Homework 6

1 Problem 1 (15 points)

The Euler totient function $\phi(N)$ counts the number of elements in \mathbb{Z}_N^*, the number of integers in $\{0, 1, \ldots, N-1\}$ that are relatively prime to N (1 is relatively prime to N, but 0 is not for $N > 1$).

(a) Show that for a prime power $q = p^a$, that $\phi(q) = (p-1)p^{a-1} = \left(1 - \frac{1}{p}\right)q$

(b) Show that for a positive integer N, $\phi(N) = N \times \prod_p \left(1 - \frac{1}{p}\right)$. Here, p varies over the prime factors of N, where each p is counted only once. The Chinese Remainder Theorem will be useful here.

2 Problem 2 (20 points)

In class, we saw how to construct a pseudorandom generator from a one-way permutation that had a hardcore bit. In this question, you will see that the permutation requirement is necessary.

Start from a one-way permutation F with a hardcore bit h, and construct a one-way function F' with hardcore bit h'. F' should have the following properties:

- F' is one-way, assuming the one-wayness of F.
- F' has the same domain and co-domain.
- h' is hardcore for F', assuming h is hardcore for F.
- If we plug F' into the PRG construction seen in class, the resulting generator will not be a secure PRG

3 Problem 3 (20 points)

In class, we saw that lsb and Half were hardcore bits for squaring mod a composite as well as the RSA function. We also saw that Half was hardcore for discrete exponentiation mod a prime.
(a) Explain why lsb is not a hardcore bit for discrete exponentiation mod a prime. That is, given \(g^x \mod p \) for a prime \(p \) and generator \(g \), explain how to recover the least significant bit of \(x \).

(b) In class, we said that for \(x \in \mathbb{Z}_N \), \(Half \) was analogous to the most significant bit of \(x \). Explain how \(Half \) is different from the most significant bit, and explain why the most significant bit may not be hardcore for any of the one-way functions we saw in class.

4 Problem 4 (30 points)

In class, we saw how to build collision resistance from factoring using quadratic residues. Here, we will show how to build collision resistance from the RSA problem. The function is defined as:

\[
H((N, e, u), (x, y)) = x^e u^y \mod N
\]

Here, the key will be a composite integer \(N = pq \) for unknown primes \(p, q \), and prime \(e \) relatively prime to \(\phi(N) = (p - 1)(q - 1) \), and a random integer \(u \in \mathbb{Z}_N^* \). \(x \) in an integer in \(\mathbb{Z}_N^* \), and \(y \in \{0, ..., e - 1\} \).

Suppose you have an adversary \(A \) that can find collisions for \(H \), given \((N, e, u) \). You will construct an adversary \(B \) that takes as input \(N, e, u \) and computes \(u^{1/e} \mod N \).

(a) First, show how to construct an \(a \in \mathbb{Z}_N \) and \(b \in \mathbb{Z} \) such that \(a^e = u^b \mod N \), and \(0 < |b| < e \).

(b) Notice that \(a^{1/b} \mod N \) is the \(e \)th root of \(u \). However, we do not know how to efficiently take roots \(\mod N \). Therefore, we need another way to compute the \(e \)th root.

Since \(0 < |b| < e \) and \(e \) is prime, it must be the case that \(GCD(b, e) = 1 \).

Therefore, there are integers \(s, t \) such that \(bs + te = 1 \), and \(s, t \) can be computed efficiently using the extended Euclidean algorithm.

Use \(a, u, s, t \) to compute the \(e \)th root of \(u \).

(c) Show that the function is no longer collision resistant if \(y \) is allowed to be in the set \(\{0, ..., e\} \).

5 Problem 5 (15 points)

Here, we generalized the fact that computing square roots mod a composite is as hard as factoring. Let \(N = pq \) for unknown primes \(p, q \), and suppose that \(e \) is prime and
divides either \(p - 1 \) or \(q - 1 \), but not both.

Show that computing \(e \)th roots mod \(N \) is as hard as factoring. That is, if you are able to efficiently compute \(e \)th roots, then you can factor \(N \).

[Hint: if \(e \) divides \(p - 1 \), then how many roots does an \(e \)th residue have mod \(p \)? What if \(e \) does not divide \(p - 1 \)?]

Bonus (10 points): Extend the above to handle arbitrary \(e \), as long as \(e \) is not relatively prime to \(\phi(N) = (p - 1)(q - 1) \). Note that if \(e \) is relatively prime to \(\phi(N) \), computing \(e \)th roots is the RSA problem, which is not believed to be as hard as factoring.