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ABSTRACT
Protein-protein interactions play a central role in many cel-
lular functions, and as whole-genome data accumulates, com-
putational methods for predicting these interactions become
increasingly important. Computational methods have al-
ready proven to be a useful first step for rapid genome-wide
identification of putative protein structure and function, but
research on the problem of computationally determining bi-
ologically relevant partners for given protein sequences is
just beginning. In this paper, we approach the problem of
predicting protein-protein interactions by focusing on the 2-
stranded coiled-coil motif. We introduce a computational
method for predicting coiled-coil protein interactions, and
give a novel framework that is able to use both genomic se-
quence data and experimental data in making these predic-
tions. Cross-validation tests show that the method is able to
predict many aspects of protein-protein interactions medi-
ated by the coiled-coil motif, and suggest that this method-
ology can be used as the basis for genome-wide prediction
of coiled-coil protein interactions.
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1. INTRODUCTION
Protein-protein interactions play a central role in many cel-
lular functions, including DNA replication, transcription and
translation, signaling cascades, metabolic pathways, and pro-
tein trafficking and secretion. Since a genome contains a
complete “parts list” of an organism, whole-genome data
allows one to begin to address exhaustively the problem of
determining and predicting which proteins can interact with
each other. Traditionally, protein-protein interactions have
been determined using biochemical and genetic experiments;
however, as whole-genome data accumulates, it becomes in-
creasingly important to develop computational methods for
predicting these interactions. Computational methods have
already proven to be a useful first step for rapid genome-wide
identification of putative protein structure and function, but
research on the problem of computationally determining bi-
ologically relevant partners for a given protein sequence is
just beginning.

The difficulty of the general protein structure prediction
problem precludes structure-based prediction of all protein-
protein interactions. Our approach to this problem focuses
on a specific, well-characterized structural motif that medi-
ates protein-protein interactions: the parallel, 2-stranded
coiled coil. Predicting protein-protein interactions medi-
ated by the coiled-coil motif is an important problem, as
coiled coils are found in proteins involved in transcription,
in cell-cell and viral-cell fusion events, and in maintaining
the structural identity of cells. Coiled-coil interactions are
known to be specific [19, 32, 41], and coiled coils are also
quite common–they are predicted to comprise 3%–5% of se-
quence databases [25, 42]. More generally, the methods we
develop for this problem may influence computational meth-
ods for prediction of protein-protein interactions mediated
by other structural motifs. Protein-protein interactions can
sometimes be predicted without structural information by
exploiting information gleaned from multiple fully sequenced
genomes [35, 26, 8]; the structural approach outlined here
can be augmented by these non-structural, cross-genomic
approaches.

The coiled-coil motif consists of two or more right-handed α-
helices wrapped around each other with a slight left-handed
superhelical twist. These helices may associate with each
other in a parallel or anti-parallel orientation, and the se-
quences making up the helices may either be the same (homo-
oligomers) or different (hetero-oligomers). Coiled coils show



a characteristic heptad repeat (abcdefg)n spread out along
two turns of the helix, with positions a and d containing
generally hydrophobic residues, and positions e and g con-
taining generally charged residues (see Figure 1). Their sim-
ple, repeating structures make them particularly amenable
to computational methods, and several methods have been
developed that are effective in identifying potential coiled-
coil strands within single protein sequences [34, 25, 2, 42, 1,
39, 38].

These methods cast the coiled-coil recognition problem with-
in a probabilistic framework, and use databases of known
coiled-coil sequences to tabulate frequencies of amino acids
appearing in particular heptad repeat positions. Several
of these methods use intrahelical pairwise correlations be-
tween residues in coiled coils, but up to this point none
has explicitly used interhelical correlations within coiled-coil
structures. All of these methods predict the likelihood that
a single protein sequence is part of a coiled-coil structure;
none of these methods predict whether a particular protein
pair (or triplet, etc.) is likely to form a coiled-coil struc-
ture. Since the coiled coil is one of the few structural motifs
for which effective prediction methods exist, it is a natu-
ral motif for which to begin development of computational
methods for predicting protein-protein interactions. In the
past, several groups have counted the number of favorable
and unfavorable electrostatic interactions to make some spe-
cific predictions about the nature of particular coiled-coil
protein-protein interactions [33, 27, 41]; however, it is known
that many other factors play a role in coiled-coil specificity
(e.g., [32, 24, 14]) and thus such simple approaches are lim-
ited in their applicability.

In this paper, we present a computational method for pre-
dicting whether a particular pair of protein sequences can
form a coiled-coil structure. Unlike previous methods that
cast coiled-coil recognition within a probabilistic framework,
here coiled coils are explicitly represented in terms of the
interhelical pairwise interactions that make them up. This
simple switch in representation captures many of the essen-
tial structural features of coiled coils, and allows coiled-coil
sequence data to be easily augmented with experimentally
derived information about coiled coils. We give an opti-
mization method based on both sequence and experimental
data that computes a weight for each possible interhelical
interaction. Intuitively, for each possible interhelical inter-
action, the method computes the corresponding “weight”
that represents how favorable the interhelical interaction is.
The score for any coiled-coil structure is then the sum of the
computed weights corresponding to each interhelical inter-
action making up the coiled coil.

A novel feature of this method is the ability to use both
coiled-coil sequence data and coiled-coil experimental data.
Since the coiled-coil motif is well-studied and much has been
determined about coiled-coil specificity in experimental work
(e.g., see [32, 24, 14, 41, 11, 10]), it is advantageous to have
a method that incorporates this knowledge. On the other
hand, not all pairwise interactions of interest have been stud-
ied experimentally, and taking advantage of statistical fea-
tures evident in sequence databases is also necessary. Ad-
ditionally, the method can tolerate some amount of error,
either in the experimental data or in the way in which se-

quence data is used.

Since potential coiled-coil strands can be identified efficiently
at the genome level [25, 2, 42], and in particular, 2-stranded
coiled-coil regions can be distinguished [42], ultimately we
would like to use our method to make genome-wide pre-
dictions of coiled-coil protein interactions. As a first step,
we show that the method is able to predict many aspects
of protein-protein interactions mediated by the coiled-coil
motif. In particular, the general problem of coiled-coil part-
ner prediction can be broken down into the following easier
subproblems:

• Predicting helix-alignment: given two coiled-coil
sequences that are known to partner, predict how the
helices align with each other. That is, two coiled-coil
regions may interact with each other in several shifts,
and we would like to predict, for example, which a
position in one helix is across the coiled-coil interface
from a given a position in the other helix.

• Heterodimeric preferences: given two coiled-coil
sequences, predict whether the heterodimer formed by
these sequences is preferred over the two correspond-
ing homodimers. Heterodimer preferences are mea-
sured by comparing the heterodimer species with the
two corresponding homodimer species; in some cases,
heterodimer preferences exist because one of the two
homodimer species is very unfavorable (e.g., for the
fos-jun heterodimer, the instability of the fos homod-
imer drives heterodimer formation [32]).

• Partner elimination: given a coiled-coil sequence,
eliminate the vast majority of possible coiled-coil part-
ners. The ultimate goal is to get rid of all incorrect
possibilities; for this work, we try to quantify how well
we do in this regards.

Cross-validation tests show that our method performs well
on the above problems; we know of no other method that
has the type of performance we obtain. Since solutions to
the above subproblems are clearly necessary for solving the
general coiled-coil partner prediction problem, our method-
ology makes substantial progress on the problem of predict-
ing coiled-coil protein interactions.

2. METHODS
In this section, we describe a framework for making predic-
tions about coiled-coil protein interactions. First, we show
how structural features important for coiled-coil specificity
are used to motivate a representation of coiled coils based
on interhelical interactions. Second, we show how this repre-
sentation allows incorporation of experimental information
about coiled-coil partnering specificity. Third, we show how
to include coiled-coil sequence data into this framework. Fi-
nally, we show how this framework can handle error, either
in the experimental data or in the way in which sequence
data is used.

The methodology presented below is significantly different
from previous computational methods for coiled-coil recog-
nition [34, 25, 2, 42, 1, 39, 38]. Unlike the methodology



presented in this paper, these previous methods have all
viewed coiled-coil recognition within a probabilistic frame-
work. Additionally, none of these methods has attempted
to predict coiled-coil protein-protein interactions, and none
provides an obvious way to incorporate experimental infor-
mation.

Representing coiled coils. The interface between α-heli-
ces in a parallel, 2-stranded coiled coil is formed by residues
at the core positions a, d, e and g (see Figure 1). In partic-
ular, crystal structures of parallel 2-stranded coiled coils [31,
9] have revealed that the side chains in the interaction inter-
face display knobs-into-holes packing [7]. That is, the side
chain of i-th heptad a position residue of one helix packs into
a “hole” surrounded by the i-th heptad a position residue,
the i − 1-st heptad g position residue, and the i − 1-st and
i-th d position residues of the other helix; and the side chain
of i-th heptad d position residue of one helix packs into a
“hole” surrounded by the i-th heptad d position residue,
the i-th heptad e position residue, and the i-th and i + 1-
st a position residues of the other helix. Additionally, the
solvent-exposed portion of the interaction interface consists
of side chains in the g and e positions, with the side chain in
the i-th heptad g position of one helix possibly interacting
with the side chain in the i + 1-st heptad e position of the
other helix.

These structural features motivate the simplifying assump-
tion that all coiled-coil interhelical interactions can be cap-
tured by interactions between these four core positions. Con-
sidering just these core position residues is also a reason-
able assumption given what is known experimentally about
dimeric coiled-coil specificity; for example, see [32]. The fur-
ther assumption is made that considering pairwise interac-
tions is sufficient.1 With these two assumptions, each coiled
coil can thus be represented by the pairwise interhelical in-
teractions that make it up. That is, each coiled coil can be
represented by a vector ~x, where x(p,q),i,j , is the number of
times residues i and j appear across the helical interface in
positions p and q respectively.

Note that the interhelical pairwise positions (p and q) to
be considered can be chosen based on what interactions are
thought to be important for coiled coils. In particular, based
on structural features of the coiled-coil interhelical inter-
face [31, 9] as well as experiments on determinants of coiled-
coil specificity [32, 24, 41], the following pairwise positions
are used: (i)g-(i+ 1)e’ (that is, the interaction between the
g position in the i-th heptad of one helix with the e position
in the i+ 1-st heptad of the other helix), (i)g’-(i+ 1)e, (i)g-
(i+ 1)a’, (i)g’-(i+ 1)a, (i)d-(i)e’, (i)d’-(i)e, (i)d-(i+ 1)a’,
(i)d’-(i + 1)a, (i)a-(i)d’, and (i)a’-(i)d.2 Note that pairs

1Pairwise interactions were sufficient in earlier work on
coiled-coil recognition [2, 1, 42]. Note also that theoreti-
cally we can consider more than pairs of amino acids at a
time; the major difficulty is in the size of our coiled-coil
databases.
2Note that (i)a-(i)a’ and (i)d-(i)d’ are very important com-
ponents of the interhelical interface (e.g., [14, 24]). However,
since our database is biased towards homodimeric coiled
coils, and homodimeric coiled coils have identical resides in
the analogous a positions across the interhelical interface (as
well as identical residues in the analogous d positions across

of these interactions are symmetric (e.g., (i)g-(i+ 1)e’ and
(i)g’-(i + 1)e represent the same interhelical interaction).
Thus, five different pairwise interactions are used, and since
20 amino acids are possible for each position, coiled coils are
represented by vectors of dimensionality 5 · 20 · 20 = 2000.

Suppose that for each possible interaction x(p,q),i,j , the cor-
responding “weight” w(p,q),i,j that represents how favorable
the interhelical interaction is known. Then for a particular
coiled coil represented by ~x, its score is given by ~w · ~x. Of
course, initially this weight vector ~w is not known, and we
show below constraints that this vector ~w should satisfy.

Constraints from experimental information. This rep-
resentation of coiled coils allows us to state rigorously certain
types of experimental constraints. For example, if coiled coil
~x is more “favorable” (e.g., more stable) than coiled coil ~y,
then we would like weight vector ~w to satisfy:

~w · ~x > ~w · ~y (1)

Furthermore, this representation allows knowledge about
specific weight elements to be incorporated. As an exam-
ple, say that it is more favorable to have a Lysine in a g
position in one helix with a Glutamic Acid in the following
position e in the other helix than it is to have Glutamic Acid
in both these positions (i.e., g-e K E is “better than” g-e E
E). Then the following should be true:

w(g,e),K,E > w(g,e),E,E (2)

Constraints from sequence databases. Given databases
of sequences that form dimeric coiled coils and sequences
that do not, we can further constrain the weight vector ~w.
In particular, we would like coiled coils to have a higher score
than non-coiled-coils. One way to constrain the weight vec-
tor ~w to satisfy this is to require that:

~w · ~x > 0, for all coiled coils ~x (3)
~w · ~y < 0, for all non-coiled-coils ~y (4)

Allowing errors and determining the weight vector.
Note that without loss of generality, each of the above con-
straints i (equations 1, 2, 3 and 4) can be rewritten in vector
notation ~z(i) such that ~w is constrained to satisfy ~w ·~z(i) > 0
for each ~z(i).

Since there may be errors in either the sequence data or the
experimental data, we would like to relax these constraints
on ~w. Errors can be allowed by adding additional variables
for each ~z(i) as follows:

~w · ~z(i) ≥ −εi (5)
εi ≥ 0 (6)

The goal now is to find ~w,~ε to minimize
�
εi such that each

constraint (given in equations 5 and 6) is satisfied. Thus,

the interhelical interface), the described methodology would
not be able to handle these positions effectively.
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Figure 1: (a) Side view of a parallel 2-stranded coiled coil. (b) Top view of a parallel 2-stranded coiled coil.
The interface between the α-helices in a coiled-coil structure is formed by residues at the core positions a,
d, e and g. For notational convenience, positions in the two helices are distinguished by the prime notation
(e.g., a and a’ are analogous positions in the two helices).

by searching for such a ~w, we obtain a set of weights corre-
sponding to each relevant interhelical interaction in a coiled
coil structure.

Tradeoffs between generalization and error led us to the the-
ory of SVMs (Support Vector Machines) [40, 4], and thus for
a chosen value of C, we actually minimized:

1
2
‖ ~w ‖2 +C( � εi) (7)

subject to

~w · ~z(i) ≥ 1 − εi ∀i (8)
εi ≥ 0 ∀i (9)

In SVMs, the first term ( 1
2 ‖ ~w ‖2) avoids overfitting, the

second term (
�
εi) is the error term, and the value of C

determines the tradeoff between generalization and error [40,
4]. The SVM-lite package of [21] was used to implement
portions of this work, with C = 1 for the testing described
below.

Note that SVMs allow one to work efficiently in higher di-
mensional spaces using kernel functions, but in this work
we assume that all coiled-coil interhelical interactions can
be captured by certain pairwise interactions, and projection
into a higher dimensional space violates this assumption.
Nevertheless, in future work, it may be worthwhile to relax
this assumption and to experiment with higher dimensional
spaces.

The framework described is independent of the optimiza-
tion method chosen, and it may be possible to improve per-
formance by experimenting with different methods of opti-
mization. For example, note that instead of optimizing a
quadratic program as given in equation 7, it is possible to
restate the problem as a linear program; for example, see [3].

Sequence and experimental data. For the work de-
scribed here, we have built two sequence databases. The
first is a homodimeric database consisting of myosin, tropo-
myosin, and types III and V intermediate filament (IF) pro-
teins; this database was extracted from the approximately

58,000 residue 2-stranded database of [2]. The second is a
heterodimeric database (6650 residues) built of keratin pairs
that are known to interact with each other [36, 29, 15, 37, 6].
The two databases consist of approximately 250 protein se-
quences. For all these sequences, the coiled-coil strands are
in exact axial register (review, [5]), so the correct structural
alignment of the helices with respect to each other is known
(i.e., for each coiled coil, it is known which a position in one
helix is across from each a position in the other helix). Each
coiled-coil region in these databases adds a constraint of the
type in equation 3.

The non-coiled-coils necessary for our developed methodol-
ogy (equation 4) are constructed in two ways. First, strands
that are known to interact with each other are paired to-
gether in an incorrect way; that is, a non-coiled-coil is con-
structed such that the relative shift of the two helices with
respect to each other is not seen in the actual coiled-coil
structure. Second, strands from different protein families are
paired together. While both these methods of constructing
non-coiled-coils may result in some pairs that could form
partners in vitro, coiled-coil interactions are known to be
quite specific (e.g., see [19, 41]), and our methodology al-
lows for some errors.

In addition to sequence databases, we use information from
various biophysical studies that took a coiled-coil host sys-
tem, mutated amino acids, and determined melting temper-
atures. Although the melting temperatures from different
studies are often incomparable (e.g., due to different experi-
mental conditions or constructs), each study provides a rank
ordering of the stabilities of the coiled coils considered, and
thus constraints of the type in equation 1 can be introduced.
Data from the following studies were incorporated. O’Shea
et al. determined melting temperatures for peptides con-
sisting of the coiled-coil regions of GCN4, c-fos, and c-jun
transcription factors, as well as several core position mu-
tants [32]. Using the bZIP homodimeric protein chicken
VBP as a host molecule, Krylov et al. measured melting
temperatures for g and e position mutants, and Moitra et al.
measured melting temperatures for d position mutants [23,
22, 28]. Jelesarov and Bosshard [20] determined melting



temperatures for designed peptides, with Alanine mutations
in the d positions.

Experimental data from some genetic approaches were also
used. Here, GCN4 leucine zipper sequences were random-
ized in core positions, and the resulting mutants were as-
sayed using λ repressor-zipper fusions in which repressor
function depends on oligomerization mediated by the leucine
zipper [18, 17, 43]. Thus, this assay determines whether a
particular mutant GCN4 coiled coil forms or not. In [18,
17], functional mutants were not assayed for oligomerization
state, so only the non-functional mutant data is used.

3. RESULTS
In this section, we show that our methodology is able to
predict many aspects of protein-protein interactions medi-
ated by the coiled-coil motif. We begin by explaining the
cross-validation set up, and then describe the performance
of our method on three subproblems of the general prob-
lem of coiled-coil partner prediction. Solutions to these sub-
problems are clearly necessary for solving the general coiled-
coil partner prediction problem, and we know of no other
method that has the type of performance we obtain.

Cross-validation set up. In order to do cross-validation
experiments, the dimeric coiled-coil sequence database was
split into 11 different groups, based on the fact that our
database consists of 11 different homologous coiled-coil re-
gions: keratins, type V IFs segment 1B, type III IFs segment
1B, type III IFs segment 2B, two tropomyosin groups (corre-
sponding to rabbit skeletal muscle tropomyosin residues 15–
182, and 196–269) and five myosin groups (corresponding
to nematode myosin residues 864–1160, 1212–1386, 1409–
1583, 1606–1808, 1831–1929). The regions were chosen as
described in [2]. In this manner, we ensure that there is no
significant sequence similarity between sequences in different
groups. Thus, to test the method, we applied the optimiza-
tion to all the data resulting from 10 out of the 11 groups,
as well as all the experimental weight constraint information
described above, and then tested on the group left out.

Once the weights have been determined, scoring and com-
paring all possible coiled coils is straightforward. Namely,
given two coiled-coil strands, each alignment of the two
strands with each other specifies a vector of relevant pair-
wise interactions, and the weights corresponding to these
interactions are simply summed up to give the interaction
score.

Predicting helix-alignment. Given two coiled-coil re-
gions that are known to partner with each other, is it possi-
ble to predict how the helices align with each other? That
is, two coiled-coil regions may potentially interact with each
other in several registers, and we would like to predict, for
example, which a position in one helix is across the coiled-
coil interface from a particular a position in the other helix.
A solution to this problem is clearly necessary for the general
partner prediction problem. Additionally, a solution to this
problem can provide structural information about coiled coil
protein-protein interactions determined in other ways (e.g.,
either obtained experimentally, as in [30], or computation-
ally from various non-structural whole- and cross-genome

methods [35, 26, 8]).

The weights were optimized in the manner just described,
with 11 optimizations for the different cross-validation sets.
We tested performance in the following way. Since the en-
tire coiled-coil region can play a role in specificity, for each
coiled-coil region in the database, performance was mea-
sured on progressively smaller subregions. In particular,
given two coiled-coil regions A and B of length l in our
database that are known to partner with each other, we be-
gan by considering two coiled-coil subregions of A: A1 that
is missing the first heptad of A, and A2 that is missing the
last heptad of A. Both A1 and A2 have length l − 7. We
now use the optimized weights to score A1 and A2 against
subregions of B of length l − 7. Note that since in coiled
coils an a position residue in one helix is across from an a
position residue in the other helix, there are only two ap-
propriate subregions of B of length l− 7: B1 that is missing
the first heptad of B, and B2 that is missing the last heptad
of B. (We required that all the l − 7 residues of A1 and
A2 be used for a technical reason: we wanted to compare
scores of coiled-coil regions of the same length in order to
avoid possible biases in our testing if the weights either fa-
vor lengthening or shortening of the coiled-coil interface.)
Then, the predicted helix-alignment for A1 is the subregion
of B (B1 or B2) with which it has the higher interaction
score. Thus, in this first simple case of testing where we are
just removing one heptad, guessing gives a performance of
50% correct. To increase difficulty of the testing, we then
progressively remove more heptads from sequence A (down
to a minimum length of 35 residues, or 5 heptads), and see
how these subregions align using the optimized weights with
appropriate length subregions of B (and vice-versa).

Table 1 shows results with subregions of up to 6 heptads
shorter. For each of the 11 cross-validation sets, the per-
cent of correctly identified helix-alignments was calculated,
and the average value over the cross-validation sets is re-
ported. Overall performance starts with 97% and drops
down to 90%. Since the entire coiled-coil region may play
some role in specificity, some drop off in performance as pro-
gressively more heptads are removed is expected. In general,
for genome-wide analysis, we will not know exact coiled-coil
boundaries. Nevertheless, it is expected that current single-
strand coiled-coil recognition methods [25, 2, 42] can de-
tect dimeric coiled-coil boundaries within a heptad on each
side, so this performance on helix-alignment is encouraging
in terms of genome-wide application.

Heterodimer preferences. If we are given two coiled-coil
sequences, can we predict whether the heterodimer formed
by these sequences is preferred over the two correspond-
ing homodimers? Heterodimer preferences are measured by
comparing the heterodimer species with the two correspond-
ing homodimer species; in some cases, heterodimer prefer-
ences exist because one of the two homodimer species is very
unfavorable (e.g., for the fos-jun heterodimer, the instabil-
ity of the fos homodimer drives heterodimer formation [32]).
Again, a solution to this subproblem will be useful for the
general partner prediction problem; in considering whether
two strands are likely to partner with each other, it will be
necessary to consider the two corresponding homodimers as
well.



Heptads removed: 1 2 3 4 5 6
% alignments correct: 97 96 96 95 93 90
% performance if guessing: 50 33 25 20 17 14

Table 1: Helix-alignment performance of optimized weights. Percent of correctly identified helix-alignments
is given as a function of the number of heptads removed. The percent of correctly identified helix-alignments
given is the average performance over 11 cross-validation sets. Performance if guessing as a function of the
number of heptads removed is also given for reference. In all cases, the method is performing significantly
better than guessing.

Keratins are known to be preferential heterodimers [16]. For
each pair of heterodimeric keratin coiled-coil partners, using
the weights optimized with all constraints except those in-
volving keratins, the score of the heterodimer pair was com-
pared with the average of the scores of the two corresponding
homodimers. In 25 out of 27 pairs considered, the score for
the heterodimer is better. Additionally, for the fos-jun het-
erodimer, the optimized weights again predict preferential
heterodimers. Thus, the weights resulting from our com-
putational procedure have good performance in predicting
heterodimer preferences.

Partner elimination. Given a coiled-coil sequence, can
we eliminate the vast majority of possible coiled-coil part-
ners? For each coiled-coil region A, we compared the score
of A and its true partner with all of the scores of A and
its possible partners. The possible partners were simply de-
fined as the coiled-coiled subsequences of the same length
as A, but in other cross-validation sets. We did not con-
sider possible partners from the same cross-validation set
since many of these sequences are close homologues that are
likely to form coiled-coil partners in vitro. Note that a par-
ticular coiled-coil region B may contribute many potential
coiled-coil partners for A, as all possible subsequences of
the appropriate length were considered. As with the helix-
alignment testing, we are only comparing interaction scores
of coiled-coil regions of the same length. For all coiled-coil
regions in our database, Table 2 shows the relative position
of its true partner’s score in comparison with the scores of
all possible partners. In particular, we keep track of how
often the true partner’s score is in the top 5%, 10%, 25%,
30% and 50% of all possible partner scores.

Top 5%: 88.7%
Top 10%: 94.8%
Top 25%: 98.3%
Top 30%: 98.8%
Top 50%: 99.2%

Table 2: Partner elimination. The percent of coiled-
coil regions in our database whose true partner’s
score is in the top 5%, 10%, 25%, 30% and 50% of
all possible partner scores.

The ultimate goal in partner elimination is to get rid of all
incorrect possibilities; here, we quantify how well we do in
this regards. Our results here are very encouraging. For
example, for 94.8% of the coiled-coil regions considered, the
true partner’s score was higher than the score of 90% of

all possible partners. Pragmatically, this means that for
94.8% of coiled-coil regions in our database, if we eliminate
the possible partners with interaction scores in the bottom
90%, the correct partner is still left. Thus, for most coiled-
coil regions, the vast majority of its incorrect partners can
be eliminated using the described methodology.

4. CONCLUSIONS
In this paper, we introduce a computational method for
predicting coiled-coil protein interactions, and give a novel
framework that is able to use both genomic sequence data
and experimental data in making these predictions. Cross-
validation tests show that the method is able to predict
many aspects of protein-protein interactions mediated by
the coiled-coil motif. In particular, for the coiled-coil regions
in our database, almost 95% of the time, 90% of the incor-
rect partners can be eliminated. Ultimately, we would like
to use our methodology to make genome-wide predictions of
coiled-coil partnering interactions; that is, we would like to
eliminate an even larger percent of incorrect partners. Ob-
vious directions to pursue include looking at other optimiza-
tion criterion, and trying to incorporate a-a and d-d interac-
tions. The approach outlined here can also be augmented by
other, non-structural, cross-genomic approaches [35, 26, 8],
by more time-intensive coiled-coil molecular modeling ap-
proaches [13, 12], or by exploiting expression patterns of
the protein sequences in consideration. While in some frac-
tion of the cases it may be difficult to predict coiled-coil
partners without molecular modeling calculations [13, 12],
note that the sequence-based methods developed here get
rid of the vast number of incorrect partner strands, and
thereby allow time-intensive computations to be done on a
more managable set. In conclusion, our methodology makes
substantial progress on the problem of predicting coiled-coil
protein interactions, and it is our hope that it will provide
the basis of a system capable of predicting coiled-coil protein
interactions at the genome level.
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