Previously...
Public Key Encryption
Public Key Encryption
Public Key Encryption

\[c \leftarrow \text{Enc}(pk,m) \]
Public Key Encryption

\[c \leftarrow \text{Enc}(pk, m) \]

\[m \leftarrow \text{Dec}(sk, c) \]
Public Key Encryption

m \xleftarrow{\text{Enc}(pk,m)} c \xrightarrow{\text{Dec}(sk,c)} m
Digital Signatures
(aka public key MACs)
Message Authentication Codes

Goal: If Eve changed m, Bob should reject
Problem

What if Alice and Bob have never met before to exchange key k?

Want: a public key version of MACs where Bob can verify without having Alice’s secret key
Message Integrity in Public Key Setting

Goal: If Eve changed m, Bob should reject
Digital Signatures

Algorithms:
• \(\text{Gen}() \rightarrow (sk,pk) \)
• \(\text{Sign}(sk,m) \rightarrow \sigma \)
• \(\text{Ver}(pk,m,\sigma) \rightarrow 0/1 \)

Correctness:
\[
\Pr[\text{Ver}(pk,m,\text{Sign}(sk,m))=1: (sk,pk)\leftarrow \text{Gen()}]=1
\]
Security Notions?

Much the same as MACs, except adversary gets verification key
1-time Security For Signatures

\[(sk, pk) \leftarrow \text{Gen}()\]

\[\sigma \leftarrow \text{Sign}(sk, m)\]

\[(m^*, \sigma^*)\]

Output 1 iff:
\[m^* \neq m\]
\[\text{Ver}(pk, m^*, \sigma^*) = 1\]

\[1\text{CMA-Adv}(\cdot) = \Pr[\text{outputs } 1]\]
Many-time Signatures

\[\text{Output 1 iff:} \]
\[\begin{align*}
& \quad \text{• } m^* \notin \{m_1, \ldots\} \\
& \quad \text{• } \text{Ver}(pk, m^*, \sigma^*) = 1
\end{align*} \]

\[\text{CMA-Adv} = \Pr[\text{outputs 1}] \]
Strong Security

\[
\text{Output 1 iff:}
\begin{align*}
&\cdot (m^*, \sigma^*) \notin \{(m_1, \sigma_1) \ldots\} \\
&\cdot \text{Ver}(pk, m^*, \sigma^*) = 1
\end{align*}
\]

\[
\text{CMA-Adv} = \text{Pr}[\text{outputs 1}]
\]
Signatures from TDPs?

\[\text{Gen}_{\text{Sig}}() = \text{Gen}() \]

\[\text{Sign}(sk,m) = F^{-1}(sk,m) \]

\[\text{Ver}(pk,m,\sigma): F(pk, \sigma) == m \]
Signatures from TDPs

$$\text{Gen}_{\text{Sig}}() = \text{Gen}()$$

$$\text{Sign}(sk,m) = F^{-1}(sk, H(m))$$

$$\text{Ver}(pk,m,\sigma): F(pk, \sigma) == H(m)$$

Theorem: If $$(\text{Gen},F,F^{-1})$$ is a secure TDP, and H is modeled as a random oracle, then $$(\text{Gen}_{\text{Sig}},\text{Sign},\text{Ver})$$ is (strongly) CMA-secure
Proof Idea

Consider hypothetical adversary. Let \((m^*, \sigma^*)\) be the forgery.

Easy case: suppose adversary tries to always forge on the same message \(m^*\).

Notice: \(F(pk, \sigma^*) = H(m^*)\)

Therefore, adversary is inverting \(F\) on a random point, namely \(y^* = H(m^*)\)
Proof Idea

Consider hypothetical adversary. Let \((m^*, \sigma^*)\) be the forgery

In general, adversary can choose \(m^*\) so that maybe \(H(m^*)\) is easy to invert

However, adversary only sees a polynomial number of outputs of \(H\), each output randomly chosen

• If adversary succeeds, such easy-to-invert outputs occur non-negligibly often
Proof Idea

Consider hypothetical adversary. Let \((m^*, \sigma^*)\) be the forgery

Finishing touches:
• Adversary has signing oracle that may help him invert
• To remedy, can simulate \(H(m) = F(pk, H'(m))\)
• Now we can answer signing queries using \(H'(m)\)
Basic Rabin Signatures

Gen\textsubscript{Sig}(): let \(p,q\) be random large primes
\[
\text{sk} = (p,q), \quad \text{pk} = N = pq
\]

Sign(sk,m): Solve equation \(\sigma^2 = H(m) \mod N\) using factors \(p,q\)
- Output \(\sigma\)

Ver(pk,m,\sigma): \(\sigma^2 \mod N = H(m)\)
Problems

\(H(m) \) might not be a quadratic residue
Can only sign roughly \(\frac{1}{4} \) of messages

Suppose adversary makes multiple signing queries on the same message

- Receives \(\sigma_1, \sigma_2, \ldots \) such that \(\sigma_i^2 \mod N = H(m) \)
- After enough tries, may get all 4 roots of \(H(m) \)
- Suppose \(\sigma_1 \neq \pm \sigma_2 \mod N \)
- Then \(\text{GCD}(\sigma_1 - \sigma_2, N) \) will give a factor
One Solution

*Gen*_{Sig}(): let \(p, q \) be primes, \(a, b, c \) s.t.
• \(a \) is a non-residue \(\text{mod } p \) and \(q \),
• \(b \) is a residue \(\text{mod } p \) but not \(q \),
• \(c \) is a residue \(\text{mod } q \) but not \(p \)

\[sk = (p, q, a, b, c), \; pk = (N = pq, \; a, b, c) \]

Sign(sk, m):
• Solve equation \(\sigma^2 \in \{1, a, b, c\} \times H(m) \text{ mod } N \)
• Output \(\sigma \)

Ver(pk, m, \(\sigma \)): \(\sigma^2 \text{ mod } N \in \{1, a, b, c\} \times H(m) \)
One Solution

Exactly one of $\{1, a, b, c\} \times H(m)$ is a residue $\text{mod } N$

\Rightarrow Solution guaranteed to be found

Still have problem that multiple queries on same message will give different roots
One Solution

Possibilities:

• Have signer remember all messages signed

• Use a PRF to choose root deterministically
One Solution

\text{Gen}_{\text{Sig}}(): \text{ let } p, q \text{ be primes, } a, b, c \ldots
\text{ sk } = (p, q, a, b, c), \text{ pk } = (N = pq, a, b, c)

\text{Sign}(sk, m):
\text{ • Solve equation } \sigma^2 = \{1, a, b, c\} \times H(m) \mod N,
\text{ where root is chosen according to } PRF(k, m)
\text{ • Output } \sigma

\text{Ver}(pk, m, \sigma): \sigma^2 \mod N = \{1, a, b, c\} \times H(m)
General Transformation

Let \((\text{Gen, Sign, Ver})\) be a (randomized) signature scheme that is secure as long as the adversary never queries the same message twice.

\[\begin{align*}
\text{Gen'}(): \ &\text{run } (sk, pk) \leftarrow \text{Gen}(), \text{ let } k \text{ a random PRF key} \\
& sk' = (sk, k), \ pk' = pk \\
\text{Sign'}(sk', m): \ &\text{Output } \sigma \leftarrow \text{Sign}(sk, m; \ PRF(k, m)) \\
\text{Ver'} = \text{Ver}
\end{align*}\]
Theorem: If \((Gen, Sign, Ver)\) is secure when no message is queried twice, then \((Gen', Sign', Ver')\) is CMA-secure

Proof Sketch:

• Can assume wlog that adversary never queries the same message twice
 • Would have received the same answer anyway
• Because using PRF, signatures look like they used fresh randomness
One Solution

Possibilities:
• Have signer remember all messages signed

• Use a PRF to choose root deterministically

• Choose root that is itself a quadratic residue
 (if \(-1\) is not a residue mod \(p, q\),
 there will be exactly one)
Another Solution

\[\text{Gen}_{\text{Sig}}(): \text{ let } p,q \text{ be random large primes} \]
\[sk = (p,q), \; pk = N = pq \]

\[\text{Sign}(sk,m): \text{ Repeat until successful:} \]

- Choose random \(u \leftarrow \{0,1\}^\lambda \)
- Solve equation \(\sigma^2 = H(m,u) \mod N \)
- Output \((u,\sigma)\)

\[\text{Ver}(pk,m,(u,\sigma)): \sigma^2 \mod N = H(m,u) \]
Another Solution

In expectation, after 4 tries will have success

(Whp) Only ever get a single root of a given $H(m,u)$

Theorem: If factoring is hard and H is modeled as a random oracle, then Rabin signatures are (weakly) CMA secure
Another Solution

Sign(sk,m): Repeat until successful:
- Choose random $u \leftarrow \{0,1\}^\lambda$
- Solve equation $\sigma^2 = H(m,u) \mod N$ using factors p,q, where $\sigma < (N-1)/2$
- Output (u,σ)

Ver(pk,m,(u,\sigma)): $\sigma^2 \mod N = H(m,u) \land \sigma < (N-1)/2$

Theorem: If factoring is hard and H is modeled as a random oracle, then Rabin signatures are strongly CMA secure
Digital Signatures and the Public Key Infrastructure
Digital Signatures and the Public Key Infrastructure
Digital Signatures and the Public Key Infrastructure

\[c' = \text{Enc}(pk', m) \]

\[m \]
Digital Signatures and the Public Key Infrastructure

c' = Enc(pk', m)

m

pk'

pk

sk

Alice

WALL-E

Bob

sk'

Alice signs the message m using her private key sk'. The signature is then transmitted to Bob, who veriﬁes it using Alice's public key pk'. Bob then encodes the message m using his private key pk to send to Alice.
Takeaway

Need some authenticated channel to ensure distribution of public keys

But how to authenticate channel in the first place without being able to distribute public keys?
Solution: Certificate Authorities

CA

Business
Government Agency
Department within company

\text{sk}_{CA}

\text{pk}_{CA}
Solution: Certificate Authorities

CA

$\text{pk}_B, \text{Cert}_{CA \rightarrow B}$

Alice

sk_B

$\text{Cert}_{CA \rightarrow B} = \text{Sign}(\text{sk}_CA, \text{"Bob’s public key is pk}_B\text{"})$
Solution: Certificate Authorities

Bob is typically some website
• Obtains Cert by, say, sending someone in person to CA with pk_B
• Only needs to be done once

If Alice trusts CA, then Alice will be convinced that pk_B belongs to Bob

Alice typically gets pk_CA bundled in browser
Limitations

Everyone must trust same CA
• May have different standards for issuing certs

Single point of failure: if sk_{CA} is compromised, whole system is compromised

Single CA must handle all verification

Solutions?
Multiple CAs

There are actually many CA’s, CA₁, CA₂,...

Bob obtains cert from all of them, sends all the certs with his public key

As long as Alice trusts one of the CA’s, she will be convinced about Bob’s public key
Certificate Chaining

CA issues $\text{Cert}_{CA\rightarrow B}$ for Bob

Bob can now use his signing key to issue $\text{Cert}_{B\rightarrow D}$ to Donald

Donald can now prove his public key by sending

$(\text{Cert}_{CA\rightarrow B}, \text{Cert}_{B\rightarrow D})$

• Proves that CA authenticated Bob, and Bob authenticated Donald
Certificate Chaining

For Bob to issue his own certificates, a standard cert should be insufficient
• CA knows who Bob is, but does not trust him to issue certs on its behalf

Therefore, Bob should have a stronger cert:

$$\text{Cert}_{CA\rightarrow B} = \text{Sign}(sk_{CA}, "\text{Bob's public key is } pk_B \text{ and he can issue certificates on behalf of CA"})$$
Certificate Chaining

One root CA

Many second level CAs CA_1, CA_2, ...
• Each has $cert_{CA \rightarrow C_a_i}$

Advantage: eases burden on root

Disadvantage: now multiple points of failure
Web of Trust Model

Anyone can issue certs for anyone else
• Each user can decide who to trust, and only accept certificates from people they trust

Public keys and Certs distributed at “key-signing parties” (e.g. conferences)
• May not know other person, but can verify identity by looking at driver’s license, etc
Invalidating Certificates

Sometimes, need to invalidate certificates
• Private key stolen
• User leaves company
• Etc

Options:
• Expiration
• Explicit revocation
Signatures from One-way Functions

One-way functions are sufficient to build signature schemes

Therefore, can build signatures from:
• RSA, DDH, Block Ciphers, CRHF, etc.

Limitation:
• Poor performance in practice
Lamport Signatures

Let $F: X \rightarrow Y$ be a one-way function

Let $M = \{0, 1\}^n$ be message space

Gen():

Let $x_{1,0}, x_{2,0}, x_{3,0}, x_{4,0}, x_{5,0}$ be secret keys.

Let $y_{1,0}, y_{2,0}, y_{3,0}, y_{4,0}, y_{5,0}$ be public keys.

$y_{i,b} = F(x_{i,b})$
Lamport Signatures

\[\text{Sign}(sk, m): (x_{i,m_i})_{i=1,\ldots,n} \]

\[\text{Ver}(pk,m,\sigma): F(x_{i,m_i}) = y_{i,m_i} \]
Lamport Signatures

Theorem: If F is a secure OWF, then (Gen, Sign, Ver) is a (weakly) secure one-time signature scheme.
Proof
Proof

Since $m^* \neq m$, $\exists i$ s.t. $m^*_i \neq m_i$

Suppose we know i, $m_i = 1-b$, $m^*_i = b$

Construct adversary that inverts OWF
Proof

\[
\begin{align*}
Y_{1,0} & \quad Y_{2,0} & \quad y^* & \quad Y_{4,0} & \quad Y_{5,0} \\
Y_{1,1} & \quad Y_{2,1} & \quad Y_{3,1} & \quad Y_{4} & \quad Y_{5,1} \\
\end{align*}
\]

\[
\begin{align*}
X_{1,0} & \quad X_{2,0} & \quad X_{3,0} & \quad X_{4,0} & \quad X_{5,0} \\
X_{1,1} & \quad X_{2,1} & \quad X_{3,1} & \quad X_{4,1} & \quad X_{5,1} \\
\end{align*}
\]
Proof

View of \(\text{\(\hat{\Pi}\)} \) exactly as in 1-time CMA experiment, assuming

- \(\text{ith bit of } m = b \)
- \(\text{ith bit of } m^* = 1-b \)

If \(\text{\(\hat{\Pi}\)} \) always chooses \(m, m^* \) with these properties, and forges with probability \(\varepsilon \), then \(\text{\(\hat{\Pi}\)} \) inverts with probability \(\varepsilon \)
Proof

In general, \(m, m^* \) may choose to differ at arbitrary places

- May be randomly chosen, may depend on \(pk \), may even depend on \(\sigma \)
- May never be at certain places

How do we make still succeed?
Proof

\(y_1,0 \quad y_1,1 \quad y_2,0 \quad y_2,1 \quad y_3,0 \quad y_3,1 \quad y_4,0 \quad y_4,1 \quad y_5,0 \quad y_5,1 \)

\(i, b \leftrightarrow [n] \times \{0, 1\} \)

\(x_1,0 \quad x_1,1 \quad x_2,0 \quad x_2,1 \quad x_3,1 \quad x_4,0 \quad x_4,1 \quad x_5,0 \quad x_5,1 \)

If need \(x_{i,b} \), abort

If no \(x_{i,b} \), abort

\(x^*, y^* \)
Proof

- pk independent of (i, b)
- m independent of (i, b)
- Therefore, $\Pr[m_i=1-b]=\frac{1}{2}$

Conditioned on $m_i=1-b$,
- Signing succeeds
- σ independent of i
- باك forges with probability ε, independent of i
Proof

We know if forgive, then $m^* \neq m$

Since m^* independent of i, have prob at least $1/n$ that $m^*_i = 1 - m_i = b$

In this case, succeeds in inverting y^*

- $\text{Prob} = \frac{1}{2} \times \varepsilon \times \frac{1}{n} = \frac{\varepsilon}{2n}$
Limitations of Lamport Signatures

Only weakly secure
• Why?
• How to fix?

$|pk|, |\sigma| \gg |m|$
• How to fix?
Theorem: Given a secure OWF, it is possible to construct a strongly secure 1-time signature scheme where $|m| \gg |pk|, |\sigma|$
Signing Multiple Messages

Once adversary sees two signed messages, security is lost (why?)

How do we sign multiple messages?
Next Time

Extending to multiple messages
Reminders

Project 2 Due Tomorrow

HW 6 Due Wednesday April 25