CS 161: Design and Analysis of Algorithms
Divide & Conquer III: Multiplication/FFT

- Divide & Conquer integer multiplication, revisited
- Polynomials
- FFT
Divide & Conquer Multiplication

• Recall our algorithm:
 – Write $x = b^{n/2} x_1 + x_0$, $y = b^{n/2} y_1 + y_0$
 – Need to compute $xy = b^n x_1 y_1 + b^{n/2}(x_1 y_0 + x_0 y_1) + x_0 y_0$
 – $x_1 y_0 + x_0 y_1 = (x_0 + x_1)(y_0 + y_1) - x_1 y_1 - x_0 y_0$
 – Probably can’t reduce to two multiplications
 – What if we we make smaller subproblems?
Divide & Conquer Multiplication

• Subproblems of size n/3:
 - \(x = b^{2n/3} x_2 + b^{n/3} x_1 + x_0 \)
 - \(y = b^{2n/3} y_2 + b^{n/3} y_1 + y_0 \)
 - \(xy = (b^{2n/3} x_2 + b^{n/3} x_1 + x_0)(b^{2n/3} y_2 + b^{n/3} y_1 + y_0) \)
 - Expand, collect terms with \(b^0, b^{n/3}, b^{2n/3}, b^n, b^{4n/3} \)
 - How many subproblems? 9
 - Running Time: \(T(n) = 9 T(n/3) + O(n) \)
 • Solved by \(T(n) = O(n^2) \)
Integers as Polynomials

- If we want to split into subproblems of size n/k, write $x = b^{(k-1)n/k} x_{k-1} + \ldots + b^{n/k} x_1 + x_0$
- Let $B = b^{n/k}$. Then $x = B^{k-1} x_{k-1} + \ldots + B x_1 + x_0$
- Can think of x as a polynomial in B, where coefficients are integers in $[0,B)$
- To get polynomial coefficients: groups of n/k digits of x
- To get x: evaluate polynomial at B
Polynomials

• \(P(z) = a_d z^d + \ldots + a_1 z + a_0 \)

• Degree(P) = d

• If \(P(z) \) and \(Q(z) \) have degree at most d, then so does \(P(z)+Q(z) \)

• If \(P(z) \) has degree \(d_1 \) and \(Q(z) \) has degree \(d_2 \), then \(P(z)Q(z) \) has degree \(d_1+d_2 \)
Multiplying Integers

• To multiply two n-digit integers \(x \) and \(y \),
 - Interpret \(x \) and \(y \) as degree \(d \) polynomials \(P \) and \(Q \) with \((n/(d+1)) \)-digit coefficients
 • \(x = P(B) \), \(y = Q(B) \)
 - Multiply the two polynomials to get \(R(z) = P(z)Q(z) \)
 - Evaluate \(R(z) \) at \(B \)
 • \(R(B) = P(B)Q(B) = xy \)
Multiplying Polynomials

\[
P(z) = \sum_{i=0}^{d} a_i z^i
\]

\[
Q(z) = \sum_{i=0}^{d} b_i z^i
\]

\[
a_i = b_i = 0 \forall i > d
\]

\[
R(z) = P(z)Q(z) = \sum_{i=0}^{2d} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) z^i
\]
Multiplying Polynomials

• Coefficients of R are

\[\sum_{j=0}^{i} a_j b_{i-j} \]

• 2d such coefficients, O(d) adds/multiplies per coefficient \(\rightarrow (d+1)^2 \) adds/multiplies.
Multiplying Integers

• To multiply two n-digit integers x and y,
 – Interpret x and y as degree d polynomials P and Q with $(n/(d+1))$-digit coefficients
 • $x = P(B)$, $y = Q(B)$
 – Multiply the two polynomials to get $R(z) = P(z)Q(z)$
 – Evaluate $R(z)$ at B
 • $R(B) = P(B)Q(B) = xy$
Multiply Integers

• Running Time?
 – Interpret as polynomials: \(O(n) \)
 – Multiply polynomials: \((d+1)^2T(n/(d+1))+O(n)\)
 • \((d+1)^2\) multiplications of \(n/(d+1)\) digit integers
 • \((d+1)^2\) additions of \(n/(d+1)\) digit integers
 – Evaluate polynomial at B: \(O(n)\)
 – \(T(n) = (d+1)^2T(n/(d+1))+O(n)\)
 – \(T(n) = O(n^2)\)
Representing Polynomials

• Generally, polynomials represented by coefficients a_i

• Theorem: Let Z be a set of size $d+1$ inputs, and let $P(z)$ be a polynomial of degree d. Then $P(z)$ is completely determined by the values $P(z_0)$, $P(z_1)$, ..., $P(z_d)$
Proof

• Let P and Q be polynomials of degree d such that \(P(z_i) = Q(z_i) \) for all \(i \)
• Let \(R(z) = P(z) - Q(z) \)
• \(R(z_i) = 0 \) for all \(i \)
• Fact: If a polynomial of degree at most d has d + 1 zeros, then the polynomial is identically 0
• Thus \(R(z) = 0 \), so \(R(z) = Q(z) \)
Computing Coefficients

• Given \(P(z_0), \ldots, P(z_d) \), can compute coefficients of \(P \)

\[
P(z_0) = a_d z_0^d + a_{d-1} z_0^{d-1} + \ldots + a_1 z_0 + a_0
\]

\[
P(z_1) = a_d z_1^d + a_{d-1} z_1^{d-1} + \ldots + a_1 z_1 + a_0
\]

\[\vdots\]

\[
P(z_d) = a_d z_d^d + a_{d-1} z_d^{d-1} + \ldots + a_1 z_d + a_0
\]
Computing Coefficients

• Given $P(n_0), \ldots, P(n_d)$, can compute coefficients of P

\[
\begin{pmatrix}
P(z_0) \\
P(z_1) \\
\vdots \\
P(z_d)
\end{pmatrix}
=
\begin{pmatrix}
1 & z_0 & \cdots & z_0^d \\
1 & z_1 & \cdots & z_1^d \\
\vdots & \vdots & \ddots & \vdots \\
1 & z_d & \cdots & z_d^d
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_d
\end{pmatrix}
\]
Computing Coefficients

• Given $P(z_0), \ldots, P(z_d)$, can compute coefficients of P

\[
\begin{pmatrix}
P(z_0) \\
P(z_1) \\
\vdots \\
P(z_d)
\end{pmatrix} = V_z \begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_d
\end{pmatrix}
\]
Vandermonde Matrix

• V_Z is an invertible matrix

\[
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_d \\
\end{pmatrix}
= V_Z^{-1}
\begin{pmatrix}
P(z_0) \\
P(z_1) \\
\vdots \\
P(z_d) \\
\end{pmatrix}
\]
Multiplying Polynomials

• To multiply polynomials P and Q:
 – Pick a set Z of $2d+1$ inputs
 – Compute $P(z_i), Q(z_i)$
 – Compute $R(z_i) = P(z_i)Q(z_i)$
 – Compute coefficients of $R(z)$
Example: \(d=1 \)

- To multiply two degree 1 polynomials \(P \) and \(Q \):
 - Let \(Z = \{0,1,\infty\} \)
 - Compute \(P(0) = a_0, P(1)=a_0+a_1, P(\infty)=a_1 \)
 - Compute \(Q(0) = b_0, P(1)=b_0+b_1, P(\infty)=b_1 \)
 - Compute \(R(0) = a_0b_0, R(1) = (a_0+a_1)(b_0+b_1), R(\infty)=a_1b_1 \)
Example: $d=1$

$$V^{-1}_z = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
Example: \(d=1 \)

\[
\begin{pmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 & 0 \\
 -1 & 1 & -1 \\
 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
 R(0) \\
 R(1) \\
 R(\infty) \\
\end{pmatrix} =
\begin{pmatrix}
 R(0) \\
 R(1) - R(0) - R(\infty) \\
 R(\infty) \\
\end{pmatrix}
\]
Example: d=1

• To multiply two n-digit integers x and y
 – Interpret x and y as degree 1 polynomials P and Q with (n/2)-digit coefficients
 • $P(z) = a_1 z + a_0$, $Q(z) = b_1 z + b_0$
 – Compute $R(0)=a_0b_0$, $R(1)=(a_0+a_1)(b_0+b_1)$, $R(\infty)=a_1b_1$
 • Recursively make 3 n/2-digit multiplications
 – Compute coefficients of R(z):
 • $c_0 = R(0)$, $c_1 = R(1)-R(0)-R(\infty)$, $c_2 = R(\infty)$
 – Evaluate $R(B)=R(b^{n/2})$
Example: d=1

• Running Time?
 – Interpret as polynomials: $O(n)$
 – Multiply polynomials: $3T(n/2)+O(n)$
 – Evaluate polynomial at B: $O(n)$
 – $T(n) = 3T(n/2)+O(n)$
 – $T(n) = O(n^{\log_3 2}) = O(n^{1.585})$
Example: $d=2$

- To multiply two degree 2 polynomials P and Q:
 - Let $Z = \{0, 1, -1, -2, \infty\}$
 - Compute $P(0), P(1), P(-1), P(-2), P(\infty)$
 - Compute $Q(0), Q(1), Q(-1), Q(-2), Q(\infty)$
 - Compute $R(0), R(1), R(-1), R(-2), R(\infty)$
Example: $d=2$

\[V_{Z}^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & -1 & \frac{1}{6} & -2 \\
-1 & \frac{1}{2} & \frac{1}{2} & 0 & -1 \\
-\frac{1}{2} & \frac{1}{6} & \frac{1}{2} & -\frac{1}{6} & 2 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix} \]
Example: $d=2$

\[
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
c_4
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & -1 & \frac{1}{6} & -2 \\
-1 & \frac{1}{2} & \frac{1}{2} & 0 & -1 \\
-\frac{1}{2} & \frac{1}{6} & \frac{1}{2} & -\frac{1}{6} & 2 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
R(0) \\
R(1) \\
R(-1) \\
R(-2) \\
R(\infty)
\end{pmatrix}
\]
Example: \(d = 2 \)

- To multiply two \(n \)-digit integers \(x \) and \(y \)
 - Interpret \(x \) and \(y \) as degree 2 polynomials \(P \) and \(Q \) with \((n/3) \)-digit coefficients
 - Compute \(R(0) = P(0)Q(0) \), \(R(1) = P(1)Q(1) \), \(R(-1) = P(-1)Q(-1) \), \(R(-2) = P(-2)Q(-2) \), \(R(\infty) = P(\infty)Q(\infty) \)
 - Recursively make 5 \(n/3 \)-digit multiplications
 - Compute coefficients of \(R(z) \):
 - Evaluate \(R(B) = R(b^{n/3}) \)
Example: $d=2$

- **Running Time:**
 - 5 $n/3$-digit multiplications
 - $O(n)$ extra time
 - $T(n) = 5 \cdot T(n/3) + O(n)$
 - $T(n) = O(n^{\log_3 5}) = O(n^{1.465})$
General d

- Make $2d+1$ recursive calls of size $n/(d+1)$
- $T(n) = (2d+1) T(n/(d+1)) + O(n)$
- $T(n) = O(n^{\log_{d+1}(2d+1)})$
- Can make $O(n^{1+\varepsilon})$ for arbitrarily small ε
- Hidden constants grow very rapidly as ε goes to 0
Observation

• Every recursive call, we:
 – Interpret integers as polynomials
 – Change representation of polynomials
 – Multiply in this representation by making recursive integer multiplication calls
 – Change representation of product back to coefficient representation
 – Evaluate polynomial at the base B
Simplification

• What if instead we:
 – Interpret n-digit integers as degree (n-1) polynomials
 – Change representation of polynomials
 – Multiply polynomials in this representation
 – Change representation back
 – Evaluate polynomial at the base b
Changing Representation

• To change representation of degree d polynomial seems to require d^2 operations

\[
\begin{pmatrix}
P(z_0) \\
P(z_1) \\
\vdots \\
P(z_d)
\end{pmatrix} =
\begin{pmatrix}
1 & z_0 & \cdots & z_0^d \\
1 & z_1 & \cdots & z_1^d \\
\vdots & \vdots & \ddots & \vdots \\
1 & z_d & \cdots & z_d^d
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
\vdots \\
a_d
\end{pmatrix}
\]

• Idea: can we pick the inputs z_i to make our job easier?
Changing Representation

- Say $d = 2k + 1$

$$P(z) = a_{2k+1}z^{2k+1} + ... + a_0$$

$$= (a_{2k}z^{2k} + a_{2k-2}z^{2k-2} + ... + a_0) + (a_{2k+1}z^{2k+1} + a_{2k-1}z^{2k-1} + ... + a_1z)$$

$$= P_{even}(z^2) + zP_{odd}(z^2)$$

$$P_{even}(z) = a_{2k}z^k + a_{2k-2}z^{k-1} + ... + a_0$$

$$P_{odd}(z) = a_{2k+1}z^k + a_{2k-1}z^{k-1} + ... + a_1z$$
Divide and Conquer

• Let $Z = \{z_0, -z_0, z_1, -z_1, \ldots, -z_k, z_k\}$
• Let $Z' = \{z_0^2, z_1^2, \ldots, z_k^2\}$
• To evaluate P on all the points in Z:
 – Evaluate P_{even} and P_{odd} on all the points in Z'

\[
P(z) = P_{\text{even}}(z^2) + zP_{\text{odd}}(z^2)
\]

\[
P(\pm z_i) = P_{\text{even}}(z_i^2) \pm z_i P_{\text{odd}}(z_i^2)
\]
Divide and Conquer

• To evaluate P on $d+1=2k+2$ points, simply evaluate P_{even} and P_{odd} on $k+1$ points each, and then add or subtract results

• $T(d) = 2 \cdot T((d+1)/2) + O(d)$

• Solved with $T(d) = O(d \log d)$
Problem!

• We evaluate P_{even} and P_{odd} on z_i^2
• To recursively apply this trick, we need the z_i^2 values to be in ± pairs
• But if z_i is a real number, z_i^2 is always non-negative!
• Must use imaginary/complex numbers
Complex Numbers

• Imaginary number i: $i^2 = 1$
• Complex numbers have the form: $a + bi$
• $(a + bi) + (c + di) = (a + c) + (b + d)i$
• $(a + bi)(c + di) = ac + bc i + ad i + bd i^2$

 $= (ac-bd) + (bc+ad) i$
Complex Numbers

• Fact: $e^{i\theta} = \cos(\theta) + i \sin(\theta)$
• $e^{i2\pi} = 1$
• Alternative representation of complex numbers:
 – Re$^{i\theta}$ where R and θ are real numbers
 – Same representation if we use $\theta+2\pi k$ for any integer k
 – $(\text{Re}^{i\theta}) (\text{Se}^{i\varphi})=(\text{RS})e^{i(\theta+\varphi)}$
Complex Numbers

• Roots of unity:
 – Solutions to $z^n = 1$ are called nth roots of unity
 – Clearly, 1 is an nth root of unity. Are there others?
 – $(\text{Re} e^{i\theta})^n = 1 = (1)e^{i(0)}$
 – $R = 1$
 – $\theta n = 0 + 2\pi k$ for some integer k
 – $\theta = k \left(\frac{2\pi}{n} \right)$
Complex Numbers

- Roots of unity:
 - $\theta = k \frac{2\pi}{n}$ for some integer k
 - i.e., $z = e^{ik\frac{2\pi}{n}}$
 - Can replace k with $k+n$, so only n different values: $k = 0, 1, \ldots, n-1$
Complex Numbers

• Primitive nth root of unity:
 - $z^n = 1$
 - $z^k \neq 1$ for $0 \leq k < n$
 - Example: $e^{i2\pi/n}$
 - Fact: Let ω be a primitive nth root of unity. Then
 \{1, \omega, \omega^2, \ldots, \omega^{n-1}\} all nth roots of unity, and are all distinct
Complex Numbers

• Fact: Let ω be a primitive nth root of unity. Then \{1, ω, ω^2, ..., ω^{n-1}\} all nth roots of unity, and are all distinct

 - $(\omega^k)^n = (\omega^n)^k = 1^k = 1$

 - If $\omega^k = \omega^{k'}$, assume w.l.o.g. $k < k'$.

 - Then $\omega^{k'-k} = 1$

 - But $0 < k' - k < n$, so ω cannot be primitive