CS 161: Design and Analysis of Algorithms
Dynamic Programming I: Weighted Interval Scheduling

• Example: Fibonacci Numbers
• Recurrence Trees
• Dynamic Programming Dags
• Weighted Interval Scheduling
Example: Fibonacci Numbers

- $F(n) = \{
 - 0 \text{ if } n = 0 \\
 - 1 \text{ if } n = 1 \\
 - F(n-1) + F(n-2) \text{ if } n > 1
\}$
Recursive Algorithm

- \(\text{Fib1}(n) = \{
 \begin{align*}
 & \text{If } n < 2, \text{ return } n \\
 & \text{Fib1}(n-1) + \text{Fib1}(n-2) \text{ otherwise}
 \end{align*}
\} \)
Recursive Algorithm

• Running Time?
 – Claim: For n>0, number of additions is F(n)-1
 – True for n = 1, 2
 – Inductively assume true for k < n
 – Fib1(n) uses 1 addition, plus the additions of Fib1(n-1) and Fib1(n-2)
 – Number of additions: 1 + (F(n-1)-1) + (F(n-2)+1)
Recursive Algorithm

• Running Time?
 – $\Omega(F(n))$
 – How fast does $F(n)$ grow?
Fibonacci Growth Rate

• Let φ and ψ be solutions to $x^2 = x + 1$
 - $\varphi \approx 1.62$, the golden ratio
 - $\psi \approx -0.62$

• Claim: $F(n) = \Theta(\varphi^n)$

• Stronger Claim: $F(n) = (\varphi^n - \psi^n)/(\varphi - \psi)$

• Proof: True for $n = 0, 1$
 - Assume true for $k < n$
 - $F(n) = F(n-1) + F(n-2)$
Fibonacci Growth Rate

- $F(n) = (\varphi^n - \Psi^n)/(\varphi - \Psi)$
- Proof: True for $n = 0, 1$
 - Assume true for $k < n$

\[
F(n) = F(n-1) + F(n-2) = \frac{\varphi^{n-1} - \psi^{n-1}}{\varphi - \psi} + \frac{\varphi^{n-2} - \psi^{n-2}}{\varphi - \psi} \\
= \frac{\varphi^{n-2}(1 + \varphi) + \psi^{n-2}(1 + \psi)}{\varphi - \psi} = \frac{\varphi^n - \psi^n}{\varphi - \psi}
\]
Recursive Algorithm

• Running Time?
 – $\Omega(F(n)) \approx \Omega(1.62^n)$
 – Grows extremely rapidly
 – Example: My computer
 • Running time $\approx 1.7 \times (1.62)^n$ nanoseconds
 • $n = 30$: 4 milliseconds
 • $n = 40$: 0.42 seconds
 • $n = 50$: 51 seconds
 • $n = 60$: 1.8 hours (projection)
 • $n = 70$: 9.1 days (projection)
 • $n = 130$: 93 billion years (projection)
Problem

• To compute $F(n)$:

 – Compute $F(n-1)$ and $F(n-2)$

 – Computing $F(n-1)$ requires computing $F(n-2)$ and $F(n-3)$

 – Computing $F(n-2)$ requires computing $F(n-3)$ and $F(n-4)$

 – ...
Problem

• To compute $F(n)$:
 – Call $F(n-k)$ a total of $F(k-1)$ times
 – Way too much repeated work
Solution: Memoization

• Remember answers to $F(k)$ for future calls
• Keep track of $(k,F(k))$ mappings
 – Hash table
 – Array
• $Fib2(n) = \{
 – \text{If}(n < 2) \text{ return } n
 – \text{Check if } Fib2(n) \text{ has been computed already, if so, output it}
 – \text{Otherwise, return } Fib2(n-1) + Fib2(n-2)
\}$
Alternative Approach

• We are going from top down
• How about going bottom up:
 – Keep array A, where $A[k] = F(k)$
 – Iteratively build array
 • First, set $A[0] = 0$, $A[1] = 1$
 • Then, for $k = 2, ..., n$, set $A[k] = A[k-1] + A[k-2]$
Iterative Algorithm

• Fib3(n) = {
 – Construct array A of length n+1
 – For k = 2, ..., n
 – Return A[n]
Iterative Algorithm

• Running Time:
 – n-1 iterations
 – Each step has a 1 addition (pretend all additions are constant time)
 – $O(n)$ time
 – Much more tractable now
Recursion Tree

F(n)
/ /
F(n-1) F(n-2)
/ /
F(n-2) F(n-3) F(n-3) F(n-4)
/ / /
F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)
Merge Identical Nodes

F(n)
F(n-1)
F(n-2)
F(n-3)
F(n-4)
Process Bottom Up

- $F(n)$
- $F(n-1)$
- $F(n-2)$
- $F(n-3)$
- $F(n-4)$
Dynamic Programming

• Subproblems have dag structure
 – Edge represents prerequisite

• Solve subproblems in topological order
 – Whenever we solve a subproblem, we have already solved all of the other subproblems we need

• Very general, flexible tool
Weighted Interval Scheduling

- Given set of n intervals \((s(i), f(i))\), each with a weight \(w(i)\)
- Goal: pick set of overlapping intervals with largest possible weight
- If \(w(i) = 1\), we have the unweighted scheduling problem, which can be solved by greedy
- Does greedy work here?
Weighted Interval Scheduling

• Recall greedy: pick interval that ends earliest

• This greedy approach does not work
Weighted Interval Scheduling

• Say we have optimal schedule S
• Two possibilities:
 – Interval n (the last one) is in S
 – Interval n is not in S
Weighted Interval Scheduling

- Suppose interval n is not in S
 - Then S is actually optimal for first n-1 intervals
 - Otherwise, any optimal solution for first n-1 intervals is solution for n intervals with higher weight
Weighted Interval Scheduling

• Suppose interval n is in S
 – Then no interval that overlaps n can be in S
 – $S - \{n\}$ must be optimal over intervals that don’t overlap interval n
Weighted Interval Scheduling

• Suggest the following approach:
 – Subproblems will consist of subsets of intervals
 – If subset has single interval, the optimal solution for that subproblem is just that interval
 – Otherwise, let T be some subset, and let t be the last interval
 – The optimal for a subset T is either:
 • The optimal for T – \{t\}
 • (The optimal for T – \{s intersecting t\}) + \{t\}
Problem

• There are 2^n subsets, so solving for all subsets will take exponential time
• Instead, we will be clever:
 – Order intervals by finish time (i.e. if $i < j$, $f(i) < f(j)$)
 – Let $p(i)$ be the last interval that ends before i starts, or 0 if no such interval
 – Now, we only need to solve problems on sets
 \{1, 2, ..., k\}
Weighted Interval Scheduling

- Optimal on \{1, 2, ..., k\}:
 - If interval \(k\) is not in optimal, then optimal is just optimal on \{1, 2, ..., k-1\}
 - If \(k\) is in optimal, then optimal is the optimal on \{1, 2, ..., p(k)\}, plus the interval \(k\)
 - Only need to check two cases
Weighted Interval Scheduling

• **WeightedIntervalSchedule:**
 – Create solution array S of length $n+1$
 – Create weight array W of length $n+1$
 – Sort intervals by $f(i)$
 – $S[0] = \emptyset$, $W[0] = 0$, $S[1] = \{1\}$, $W[1] = w(1)$
 – For $k = 2, \ldots, n$:
 • If $W[k-1] < W[p(k)] + w(k)$, then:
 – $W[k] = W[p(k)] + w(k)$
 – $S[k] = S[p(k)] + \{k\}$
 • Else $W[k] = W[k-1]$, $S[k] = S[k-1]$
 – Output $S[n]$
Running Time

• Say we have $p(i)$ values, and list already sorted.
• Then, each iteration takes only $O(1)$, so $O(n)$ overall
• Computing $p(j)$?
 – Obvious algorithm: $O(n^2)$
Underlying Dag

- Nodes represent sets \{1,\ldots,k\}
- Pointer from set \{1,\ldots,k-1\} to \{1,\ldots,k\} for all \(k\)
- Pointer from set \{1,\ldots,p(k)\} to \{1,\ldots,k\} for all \(k\)
Dynamic Programming Outline

• Find good subproblems
• Express solution to suproblem k in terms of solutions to other subproblems
 – Solution to subproblem k needs to be efficiently computable given solutions to other subproblems
• Solve subproblems in topological order
More on Fibonacci

• Dynamic solution isn’t necessarily best
• Once we’ve computed $F(k-1)$ and $F(k-2)$, we no longer need $F(k-3)$, $F(k-4)$, ..., $F(0)$
• Save space: only keep around last two computed values
More on Fibonacci

• Keep around $F(k)$ and $F(k-1)$
• To update:

\[F(k) = F(k - 1) + F(k - 2) \]

\[F(k - 1) = F(k - 1) \]
More on Fibonacci

- Keep around $F(k)$ and $F(k-1)$
- To update:

\[
\begin{pmatrix}
F(k) \\
F(k-1)
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
F(k-1) \\
F(k-2)
\end{pmatrix}
\]
• Can we do better than $O(n)$ additions?

\[
\begin{pmatrix}
F(n) \\
F(n-1)
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1} \begin{pmatrix}
F(1) \\
F(0)
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1} \begin{pmatrix}
1 \\
0
\end{pmatrix}
\]
How to Compute Powers

• Say we have a set X where we can multiply elements together

• How do we compute $x^n = x \times x \times x \times \ldots \times x$?
 – Obvious solution: compute x^{n-1} recursively, and multiply by x
 – Requires n-1 multiplications in the set
How to Compute Powers

• What if we are computing x^4?
 – First compute $y = x^2$, then compute y^2
 – Only 2 multiplications

• What about x^8?
 – Compute $y = x^4$ as above, then compute y^2
 – Only 3 multiplications
How to Compute Powers

• In general, can compute x^{2^n} using n multiplications
• What about exponents that are not powers of 2?
How to Compute Powers

- $\text{Pow}(x, n) = \{
 - \text{If } n = 1, \text{ return } x
 - \text{If } n \text{ is even, return } \text{Pow}(x \times x, n/2)
 - \text{If } n \text{ is odd, return } x \times \text{Pow}(x \times x, (n-1)/2)
\}$
How to Compute Powers

• Number of multiplications?
 – At most 2 per call to Pow
 – Exponent is at least divided by 2
 – $O(\log n)$ multiplications
More on Fibonacci

• Can we do better than $O(n)$ additions?

\[
\begin{pmatrix}
F(n) \\
F(n-1)
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F(1) \\
F(0) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} 1 \\
0 \end{pmatrix}
\]

• Can compute using $O(\log n)$ 2x2 matrix multiplications

• $O(\log n)$ additions and multiplications
The Catch

• The integers we are adding and multiplying are large (exponential, in fact)
• Number of digits: O(n)
• Even though O(log n) additions and multiplications, each addition and multiplication takes time up to O(M(n)), where M(n) is the time to multiply 2 n-digit integers
Actual Running Time

• $T(n) = T(n/2) + O(M(n))$
• $M(n)$ is at least n, so running time dominated by $O(M(n))$ term
• Therefore, $T(n) = O(M(n))$