CS 161: Design and Analysis of Algorithms
NP-Complete I

- P, NP
- Polynomial time reductions
- NP-Hard, NP-Complete
- Sat/ 3-Sat
Decision Problem

- Suppose there is a function A that outputs True or False
- A **decision problem** is a problem of the form “is $A(x) = \text{True}$?”
- Example: $A(G, s, t, \text{len}) = \text{True}$ if and only if G has a path from s to t of length at most len
P

- P is the class of all decision problems that are solvable in polynomial time ($O(n^c)$ for some c) in the size of the input.

- Example: To compute $A(G,s,t,len)$, compute the shortest path from s to t in G, and check if its length is at most len.
Example: $A(LP,c) = True$ if and only if LP has a solution attaining a value of at least c.

The problem of determining if $A(LP,c) = True$ is in P since we can always solve the linear program, and check that the value is at least c.

P
Is Polynomial Time the Same as Efficient?

- If some problem was solvable in time $O(n^{1000})$, it would be extremely hard to solve, but still in P
- However, for large n, $O(n^c)$ is still much better than $O(d^n)$
- Good property: polynomials are closed under composition
Binary Relation

- A **binary relation** is a function $R(x,y)$ that outputs True or False
Search Problem

• A binary relation R specifies a **search problem**
 – Given an input x, determine if there is a y such that $R(x,y) = True$
 – If there is, output such a y
NP

• **NP** = set of decision problems A such that there exists a search problem R_A where:
 – $A(x) = \text{True}$ if and only if there is some y such that $R_A(x,y) = \text{True}$
 – $R_A(x,y)$ is computable in polynomial time
• y is called a **witness** that $f(x)$ is True
NP

• Example: \(A((G,c)) = \) True if and only if \(G \) has a tour \(T \) with total length at most \(c \)
 – \(R_A((G,c), T) = \) True if and only if \(T \) is a tour of \(G \) with total length at most \(c \)
 – While we don’t know how to actually compute such a \(T \), we can easily check that \(T \) is a tour of length at most \(c \)
NP

• Example: Any problem in P is in NP
 \[R_A(x, -) = A(x) \]
Decision vs Search

• NP is technically defined as a class of decision problems: “Does G have a minimum spanning tree with weight at most W?”

• Often, we abuse notation and say that the search problem is in NP: “Find a spanning tree of G with weight at most W”

• For many problems, possible to show that decision and search are essentially the same
P vs NP

• P is the set of problems solvable in polynomial time
• NP is the set of problems whose solutions can be checked in polynomial time
• Does $P = NP$?
 – Seems unlikely that every problem that can be checked in polynomial time can also be computed in polynomial time
Polynomial Time Reductions

• Recall that a reduction from problem A to problem B consists of two components:
 – A conversion from an instance of problem A into an instance of problem B
 – A conversion from a solution for the instance of problem B into a solution for the original instance
Polynomial Time Reductions

• We will be more precise now:
• A decision problem A is polynomial-time reducible to B if:
 – We can efficiently convert any instance \(x \) of A into an instance \(x' \) of B
 – \(A(x) = \text{True} \) if and only if \(B(x') = \text{True} \)
• We write A \(\leq_p B \)
Polynomial Time Reductions

- **Theorem**: if $A \leq_p B$ and B is in P, then A is in P
- **Proof**: Given an instance x of A, use the reduction to get an instance x' of B. Then solve B using a polynomial time algorithm
NP-Complete

• What if there was some problem B in NP such that $A \leq_P B$ for all A in NP?
• If B is in P, then all A are in P, so $P = NP$
• If B is not in P, then clearly $P \neq NP$
• If such a B exists, we have reduced the problem of deciding if $P = NP$ to deciding if B is in NP
NP-Complete

• A decision problem B is **NP-Complete** if B is in NP and $A \leq_p B$ for all A in NP
 – Informally: B is as hard as the hardest problems in NP

• A problem C is **NP-Hard** if $A \leq_p B$ for all A in NP
 – In formally: C is at least as hard as the hardest problems in NP
Do NP-Complete Problems Exist?

• At first glance, the existence of NP-Complete problems seems unlikely
• How can one problem be reducible from an entire class of infinitely many problems?
Boolean Circuit

```
<table>
<thead>
<tr>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>NOT</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>NOT</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>OR</td>
</tr>
<tr>
<td>NOT</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>true</td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>false</td>
</tr>
</tbody>
</table>
```

The diagram represents a Boolean circuit with an output node connected to an AND gate, which in turn is connected to OR and NOT gates. The inputs to the circuit include 'false', '?', '?', 'true', and '?'.
Boolean Circuit

- **NOT**
 - **false**
 - **true**

- **NOT**
 - **true**
 - **false**
Boolean Circuit

false
AND
false false
false
AND false true
true
false
AND true false
true
true
AND true true
Boolean Circuit

false
false
false
false
true
true
true
true
true
true
Boolean Circuit
Boolean Circuit

Output

AND

OR

NOT

AND

OR

NOT

AND

true

false

?
Circuit SAT

• Given a boolean circuit C, is there a setting of the unknown inputs that makes the circuit evaluate to “true”?
• Clearly, Circuit SAT is in NP: we can check whether a setting of the unknown inputs leads to a “true” by evaluating the circuit
Circuit SAT is NP-Complete

• Theorem: Given any NP problem A, we have that $A \leq_p \text{Circuit SAT}$
Proof

• Our NP problem A has an efficiently computable binary relation R such that $A(x) = \text{True}$ if and only if there is a y such that $R(x, y) = \text{True}$
Proof

• R is computable in polynomial time
• R can be represented as a boolean circuit!
 – The computer that runs R is a boolean circuit Circ on a chip
 – Since R runs in polynomial time, R can be rendered as a boolean circuit consisting of a polynomial number copies of Circ, one per unit of time
 – Values of gates in one copy used to compute values in next
Proof

• We have a boolean circuit C that computes R
• $A(x) = True$ if and only if there is a y such that $C(x,y)$ evaluates to true
• Let the circuit C_x be the circuit C, with the values for x hardwired
• Then C_x has a satisfying assignment if and only if there is a y that makes $R(x,y) = True$
Proof

• Therefore, for any NP problem A, we have the following reduction to Circuit SAT:
 – Construct the polynomial-sized circuit C that checks if \(R(x,y) = \text{True} \)
 – For instance \(x \), hardwire the \(x \), obtaining the circuit \(C_x \)
 – \(C_x \) is our instance of the Circuit SAT problem
Satisfiability

• A **boolean formula** is any of the following:

 — A variable: \(x \)

 — The negation of a boolean formula: \(\overline{x} \)

 — The **disjunction** (or) of boolean formulae:
 \[
 x_1 \lor \overline{x_2} \lor x_3
 \]

 — The **conjunction** (and) of boolean formulae:
 \[
 (x_1 \lor \overline{x_2}) \land x_2 \land (\overline{x_1} \land x_3)
 \]
SAT Problem

• The SAT problem is to, given a boolean formula, find a satisfying assignment, or report that none exists.

• Clearly, SAT is a special case of Circuit SAT
Disjunctive Normal Form

• A variable or its negation are called **literals**

• Any boolean formula can be massaged into the following form **disjunctive normal form (DNF)**: the disjunction of conjunctions of literals

\[(x_1 \land x_2 \land \overline{x_3}) \lor \overline{x_1} \lor (x_2 \land \overline{x_4} \land x_5)\]

• Satisfiability of DFS formulas is easy!
Conjunctive Normal Form

• **Conjunctive normal form (CNF):** conjunction of disjunction of literals

\[(x_1 \lor x_2 \lor \overline{x_3} \lor x_4) \land \overline{x_1} \land (x_2 \lor \overline{x_4} \lor x_5)\]

• Define a **clause** to be one of the disjunctions
3 SAT

- 3SAT is the satisfiability problem on CNF formula where all clauses have at most 3 literals

\[(x_1 \lor \overline{x}_3 \lor x_4) \land \overline{x}_1 \land (x_2 \lor \overline{x}_4 \lor x_5)\]

- 3SAT is NP-Complete
Proof

• We will reduce from Circuit SAT
• Given an instance C of circuit say, create a variable g for each gate, representing the output of that gate
• For each gate, we will create one or more clauses that force the variables to be set correctly
Proof

Gate \(g \):

- true
- false

Clauses:

\((g)\) \quad \(\overline{g}\)
Proof

Gate g:

\[
g \rightarrow \text{NOT} \rightarrow h
\]

Clauses:

\[
(g \lor h) \quad (\overline{g} \lor \overline{h})
\]
Proof

Gate g:

Clauses:

\[(\overline{g} \lor h_1)\]
\[(\overline{g} \lor h_2)\]
\[(g \lor \overline{h_1} \lor \overline{h_2})\]
Proof

Gate g:

$$g$$

OR

h_1 h_2

Clauses:

$$(g \lor \overline{h_1})$$

$$(g \lor \overline{h_2})$$

$$(\overline{g} \lor h_1 \lor h_2)$$
Proof

• Given a Circuit SAT instance, construct a variable g for each gate
• Create up to three disjunctive clause for each gate that force the outputs of each gate to be correct
• Additionally, if g is the output gate, we add the clause (g), forcing the output of g to be True
Proof

• An assignment satisfies the 3SAT instance if and only if, when we assign the output of each gate the corresponding value:
 – All gates output the correct value
 – The output of the whole circuit is True

• Thus, the Circuit SAT instance has a satisfying assignment if and only if the 3SAT instance does
Proof

• We have exhibited a poly-time reduction form Circuit SAT to 3SAT
• Since Circuit SAT is NP-Complete, and 3SAT is in NP, 3SAT must also be NP-Complete
The Power of NP-Completeness

• We have shown that 3SAT is as hard as any problem in NP
 – If 3SAT has an efficient algorithm, P = NP
 – If not, P ≠ NP

• The general belief is that P ≠ NP
 – If so, any NP-Complete problem is hard to solve
 – If you can prove your problem is NP-Complete, you probably shouldn’t bother trying to find an efficient algorithm for it
A Less Obvious Reduction

• Recall: an independent set of a graph $G = (V,E)$ is a subset of nodes S such that no edge has both endpoints in S

• Independent Set Problem: Given G and a goal k, find an independent set of size k if one exists
A Less Obvious Reduction

• Given an instance of 3SAT (a collection of k clauses \((z_i \lor z_j \lor z_k)\))

• Construct a graph as follows:
 – For each clause, create a triangle, where nodes are labeled by the literals in the clause
 – Connect each node to each of the nodes labeled with its negation
A Less Obvious Reduction

\[(\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor y \lor z)\]
A Less Obvious Reduction

- Suppose the 3SAT instance has a satisfying assignment
- From each triangle, select a true literal
- Result must be independent set of size k
A Less Obvious Reduction

\[(\overline{x} \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor z) \land (x \lor y \lor z)\]
A Less Obvious Reduction

• Suppose the graph has an independent set of size at least k

• Then at least one node from each triangle is in the set
 – There can be only one node in each triangle, so the size is at most k

• Set the corresponding literal to true
A Less Obvious Reduction

• Need to show that setting each literal in the independent set to true gives a satisfying assignment, and we never try to set a variable to be both true and false
A Less Obvious Reduction

• Since every literal has an edge to each of its negations, if a literal is in the independent set, none of its negations are
 – We will never try to set a variable to be both true and false

• Since every clause has a literal set to true, every clause is true, and so the 3SAT instance is satisfied
What do P and NP Stand For?

- P stands for polynomial time
- NP? Non-deterministic polynomial time
Non-determinism

• Informally, a non-deterministic algorithm is one that makes many arbitrary decisions

• A non-deterministic algorithm solves the decision problem A if
 – Provided that A(x) = True, there is some sequence of choices that makes the algorithm output True
 – If A(x) = False, no sequence of choices makes the algorithm output True.
Equivalence to Our Definition?

• If a poly-time non-deterministic algorithm solves A, let $R(x,y)$ be the following relation:
 – Run A on input x, and whenever there is an arbitrary decision to make, look at the next chunk of y to make the decision
 – If there is a sequence of decisions that makes our algorithm output True, then there is a y making $R(x,y)$ output True
 – If no such sequence of decisions exist, no such y exists
Equivalence to Our Definition

• If a problem A has a poly-time computable binary relation $R(x, y)$, construct the following non-deterministic algorithm:
 – Run the algorithm for R on input x and an arbitrary choice for the input y
Reminders

• Final August 17th 2:15 – 3:15 in Skilling Auditorium
• Material: through Lecture 20 (Monday)
• SCPD students: welcome to take exam on campus, just let us know by the end of Monday