CS 161: Design and Analysis of Algorithms
Announcements

- Homework 3, problem 3 removed
Greedy Algorithms 4: Huffman Encoding/Set Cover

- Huffman Encoding
- Set Cover
Alphabets and Strings

• **Alphabet** = finite set of symbols
 – English alphabet = \{a,b,c,...,z\}
 – Hex values = \{0,1,...,9,A,B,C,D,E,F\}

• **String** = sequence of symbols from some alphabet
 – “This is a string”
How to Encode

• Computers store things as 0s and 1s
• How do we encode strings as sequence of bits?
 – Must be invertible (one-to-one)
 – What to use as few bits as possible
 – One approach: choose encoding for characters, induce encoding of strings by concatenating codes for each character
How to Encode

- Obvious solution: If alphabet size is $\leq 2^k$ for some k, encode each character using k bits
 - Each character takes k bits
 - n characters
 - kn bits total

<table>
<thead>
<tr>
<th>Letter</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00</td>
</tr>
<tr>
<td>B</td>
<td>01</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
</tr>
</tbody>
</table>

ABACBDBAAADDBAC

0001001001110000000011010010
How to Encode

• Issues:

 – Wasteful: If not exactly 2^k characters, some sequences never used

<table>
<thead>
<tr>
<th>Letter</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00</td>
</tr>
<tr>
<td>B</td>
<td>01</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
</tr>
</tbody>
</table>

Never use 11
How to Encode

• Issues:
 – What if one character occurs very often?

AAAAAAAABAAAAACAAABAAADADAAAAAACAAAB

If almost all letters are A’s, then an encoding that uses fewer bits to represent A and more to represent everything else would save on space.
Variable Length Encoding

- **Variable Length Encoding** = encoding of characters as bits where different letters may use a different number of bits
 - Still need encoding on strings to be one-to-one. What does this say about the encoding for characters?
Variable Length Encoding

<table>
<thead>
<tr>
<th>Letter</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>01</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
</tr>
</tbody>
</table>

AC → 010

BA → 010

Not one-to-one!
Prefix-Free Encoding

• A prefix of a bit sequence is the first i bits, for some i

0100101101000110101
0
01
010
0100
01000
01001
...

Prefix-Free Encoding

- A **prefix-free** encoding is an encoding of an alphabet such that no encoding of any character is a prefix of the encoding of any other character.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>01</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
</tr>
</tbody>
</table>

The encoding of A is a prefix of the encoding of C.
Prefix-Free Encoding

- A **prefix-free** encoding is an encoding of an alphabet such that no encoding of any character is a prefix of the encoding of any other character.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>110</td>
</tr>
<tr>
<td>D</td>
<td>111</td>
</tr>
</tbody>
</table>
Prefix-Free Encoding

• Theorem: Any prefix-free encoding of an alphabet induces a one-to-one encoding of strings over that alphabet
Prefix-Free Encoding

• Proof: Suppose toward contradiction that S and T are two different strings that map to the same sequence of bits
 – Assume w.l.o.g. that S and T differ on the first character. Let c be the first character of S, d the first character of T.
 – Let $E(c)$ and $E(d)$ be the encodings of c and d
 – Assume w.l.o.g. $|E(c)| \geq |E(d)|$
Prefix-Free Encoding

- Since all bits in encodings of S and T are the same, the first $|E(d)|$ bits are the same.
- Therefore, the first $|E(d)|$ bits of $|E(c)|$ are equal to $E(d)$.
- $E(d)$ is a prefix of $E(c)$.
- Since c was assumed different from d, our encoding is not prefix-free.
Tree View of Prefix-Free Encoding

- Every node represents a partial codeword
- Every node has two children, one for appending 0 to the partial codeword, one for appending 1.
- Leaves correspond to actual codewords
- Root is empty
Tree View of Prefix-Free Encoding
Tree View of Prefix-Free Encoding

• To encode: Find path from root to character, concatenate edge labels

• To decode $b_1b_2...$: Starting from the root, follow edge labeled b_1, then edge labeled b_2, ... until we find a leaf. Output that character, and start over from the root
Optimal Encoding

• What is the best possible prefix-free encoding we can find?

• Let n be the length of the string

• Let C be the cost of the encoding, defined as $(\text{length of encoding})/n$
 – $C =$ average length of encoding of characters, weighted by frequency
Optimal Encoding

• Let l_i be the length of the encoding of character i

• Let f_i be the frequency i occurs in the string
 – f_i (number of instances of i)/n

$$C = \sum_{i} f_i l_i$$
Optimal Encoding

- l_i is also the depth of character i in the encoding tree.

- Optimal encoding is always a full binary tree
 - If there is a node with only 1 child, replace node with child.
 - Depth of leafs only decreases.
Optimal Encoding

• Entropy:

\[H = - \sum f_i \log f_i \]

• Theorem (Shannon Coding Theorem):

\[C \geq H \]
Proof Of Coding Theorem

• Let \(g(x) = x \log x \)

• Lemma: \(g\left(\frac{x+y}{2} \right) \leq \frac{g(x) + g(y)}{2} \)
Proof Of Coding Theorem

• True when only 2 characters
 – Only possible encoding is for each character to get 1 bit. \(C = 1 \)

\[
H = -f_1 \log f_1 - f_2 \log f_2 = -2 \left(\frac{g(f_1) - g(f_2)}{2} \right) \leq -2 \left(g\left(\frac{f_1 + f_2}{2} \right) \right) = -2g(1/2) = 1
\]
Proof of Coding Theorem

• Inductively assume true for m-1 characters
• Let T be the tree corresponding to an optimal encoding over some alphabet of m characters
• At least two leafs at bottom level. Assume w.l.o.g. these correspond to characters 1 and 2
• Replace all instances of characters 1 and 2 with a new character
 – Has frequency $f_1 + f_2$
Proof of Coding Theorem

• Now we have an alphabet of size m-1
• Encoding for alphabet:
 – start with T
 – delete the nodes corresponding to characters 1 and 2
 – Assign the new character to the parent of these nodes (which is now a leaf)
 – New character has code length 1 less than deleted characters
Proof of Coding Theorem

• How does C change?
 – Removed character 1 with length l, frequency f_1
 – Removed character 2 with length l, frequency f_2
 – Added new character, length l-1, frequency $f_1 + f_2$

$$C = \sum_i f_i l_i$$

$$C' = C - (f_1 + f_2)l + (f_1 + f_2)(l - 1) = C - (f_1 + f_2)$$
Proof of Coding Theorem

• By inductive assumption,

\[C' \geq H' = -\sum f_i' \log f_i' = -\sum_{i \geq 3} f_i \log f_i - (f_1 + f_2) \log(f_1 + f_2) \]

\[= -\sum_i f_i \log f_i + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \log(f_1 + f_2) \]

\[= H + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \log(f_1 + f_2) \]

• Recall

\[C = C' + f_1 + f_2 \]
Proof of Coding Theorem

\[C \geq H + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \left(\log (f_1 + f_2) - 1 \right) \]

\[= H + f_1 \log f_1 + f_2 \log f_2 - (f_1 + f_2) \log \left(\frac{f_1 + f_2}{2} \right) \]

\[= H + 2 \left(\frac{1}{2} g(f_1) + \frac{1}{2} g(f_2) - g \left(\frac{f_1 + f_2}{2} \right) \right) \]

\[\geq H \]
How to Find Optimal Encoding

• Claim 1: There is an optimal solution where the two least frequent characters have the longest codewords (i.e. lowest level of tree), and are identical except for last bit
 – If not, swap these two characters with two of the characters with the longest codewords
 – Can swap with two that are siblings
How to Find Optimal Encoding

• Assume the two lowest-frequency characters are 1 and 2.

• What if we merge the two characters into a new character with frequency \(f_1 + f_2 \)?
 – New character gets codeword obtained by dropping last bit of the codewords for 1 or 2
Merging Two Characters

A:0

1

D:101

C:1000

E:1001

B:11

0 1

10

100

1000

1001

0 1

0 1

0 1

0 1
Merging Two Characters

```
A:0  
O 1  
10  
CE:100  
D:101  
B:11
```
How to Find Optimal Encoding

• Claim 2: For any optimal encoding, the encoding obtained by merging characters 1 and 2 must be an optimal encoding for the reduced alphabet, where characters 1 and 2 are replaced with a new character of frequency $f_1 + f_2$
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>f_1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>f_2</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>f_3</td>
<td>1000</td>
</tr>
<tr>
<td>D</td>
<td>f_4</td>
<td>101</td>
</tr>
<tr>
<td>E</td>
<td>f_5</td>
<td>1001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>f_1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>f_2</td>
<td>11</td>
</tr>
<tr>
<td>CE</td>
<td>$f_3 + f_5$</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>f_4</td>
<td>101</td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

• Idea:
 – Take two characters with lowest frequency
 – Merge them
 – Recursively solve reduced problem
 – Split characters apart again
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>[CE]</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>[CE]</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>[[CE]D]</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>[[CE]D]</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>[[CE]D]B</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>[[[CE]D]B]</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A[[[CE]D]B]]</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td>0</td>
</tr>
<tr>
<td>[</td>
<td>[C]E]D]B]</td>
<td>0.55</td>
</tr>
</tbody>
</table>

```
A 0.45 0
[|[C]E]D]B] 0.55 1
```
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>[[CE]D]</td>
<td>0.30</td>
<td>10</td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>[CE]</td>
<td>0.15</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td>101</td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.45</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>C</td>
<td>0.10</td>
<td>1000</td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td>101</td>
</tr>
<tr>
<td>E</td>
<td>0.05</td>
<td>1001</td>
</tr>
</tbody>
</table>
How to Find Optimal Encoding

• Let q be a heap of characters, ordered by frequency
• For each character c, q.insert(c)
• While q has at least two characters:
 – c₁ = q.deletemin(), c₂ = q.deletemin()
 – Create a node labeled [c₁c₂] with children c₁ and c₂
 – \(f([c₁c₂]) = f(c₁) + f(c₂) \)
 – q.insert ([c₁c₂])
• Return q.deletemin()
Running Time

• n inserts initially: $O(n \log n)$
• Every run of loop decreases size of heap by 1
 – n-1 runs of loop
• Each run of loop involves 3 heap operations: $O(\log n)$
• Total running time: $O(n \log n)$
Set Cover

• Given a set of elements B, and a collection of subsets S_i, output a selection of the S_i whose union is B, such that the number of subsets used is minimal.
Example: Schools

• Suppose we have a collection of towns, and we want to figure out the best towns to put schools
 – Need at least one school within 20 miles of each town
 – Every school should be in a town
Example: Schools

- B = set of towns
- S_i = subset of towns within 20 miles of town i
Greedy Solution

• Obvious solution: repeatedly pick the set S_i with the largest number of uncovered elements.
Example

• $B = \{1, 2, 3, 4, 5, 6\}$
• $S_1 = \{1, 2, 3\}$
• $S_2 = \{1, 4\}$
• $S_3 = \{2, 5\}$
• $S_4 = \{3, 6\}$
Example

• \(B = \{1, 2, 3, 4, 5, 6\} \)
• \(S_1 = \{1, 2, 3\} \)
• \(S_2 = \{1, 4\} \)
• \(S_3 = \{2, 5\} \)
• \(S_4 = \{3, 6\} \)

Greedy Algorithm

Sets used: \{\}

Elements left: \{1, 2, 3, 4, 5, 6\}
Example

- $B = \{1, 2, 3, 4, 5, 6\}$
- $S_1 = \{1, 2, 3\}$
- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: $\{S_1\}$

Elements left: $\{4, 5, 6\}$
Example

- $B = \{1, 2, 3, 4, 5, 6\}$
- $S_1 = \{1, 2, 3\}$
- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: $\{S_1, S_2\}$

Elements left: $\{5, 6\}$
Example

- \(B = \{1, 2, 3, 4, 5, 6\} \)
- \(S_1 = \{1, 2, 3\} \)
- \(S_2 = \{1, 4\} \)
- \(S_3 = \{2, 5\} \)
- \(S_4 = \{3, 6\} \)

Greedy Algorithm

Sets used: \(\{S_1, S_2, S_3\} \)

Elements left: \(\{6\} \)
Example

- $B = \{1, 2, 3, 4, 5, 6\}$
- $S_1 = \{1, 2, 3\}$
- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: $\{S_1, S_2, S_3, S_4\}$

Elements left: $\{\}$
Example

- $B = \{1, 2, 3, 4, 5, 6\}$
- $S_1 = \{1, 2, 3\}$
- $S_2 = \{1, 4\}$
- $S_3 = \{2, 5\}$
- $S_4 = \{3, 6\}$

Greedy Algorithm

Sets used: $\{S_1, S_2, S_3, S_4\}$

Elements left: $\{\}$

Optimal:

$\{S_2, S_3, S_4\}$
Set Cover

• Greedy algorithm isn’t optimal!
• Obtaining optimal solution believed hard
• Settle for approximation:
 – If optimal uses k sets, want to get solution using only slightly more than k sets
Approximation

• Claim: If B contains n elements, and the optimal solution uses k sets, then greedy uses at most $k \ln n$ sets
Proof

• Let n_t be the number of uncovered elements after t iterations of greedy algorithm ($n_0 = n$)
• Remaining elements covered by the optimal k sets
• Must be some set with at least n_t/k of the uncovered elements
• Therefore, greedy picks a set that covers at least n_t/k of the remaining elements
Proof

• Greedy picks a set that covers at least n_t/k of the remaining elements

• $n_{t+1} \leq n_t - n_t/k = n_t (1-1/k)$

• Therefore, $n_t \leq n_0 (1-1/k)^t = n (1-1/k)^t$
Proof

• Fact: $1-x \leq e^{-x}$, with equality if and only if $x = 0$
Proof

• $n_t \leq n(1-1/k)^t < n(e^{-1/k})^t < ne^{-t/k}$
• After $t = k \ln n$ iterations, $n_t < n e^{-\ln n} = 1$
• Therefore, after $t = k \ln n$ iterations, $n_t = 0$
• Therefore, greedy algorithm uses at most $k \ln n$ sets, as desired
Can We Do Better

• Our algorithm achieves an approximation ratio of \(\ln n \)

• This gives two questions:
 – Can the analysis be tightened so that greedy achieves a better approximation ratio?
 – Are there more sophisticated algorithms that achieve better approximation ratio?

• Answer to both: most likely not
 – If domr efficient algorithm can do much better, than we can solve a whole host of very difficult problems efficiently