CS 161: Design and Analysis of Algorithms
Linear Programming I: Maximum Flow

• Definition
• Algorithm
• Max Flow/Min Cut
• Linear Programming
Flows in Graphs

• Given a weighted graph $G=(V,E)$, two nodes s and t
 – Weights represent capacities
 – s represents the source, t represents the target
• A flow is a setting of variables f_e for all edges e in E such that
 – $0 \leq f_e \leq w(e)$
 – For any node n other than s or t,
 $$\sum_{(u,v) \in E} f(u,v) = \sum_{(v,w) \in E} f(v,w)$$
Maximum Flow

- A **maximum flow** is a flow that maximizes the amount leaving \(s \) (or entering \(t \)). That is,

\[
\sum_{(s,v)} f(s,v) - \sum_{(v,s)} f(v,s)
\]
Maximum Flow
Maximum Flow

Graph showing a network flow problem with nodes S and T, and various capacities on the edges between them.
How to Compute Maximum Flow

- How can we compute any flow?
 - Find path in graph from s to t
 - Put 1 unit of flow along each edge in graph (or better yet, maximum possible)

- Given a flow, how can we compute a better flow?
 - Compute residual capacities, the remaining capacity of each edge
 - Compute flow in using residual capacities
Computing Maximum Flow
Computing Maximum Flow

![Graph with nodes S, T, and intermediate nodes, showing directed edges with capacities indicated]
Computing Maximum Flow
Computing Maximum Flow
Computing Maximum Flow

\[\text{Maximum Flow} \]
Computing Maximum Flow
Computing Maximum Flow

Diagram of a network with nodes S and T, showing flows through the network.
Computing Maximum Flow

S

1

2

1

T

S

1

1

1

T
Computing Maximum Flow

S

1

2

1

2

1

1

2
Computing Maximum Flow

S

1

1

1

T

S

2

1

1

T
Problem!

```
S 2 1 2
   \
   \
1---2---1
   \
   \
2---2
   T
```
Problem!
Problem!

- Node S is connected to node T by two paths:
 - Path 1: S → 1 → T
 - Path 2: S → 2 → 2 → T
Problem!

• Choosing a bad path can result in the wrong answer
• Solution: allow flows to cancel
Cancelling Flows

\[S \xrightarrow{2} T \xleftarrow{1} S \xrightarrow{2} T \xleftarrow{2} S \]
Cancelling Flows
Cancelling Flows

Graph representation of cancelling flows with nodes S and T, connections and weights indicated by arrows and numbers.
Cancelling Flows

\[
\begin{array}{c}
S \\
\quad \quad
\end{array}
\]
Min Cut

• For any cut \((C, V-C)\) where \(C\) contains \(s\) and \(V-C\) contains \(t\), let the weight of the cut be the sum of the weights of all edges from \(C\) into \(V-C\)

• **Observation**: No flow can be greater than the weight of any cut
Max Flow/Min Cut

- **Theorem**: The weight of the maximum flow is equal to the weight of the minimum cut
- **Proof**: Suffices to show a flow and a cut with the same weight
Max Flow/Min Cut

• Our algorithm for max flow halts exactly when the residual flow graph has no paths from s to t.
• Run explore from s on the residual graph.
• Let C be set of visited nodes, V-C set of unvisited nodes.
• Claim: the cut (C,V-C) has the same weight as the flow.
Max Flow/Min Cut

• In residual graph G^F, no edges from C to V-C
• Therefore, in G, every edge from C to V-C has its capacity used up
• Weight of cut = sum of weights of edges from C to V-C = amount of flow from s to t
Max Flow Algorithm

• We showed that our flow algorithm yields a flow that is equal to the weight of a cut
• Therefore, our flow is optimal, and the min cut is equal to the max flow
• We can also modify our algorithm to obtain the max cut
 – We can prove to someone else that our flow is optimal
Max Flow Algorithm

• Running Time?
 – Each update requires $O(|E|)$ time
 – How many updates?
 – Naïve answer: each update increases flow by at least 1, so if max flow has weight W, running time is $O(|E| W)$
 – What if W is huge?
Max Flow Algorithm

• What if we always find the path with the largest bottleneck?
 – “Fattest” path
 – Can show $O(|E| \log W)$ iterations,
 – Time: $O(|E|^2 \log W)$
 – Since $\log W$ is the number of bits needed to represent W, this is polynomial time

• What if we use BFS?
 – Can show $O(|E| |V|)$ iterations
Strong vs Weak Polynomial Time

• An algorithm is said to run in polynomial time if it runs in $O(n^c)$ where n is the size of the input
 – Graph $G = (V,E)$ has size $O(|V| + |E|)$
 – Integer W has size $O(\log W)$
Strong vs Weak Polynomial Time

• Two models of computation:
 – Model 1: Treat all integers as consuming a constant amount of space and requiring a constant amount of time for all arithmetic operations
 – Model 2: All integers require \(O(\log n) \) space and arithmetic operations take the correct amount of time.
Strong vs Weak Polynomial Time

• **Strongly Polynomial Time:**

 – The running time is polynomial in Model 1. That is, the number of arithmetic operations is $O(n^c)$ where n is the number of integers in the input.

 – The space used is polynomial in the Model 2 (correct) size of the input
Strong vs Weak Polynomial Time

• **Strongly Polynomial Time:**
 - Any strong polynomial time algorithm can be converted into a polynomial time algorithm by replacing $O(1)$-time operations with correct operations.
 - $O(|V|^2 |E|)$ does not depend on the size of the weights, so it is strong polynomial time.
String vs Weak Polynomial Time

- **Weak Polynomial Time:**
 - Polynomial time, but not strong polynomial
 - $O(|V|^2 \log W)$ is polynomial, but number of operations in not just function of number of integers ($|E|$), but also of their size
Max Flow as Linear Programming

• Recall what we are computing:
 – We have variables f_e for all edges e
 – We require that $0 \leq f_e \leq w(e)$ for all e
 – We also require that, for all nodes v,
 \[
 \sum_{(u,v) \in E} f(u,v) = \sum_{(v,w) \in E} f(v,w)
 \]
 – We want to maximize
 \[
 \sum_{(s,v)} f(s,v) - \sum_{(v,s)} f(v,s)
 \]
Max Flow as Linear Programming

• We can write the max flow problem as follows:
 – Maximize \[\sum_{e} c_{e} f_{e} \]
 – Subject to the constraints:
 \[f_{e} \geq 0 \quad f_{e} \leq w(e) \]
 \[\sum_{e} a_{i,e} f_{e} = 0 \forall i \]
Linear Programming

- Set of variables x_i
- Goal: maximize $\sum_i c_i x_i$
- Subject to the constraints

$$\sum_i A_{j,i} x_i \leq b_j \forall j$$

$$x_i \geq 0 \forall i$$
Linear Programming

• Variants
 – Can be max or min problem
 – Constrains can be equations or inequalities
 – Variables can be only non-negative, or unrestricted in sign

• Turns out all equivalent!
Linear Programming

• Convert max problem to min?

\[
\max \sum_i c_i x_i \quad \longrightarrow \quad \min \sum_i (-c_i) x_i
\]

• Min to max?

\[
\min \sum_i c_i x_i \quad \longrightarrow \quad \max \sum_i (-c_i) x_i
\]
Linear Programming

• Equations to inequalities?
 \[\sum_{i} a_i x_i = b \rightarrow \sum_{i} a_i x_i \leq b \]
 \[\sum_{i} a_i x_i \geq b \]

• Inequalities to equations?
 \[\sum_{i} a_i x_i \leq b \rightarrow \sum_{i} a_i x_i + z = b \]
 \[z \geq 0 \]
Linear Programming

• Unrestricted to non-negative?
 – For each variable x, introduce new variables x^+, x^-
 – Add constraints $x^+ \geq 0, x^- \geq 0$
 – Replace each occurrence of x with $x^+ - x^-$
Solving Linear Programming

\[\text{max} \sum_{i} c_i x_i \]

\[\sum_{i} A_{j,i} x_i \leq b_i \forall j \]

\[x_i \geq 0 \forall i \]
Solving Linear Programming

• Each inequality defines a plane, feasible solutions all to one side of plane (half-space)
• Intersection of all half-spaces is feasible region. Result is a polytope
• **Theorem**: maximum solution must lie on a vertex of the polytope
The Simplex Algorithm

• Start at any vertex of the polytope, and repeatedly:
 – Follow an edge from the current vertex to a more optimal vertex
 – Stop when the current vertex is better than all its neighbors
Simplex and Max Flow

• Starting with a solution, and repeatedly improving is exactly what we did in our max flow algorithm

• Simplex algorithm on max flow problem gives exactly the algorithm we had
The Simplex Algorithm

• Issues:
 – Finding a starting point
 – If we pick a bad edge to follow, can run poorly

• Though not polynomial time on all instances, simplex tends to work well on many real-world inputs
Linear Programming

• Invented during WWII
• 1947 – Simplex method
• 1979 - Provably weak polynomial time
• Unlike the max flow algorithm, no algorithm known that solves linear programming in strongly polynomial time