oplus m_0 \\
\downarrow b' \\
x \leftarrow \{0,1\}^n \\
m_0, m_1 \in M \\
c \leftarrow x \oplus m_0 \\
\downarrow b' \\
\]
An Alternate Proof: Hybrids

Suppose distinguishes Hybrid 0 from Hybrid 1 with advantage $\varepsilon/3 \implies$ Construct

$m_0, m_1 \in M$

c

(x or truly random)

$G(s)$

$c \leftarrow x \oplus m_0$

b'}
An Alternate Proof: Hybrids

Suppose \(\text{嫣} \) distinguishes \textbf{Hybrid 0} from \textbf{Hybrid 1} with advantage \(\varepsilon/3 \) \(\Rightarrow \) Construct

If \(\text{嫣} \) is given \(G(s) \) for a random \(s \), \(\text{嫣} \) sees \textbf{Hybrid 0}
If \(\text{嫣} \) is given \(x \) for a random \(x \), \(\text{嫣} \) sees \textbf{Hybrid 1}

Therefore, advantage of \(\text{嫣} \) is equal to advantage of \(\text{嫣} \) which is at least \(\varepsilon/3 \) \(\Rightarrow \) Contradiction!
An Alternate Proof: Hybrids

Suppose \(\mathcal{A} \) distinguishes Hybrid 1 from Hybrid 2 with advantage \(\varepsilon/3 \)

\[
x \leftarrow \{0,1\}^n
\]

\[
m_0, m_1 \in M
\]

\[
c \leftarrow x \oplus m_0
\]

\[
b'
\]
An Alternate Proof: Hybrids

Suppose distinguishes Hybrid 1 from Hybrid 2 with advantage $\varepsilon \cdot \frac{1}{3}$

Impossible by OTP security
An Alternate Proof: Hybrids

Suppose distinguishes Hybrid 2 from Hybrid 3 with advantage $\varepsilon/3$

$x \leftarrow \{0,1\}^n$

$k \leftarrow K$

$m_0, m_1 \in M$

$c \leftarrow x \oplus m_1$

Proof essentially identical to Hybrid 0/Hybrid 1 case
Reminders

PR1 Part 1 Due Tuesday, Feb 20th