Midterm Details

Available Monday 3pm

Due Wednesday 1pm
• Submitted via blackboard like the homeworks

Midterms are to be completely individually

Topics: through today’s lecture

Please don’t discuss midterms until 1pm Friday March 17
Malleability

\[\text{attack at dawn} \]

\[k \xrightarrow{c} \text{c'} \xrightarrow{k} \text{attack at dusk} \]
Malleability

Some encryption schemes of operation are *malleable*
• Can modify ciphertext to cause predictable changes to plaintext

Examples: basically everything we’ve seen so far
• Stream ciphers
• CTR
• CBC
• ECB
• ...
Message Integrity

We cannot stop adversary from changing the message in route to Bob

However, we can hope to have Bob perform some check on the message he receives to ensure it was sent by Alice
• If check fails, Bob rejects the message

For now, we won’t care about message secrecy
• We will add it back in later
Message Authentication Codes

Syntax:
• Key space K_λ
• Message space M
• Tag space T_λ
• $MAC(k, m) \rightarrow \sigma$
• $Ver(k, m, \sigma) \rightarrow 0/1$

Correctness:
• $\forall m, k, Ver(k, m, MAC(k, m)) = 1$
Message Authentication Codes

Goal: If Eve changed m, Bob should reject
1-time Security For MACs

\[m \in M \quad \overset{\sigma}{\rightarrow} \quad (m^*, \sigma^*) \]

Output 1 iff:
- \(m^* \neq m \)
- \(\text{Ver}(k, m^*, \sigma^*) = 1 \)

\[1 \text{CMA-Adv}(\cdot \ , \ \lambda) = \Pr[\text{ outputs 1}] \]
Definition: \((\text{MAC}, \text{Ver})\) is 1-time statistically secure under a chosen message attack (1CMA-secure) if, for all \(\lambda\), there exists a negligible \(\varepsilon\) such that

\[
1\text{CMA-Adv}(\text{\#}, \lambda) \leq \varepsilon(\lambda)
\]
Impossibility of Perfect Security?
A Simple 1-time MAC

Suppose H_λ is a family of pairwise independent functions from M to T_λ

For any $m_0 \neq m_1 \in M$, $\sigma_0, \sigma_1 \in T_\lambda$

$$\Pr_{h \leftarrow H_\lambda}[h(m_0) = \sigma_0 \land h(m_1) = \sigma_1] = \frac{1}{|T_\lambda|^2}$$

$$K = H_\lambda$$

$$\text{MAC}(h, m) = h(m)$$

$$\text{Ver}(h, m, \sigma) = (h(m) == \sigma)$$
Theorem: \((\text{MAC,Ver})\) is 1-time secure, provided \(T_\lambda\) is large enough. In particular, for any \(\lambda\),

\[
\text{1CMA-Adv}(\hat{\text{E}}, \lambda) = 1/|T_\lambda|
\]

So to have security, just need \(|T_\lambda|\) to be superpolynomial

- **Ex:** \(T_\lambda = \{0,1\}^\lambda\)
Proof

Idea:
• For every two inputs, outputs are independent
• Therefore, knowing one input/output pair does not tell you anything about the output at any other input
Constructing Pairwise Independent Functions

$T = \mathbb{F}$ (finite field of size $\approx 2^\lambda$)

- Example: \mathbb{Z}_p for some prime p

Easy case: let $M = \mathbb{F}$
- $H = \{h(x) = a \cdot x + b: a, b \in \mathbb{F}\}$

Slightly harder case: Embed $M \subseteq \mathbb{F}^n$
- $H = \{h(x) = <a,x> + b: a \in \mathbb{F}^n, b \in \mathbb{F}\}$
Multiple Use MACs?

Just like with OTP, if use 1-time twice, no security

Why?
\(t \)-Time MACs

\[k \leftarrow K_\lambda \]

\[\sigma \leftarrow \text{MAC}(k,m) \]

Output 1 iff:

- \(m^* \notin \{m_1, \ldots, m_t\} \)
- \(\text{Ver}(k,m^*,\sigma^*) = 1 \)

\[t\text{CMA-Adv}(\hat{m}, \lambda) = \Pr[\hat{m} \text{ outputs 1}] \]
Constructing t-time MACs

Ideas?
Unbounded Use MACs

No restriction

\[
m_i \in \mathcal{M}
\]

\[
\sigma_i
\]

\[
(m^*, \sigma^*)
\]

\[
k \leftarrow K_\lambda
\]

\[
\sigma \leftarrow \text{MAC}(k, m_i)
\]

Output 1 iff:

- \(m^* \notin \{m_1, \ldots \} \)
- \(\text{Ver}(k, m^*, \sigma^*) = 1 \)

\[
\text{CMA-Adv}(\mathcal{E}, \lambda) = \Pr[\text{outputs 1}]
\]
Definition: \((\text{MAC}, \text{Ver})\) is statistically secure under a chosen message attack (\text{CMA-secure}) if, for all \(\lambda\), there exists a negligible \(\varepsilon\) such that

\[
\text{CMA-Adv}(\lambda, \lambda) \leq \varepsilon(\lambda)
\]
Impossibility

Theorem: There are no MACs that are statistically CMA secure
Proof

Idea:
• By making $q \gg \log |K|$ queries, you should be able to uniquely determine key
• One key is determined, can forge any message

Problem:
• What if certain bits of the key are ignored
• Intuition: ignoring bits of key shouldn’t help
Proof

Define r_q as follows:

• Challenger chooses random key k
• Adversary repeatedly choose random (distinct) messages m_i in M
• Query the CMA challenger on each m_i, obtaining σ_i
• Let K'_q be set of keys k' such that $\text{MAC}(k',m_i) = \sigma_i$ for $i=1,...,q$
• Let r_q be the expected size of K'_q
Claim: If (MAC,Ver) is statistically CMA-secure, then $r_q \leq r_{q-1}/2$

If not, then with probability at least $\frac{1}{4}$,

$$|K'_q| > |K'_{q-1}|/4$$

Attack:

- Make $q-1$ queries on random messages m_i
- Choose key k from K'_{q-1}
- Choose random m_q, compute $\sigma_q = \text{MAC}(k, m_q)$
- Output (m_q, σ_q)

Probability of forgery?
Claim: If \((\text{MAC,Ver})\) is statistically CMA-secure, then \(r_q \leq r_{q-1}/2\)

Finishing the impossibility proof:

• \(r_q\) is always at least 1 (since there is a consistent key)

• \(r_0 = |K|\)

• \(1 \leq r_q \leq r_0/2^q \leq |K|/2^q\)

• Setting \(q > \log |K|\) gives a contradiction
Definition: \((\text{MAC}, \text{Ver})\) is (computationally) secure under a chosen message attack (\text{CMA-secure}) if, for all PPT, there exists a negligible \(\varepsilon\) such that

\[
\text{CMA-Adv}(\mathcal{A}, \lambda) \leq \varepsilon(\lambda)
\]
Constructing MACs

Use a PRF

\[F:K \times M \rightarrow T \]

\[MAC(k,m) = F(k,m) \]
\[Ver(k,m,\sigma) = (F(k,m) == \sigma) \]
Theorem: \((\text{MAC,Ver})\) is CMA secure assuming \(1/|T|\) is negligible
Security Proof

Assume toward contradiction PPT 🐿️

Hybrids!
Security Proof

Hybrid 0

\[m_i \in M \quad \sigma_i \quad (m^*, \sigma^*) \]

Output 1 iff:
- \(m^* \notin \{m_1, \ldots\} \)
- \(F(k, m^*) = \sigma^* \)

CMA Experiment
Security Proof

Hybrid 1

Output 1 iff:
- \(m^* \notin \{m_1, \ldots \} \)
- \(H(m^*) = \sigma^* \)
Security Proof

Claim: in Hybrid 1, output 1 with probability $1/|T|$

- sees values of H on points m_i
- Value on m^* independent of 's view
- Therefore, probability $\sigma^* = H(m^*) = 1/|T|$
Security Proof

Claim: $|\Pr[1 \leftarrow \text{Hyb1}] - \Pr[1 \leftarrow \text{Hyb2}]| < \text{negl}$

- Suppose not, construct PRF adversary

\[
\sigma' == \sigma^*
\]
Constructing MACs/PRFs

We saw that block ciphers are good PRFs.

However, the input length is generally fixed.
• For example, AES maximum block length is 128 bits.

How do we handle larger messages?
Block-wise Authentication?

Why is this insecure?
Block-wise Authentication?

Why is this insecure?
Block-wise Authentication?

Why is this insecure?
Block-wise Authentication?

\(r \) a random nonce

\[
\begin{array}{ccccccc}
F & F & F & F & F \\
& k & k & k & k \\
& r_0 & r_1 & r_2 & r_3 & r_4 & r_5 \\
\end{array}
\]

Secure, but not very useful in practice
Theorem: CBC-MAC is a secure PRF for fixed-length messages
Variable Length Messages?

Basic CBC-MAC is insecure for variable length messages

Attack:

\[
m = \sigma = F(k,m) \\
\sigma' = F(k,m') \\
m'' = (m, m' \oplus \sigma), \\
\sigma'' = \sigma'
\]
CBC-MAC

\[(m, m' \oplus \sigma) \]

\[k \rightarrow F \rightarrow k \]

\[\sigma \rightarrow F \rightarrow \sigma' \]
Handling Variable-Length Messages

Option 1:
• Prepend with msg length before applying CBC-MAC
 ⇒ No two messages will have the same prefix

• Limitation: must know message length when you start computing MAC
 • Not always reasonable if you are authenticating a stream of data

• Why is appending msg length to end not good?
Handling Variable-Length Messages

Option 2: Encrypt-Last-Block

Q: Why do we need an independent k'
Alternate security notions
Strongly Secure MACs

No restriction

\[m_i \in M \]

\[\sigma_i \]

\[(m^*, \sigma^*) \]

\[k \leftarrow K_\lambda \]

\[\sigma \leftarrow \text{MAC}(k, m_i) \]

Output 1 iff:

1. \((m^*, \sigma^*) \notin \{(m_1, \sigma_1), \ldots\} \)
2. \(\text{Ver}(k, m^*, \sigma^*) = 1 \)

\[\text{SCMA-Adv}(\bot, \lambda) = \Pr[\text{outputs 1}] \]
Strongly Secure MACs

Useful when you don’t want to allow the adversary to change *any* part of the message.

If there is only a single valid tag for each message (such as in the PRF-based MAC), then (weak) security also implies strong security.

In general, though, strong security is stronger than weak security.
Adding Verification Queries

\[m_i \in M \quad \sigma_i \quad (m, \sigma) \quad b \quad (m^*, \sigma^*) \]

Output 1 iff:
- \(m^* \notin \{m_1, \ldots\} \)
- \(\text{Ver}(k, m^*, \sigma^*) = 1 \)

\[\text{CMA}'-\text{Adv}(\cdot, \lambda) = \Pr[\text{outputs 1}] \]
Theorem: \((\text{MAC,Ver})\) is strongly CMA secure if and only if it is strongly CMA’ secure
Proof

Strong CMA’ \rightarrow strong CMA: trivial

Strong CMA \rightarrow strong CMA’

Idea: adversary could have always answered verification queries for himself

- If adv previously received the message/signature pair from challenger, then it must be valid
- If adv did not previously receive pair, most likely invalid
 (if not, then we have a strong forgery)
Timing Attacks on MACs

How do you implement check $F(k,m) = \sigma$?

String comparison often optimized for performance

Compare(A,B):
- For $i = 1, \ldots, A.length$
 - If $A[i] \neq B[i]$, abort and return False;
- Return True;

Time depends on number of initial bytes that match
Timing Attacks on MACs

To forge a message m:

For each candidate first byte σ_0:
- Query server on (m, σ) where first byte of σ is σ_0
- See how long it takes to reject

First byte is σ_0 that causes the longest response
- If wrong, server rejects when comparing first byte
- If right, server rejects when comparing second
Timing Attacks on MACs

To forge a message m:

Now we have first byte σ_0

For each candidate second byte σ_1:
• Query server on (m, σ) where first two bytes of σ are σ_0,σ_0
• See how long it takes to reject

Second byte is σ_1 that causes the longest response
Thwarting Timing Attacks

Possibility:
• Use a string comparison that is guaranteed to take constant time
• Unfortunately, this is hard in practice, as optimized compilers could still try to shortcut the comparison

Possibility:
• Choose random block cipher key k'
• Compare by testing $F(k', A) = F(k', B)$
• Timing of “$==$” independent of how many bytes A and B share
Improving efficiency
Limitations of CBC-MAC

Many block cipher evaluations

Sequential
Carter Wegman MAC

\[k' = (k, h) \] where:
- \(k \) is a PRF key for \(F : K \times R \rightarrow Y \)
- \(h \) is sampled from a pairwise independent function family

MAC(k', m):
- Choose a random \(r \leftarrow R \)
- Set \(\sigma = (r, F(k, r) \oplus h(m)) \)
Theorem: The Carter Wegman MAC is strongly CMA secure
Proof

Assume toward contradiction a PPT 🐜

Hybrids...
Proof

Hybrid 0

\[m_i \in M \]
\[\sigma_i = (r_i, t_i) \]
\[(m^*, r^*, t^*) \]

Output 1 iff:
- \((m^*, r^*, t^*) \notin \{(m_i, r_i, t_i)\}\)
- \(F(k, r^*) \oplus h(m^*) = t^*\)
Proof

Hybrid 1

Output 1 iff:

- \((m^*, r^*, t^*) \notin \{(m_i, r_i, t_i)\}\)
- \(F(k, r^*) \oplus h(m^*) = t^*\)
Proof

Hybrid 2

$m_i \in M$

$s_i = (r_i, t_i)$

(m^*, r^*, t^*)

Output 1 iff:

• $(m^*, r^*, t^*) \notin \{(m_i, r_i, t_i)\}$
• $H(r^*) \oplus h(m^*) = t^*$

$H \leftarrow \text{Funcs}$

h

$(\text{Distinct } r_i)$

$r_i \leftarrow R$

t_i \leftarrow H(r) \oplus h(m)$
Proof

Claim: In Hybrid 2, negligible success probability

Possibilities:
• \(r^* \notin \{r_i\}\): then value of \(H(r^*)\) hidden from adversary, so \(\text{Pr}[H(r^*) \oplus h(m^*) = t^*] = 1/|Y|\)

• \(r^* = r_i\) for some \(i\): then \(m^* \neq m_i\) (why?)
 \(h\) completely hidden from adversary
 \(\text{Pr}[H(r^*) \oplus h(m^*) = t^*] = \text{Pr}[h(m^*) = t^* \oplus t_i \oplus h(m_i)] = 1/|Y|\)
Proof

Hybrid 1 and 2 are indistinguishable
• PRF security

Hybrid 0 and 1 are indistinguishable
• W.h.p. random r_i will be distinct

Therefore, negligible success probability in Hybrid 0
Efficiency of CW MAC

\textbf{MAC}(k',m):

- Choose a random \(r \leftarrow R \)
- Set \(\sigma = (r, F(k,r) \oplus h(m)) \)

\(h \) much more efficient than PRFs

PRF applied only to small nonce \(r \)
\(h \) applied to large message \(m \)
PMAC: A Parallel MAC

\[
(\oplus_{i=0}^{4} (k' \odot p)) \oplus k' \odot p \oplus k' \odot p \oplus k' \odot p \oplus k' \odot p \oplus k' \odot p
\]
Next Time

Authenticated Encryption: combining secrecy and integrity