CS 161: Design and Analysis of Algorithms

Mark Zhandry
Graphs 1:
Basic Graphs/Undirected Connectivity

- Representation
- Graph Properties
- BFS
- DFS
- Connectivity
Undirected Graphs
Directed Graphs
Graph Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Nodes</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Network</td>
<td>People</td>
<td>Friendships</td>
</tr>
<tr>
<td>WWW</td>
<td>Websites</td>
<td>Links</td>
</tr>
<tr>
<td>Games</td>
<td>Board positions</td>
<td>Legal Moves</td>
</tr>
<tr>
<td>Road Maps</td>
<td>Intersections</td>
<td>Roads</td>
</tr>
<tr>
<td>Software</td>
<td>Functions</td>
<td>Function Calls</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Atoms</td>
<td>Bonds</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Tasks</td>
<td>Precedence Constraints</td>
</tr>
<tr>
<td>Electricity Grid</td>
<td>Power Stations</td>
<td>Power Lines</td>
</tr>
</tbody>
</table>
Graph Basics

• $V = \text{set of nodes/vertices}$
• $E = \text{set of edges}$
 – Denote an edge from u to v as (u,v)
 – Order matters in directed graph, but not in undirected graph
• Usually write a graph G as the pair (V,E)
Representing Graphs

• Adjacency Matrix:
 – Matrix A with $|V|$ rows and columns
 – $A_{u,v} = 1$ if and only if the edge (u,v) exists
 – Undirected graph: A is symmetric

• Adjacency List:
 – Array with $|V|$ entries
 – The entry for u is the list of edges (u,v)
Graph Concepts

• Undirected graphs:
 – degree(v) = number of edges incident on v

• Directed graphs:
 – Indegree(v) = number of edges into v
 – Outdegree(v) = number of edges out from v
Representing Graphs

• Space requirements:
 – Adjacency Matrix: $O(|V|^2)$
 – Adjacency List: $O(|V| + |E|)$

• Time to see if (u,v) is in graph:
 – Adjacency Matrix: $O(1)$
 – Adjacency List: $O(\text{degree}(v))$ or $O(\text{outdegree}(u))$

• Time to get all (u,v) for specific u:
 – Adjacency Matrix: $O(|V|)$
 – Adjacency List: $O(\text{degree}(v))$ or $O(\text{outdegree}(v))$
Graph Concepts

• Path: sequence $v_1, v_2, ... v_k$, where (v_i, v_{i+1}) is an edge in the graph

• Length of path = number of edges in path
 – Infinity if no path
Graph Concepts

- Simple Path: path where all nodes are different
Graph Concepts

• Cycle: path where first and last node are the same
Graph Concepts

- Simple Cycle: cycle where all nodes are different (except the first and last)
Graph Concepts

• Subgraph: A graph $G'=(V',E')$ such that V' is a subset of V and E' is a subset of E
Types of Graphs

- Complete Graph: all possible edges
Types of Undirected Graphs

• Connected Graph: there is a path connecting any two nodes
Types of Undirected Graphs

- Tree: connected graph with no simple cycles
Tree Properties

- \(|E| = |V| - 1\)
 - Proof: If \(|V| = 1\), trivial
 - Assume true for \(|V| = n - 1\), we prove true for \(|V| = n\)
 - Pick a leaf node, and remove it. \(|V'| = |V| - 1\) and \(|E'| = |E| - 1\) (is there always a leaf node?)
 - \(|E| = |E'| + 1 = |V'| - 1 + 1 = |V'| = |V| - 1\)
Tree Properties

• Every two nodes u and v have exactly 1 path between them
 – Proof: Suppose they have 2 paths p_1 and p_2
 – Let w be the first node in p_1 that is also in p_2
 – Let p be the path obtained by following p_1 from u to w, and then p_2 from w back to u
 – p is a simple cycle!
Shortest Paths

- The distance between nodes u and v is the minimum length of all paths from u to v
 - Shortest path is simple (why?)
- How do we compute the distance between u and v?
Breadth-First Search

• Idea: Let w_i be the neighbors of v, and let p_i be the shortest path from u to w_i.
• Any path from u to v must have one of the w_i be the last node before v.
• Then the shortest path from u to v must be one of the p_i followed by v.
Breadth-First Search

• What if we already knew the distances from u to all of the nodes with distance at most d

• We can find the distances to all nodes with distance at most $d+1$ as follows:
 – For every node v with distance d, look at every outgoing edge (v,w)
 – If w does not have distance at most v, its distance is $d+1$

• Base case: u is the only node with distance 0 from u
Breadth-First Search

Algorithm: Input graph $G=(V,E)$, node u

- Set $\text{distance}(u) = 0$, $\text{distance}(v)=\infty$ for $v \neq u$
- $q =$ new queue containing u
- While(q is not empty)
 - $v = q.\text{poll}()$
 - For every (v,w) in E with $\text{distance}(w)=\infty$:
 - Set $\text{distance}(w)= \text{distance}(v)+1$
 - $q.\text{add}(w)$
Proof of Correctness

• Claim: For each $d=0,1,...$, there is some point at which
 – all nodes with distance at most d have their distances correctly set,
 – all other nodes have distance set to infinity,
 – and q contains exactly the nodes at distance d
Proof of Correctness

• True for $d = 0$ at beginning. Inductively assume true for $d-1$
 – At some point, q contains nodes of distance $d-1$, all nodes with distance at most $d-1$ have correct distance, and all other nodes have distance set to infinity
Proof of Correctness

• Process all elements currently in \(q \).
 – If a node \(v \) has distance at most \(d-1 \), \(\text{distance}(v) \) not changed
 – If a node \(v \) has distance \(d \), it has some neighbor with distance \(d-1 \) that we will process
 • Thus we will set \(\text{distance}(v) \) to \(d \) and add it to \(q \)
 – If a node \(v \) has distance \(> d \), all of its neighbors have distance \(> d-1 \), so we do not change \(\text{distance}(v) \)
Proof of Correctness

- End result:
 - All nodes with distance d in queue
 - All nodes v with distance > d have distance(v) = \infty
 - All nodes v with distance at most d have correct distance(v)

- Once d > distance of farthest node, all nodes have correct distance, queue is empty, and program stops
Running Time

- Every node added to queue only when its distance is changed from infinity to something finite
 - Each node added only once
- Each edge \((u,v)\) only examined when \(u\) is removed from queue
 - Also when \(v\) is removed for undirected graphs
 - Therefore, each edge examined at most twice
 - If we use adjacency list, getting the edges from a node takes constant time per edge
- Running time: \(O(|V| + |E|)\)
BFS Example
BFS Example

d = 0
BFS Example

d = 0
BFS Example

d = 1
BFS Example

d = 1
BFS Example

d = 2
BFS Example

d = 2
BFS Example

\[d = 3 \]
Abstract View of BFS

• BFS(G,u) =

 visited(u) = true
 q.add(u)

 While q is not empty:

 v = q.peak()
 for each edge (v,w) where not visited(w)
 previsit(w)
 visited(w) = true
 q.add(w)
 postvisit(v)
 q.poll()
DFS: Exchange Queues for Stacks

- **Explore**(G,u) =

 `visited(u) = true`
 `s.push(u)`
 While q is not empty:
 `v = s.peak()`
 for each edge (v,w) where not visited(w)
 `previsit(w)`
 `visited(w) = true`
 `s.push(w)`
 `postvisit(v)`
 `s.pop()`
Recursion: Implicit Stack

- Explore(G,u) =
 visited(u) = true
 previsit(u)
 For each edge (u,v) where not visited(v):
 explore(v)
 postvisit(u)
Running Time

- Same as BFS, so $O(|V| + |E|)$
DFS Example
DFS Example
DFS Example

[Graph showing a depth-first search example with nodes labeled 1 to 13, and edges connecting them.]
DFS Example
DFS Example
DFS Example

Diagram showing a graph with nodes labeled 1 to 13, illustrating a depth-first search traversal.
DFS Example
What does DFS do?

• Depends on what previsit and postvisit do!
Undirected Connectivity

- Say two nodes u, v are **connected** if there is a path from u to v
- Equivalence relation:
 - u is connected to u
 - If u is connected to v, v is also connected to u
 - If u is connected to v and v is connected to w, then u is connected to w
Undirected Connectivity

• The equivalence relation induces equivalence classes on a graph. Called **connected components**
What does Explore Do?

• Visits exactly the nodes in the connected component containing v

• How do we get all of the connected components?
 – Run explore from all nodes
DFS

• DFS(G) =
 initialize()
 visited(v) = false for all v
 For all v,
 If not visited(v):
 update()
 explore(G,v)

• How do we set initialize(), update(), previsit(v), and postvisit(v) to get connected components?
Running Time

• Assume initialize is $O(|E|+|V|)$, update() is $O(1)$
• Call explore once per node.
• Each call to explore visits all the edges from that node
• Each node visited once, each edge twice
• Constant time per visit to node/edge
• Total running time $O(|V|+|E|)$
How to Find Connected Components?

- initialize(): \(cc = 0 \)
- update(): \(cc = cc + 1 \)
- previsit(v): \(ccnum(v) = cc \)
- postvisit(v): do nothing