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The Threading Approach to Tertiary Structure Prediction

Today we will study the problem of predicting the tertiary structure of a given protein
sequence. In particular, we will focus on the threading or sequence-structure alignment
approach to this problem.

The threading and sequence-structure alignment approachs are based on the obser-
vation that many protein structures in the PDB are very similar. For example, there
are many 4-helical bundles, TIM barrels, globins, etc. in the set of solved structures.
As a result of this, many scientists have conjectured there are only a limited number
of “unique” protein folds in nature. Estimates vary considerably, but some predict
that are fewer than 1000 different protein folds. Thus, one approach to the protein
structure prediction problem is to try to determine the structure of a new sequence
by finding its best “fit” to some fold in a library of structures (see Figure 1).

Figure 1: Given a new sequence MLDVKAYKEMNT..., and a library of known folds, the goal
is to figure out which of the folds (if any) is a good fit to the sequence.

As a subproblem to fold recognition, we must solve the sequence-structure alignment
problem. Namely, given a solved structure T for a sequence t1t2 . . . tn = t and a new
sequence s1s2 . . . sm = s, we need to find the “best match” between s and T .

This actually consists of two subproblems:

• Evaluating (scoring) a given alignment of s with a structure T .
1This portion of lecture 14 is adapted from one given by Mona Singh at MIT. Scribe notes are

adapted from notes taken by Valentin Spitovsky also at MIT.
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• Efficiently searching over possible alignments.
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Figure 2: Example: New sequence s=LEVKF, and its best alignment to a particular struc-
ture.

There are at least three approaches to the sequence-structure alignment problem.

1. The first method is to just use protein sequence alignment. That is, find the
best sequence alignment between the new sequence s and the sequence t with
structure T . This is then used to infer the structural alignment: if si aligns
with tj, si’s position in the 3D structure is the same as tj’s.

Scoring in this case is based on amino-acid similarity matrices (e.g., you could
use the PAM-250 matrix), and the search algorithm is dynamic programming
(O(nm) time).

This is a non- physical method; that is, it does not use structural information.
The major limitation of this method is that similar structures have lots of
sequence variability, and thus sequence alignment may not be very helpful.
Hidden Markov model techniques have the same problem.

2. The second method we will describe, the 3D profile method, actually uses struc-
tural information [1]. The idea here is that instead of aligning a sequence to
a sequence, we align a sequence to a string of descriptors that describe the 3D
environment of the target structure. That is, for each residue position in the
structure, we determine:

• how buried it is (buried, partly buried or exposed)

• the fraction of surrounding environment that is polar (polar or apolar)

• the local secondary structure (α-helix, β-sheet or other)
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Figure 3: We assign 6 classes of environments to each position in the structure. These
environments (E, P1, P2, B1, B2 and B3) depend on the number of surrounding polar
residues and how buried the position is. Since there are 3 possible secondary structures for
each of these, we have a total of 6× 3 = 18 environment classes.

For each position in the structure, we categorize it into one of 18 environment
classes using these characteristics (see Figure 3). Because we are using environ-
mental variables, this adds a physical dimension to the problem.

The key observation is that different amino acids prefer different environments.
For all proteins in the PDB, we can tabulate the number of times we see a
particular residue in a particular environment class, and use this to compute a
score for each environment class and each amino acid pair. In particular, we
compute a log-odds score of

scoreij = ln
(

Pr(residue j in enviroment i)
Pr(residue j in any enviroment)

)

The denominator is obtained from amino acid frequencies present in the PDB

This gives us an 18x20 table as follows:

Environment Classes W F Y · · ·
B1α 1.00 1.32 0.18 · · ·
B1β 1.17 0.85 0.07 · · ·

...
...

...
...

...
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Then we can build a 3D profile for a particular structure using this table.
Namely, for each position in our structure, we determine its environment class,
and the score of a particular amino acid in this position depends on the table
we built above. Thus, for example, if the first position in our structure has
environment class B1β, the score of having a tyrosine (Y) in that position is
0.07. Thus, for example, if there are n positions in our structure, we build a
table as follows:2

Position in Fold Environment Class W F Y · · · Gap Penalty
1 B1β 1.17 0.85 0.07 · · · 200
2 E loop -2.14 -1.90 -0.94 · · · 2
...

...
...

...

Then to align a sequence s with a structure, we align the sequence with the
descriptors of the 3D environment of the target structure. To find the best
alignment, we use a 2D dynamic programming matrix as for regular sequence
alignment:

e1e2 · · · en ← environment classes
s1

s2
...
sm
↑

new sequence

Thus, to use the 3D profile method for fold recognition, for a particular sequence
we calculate its score (using dynamic programming) for all structures. Signifi-
cance of a score for a particular structure is given by scoring a large sequence
database against the structure and calculating

z−score =
score − µ

s

where µ is the mean score for that structure, and s is the standard deviation of
the scores.

The advantages of the 3D profile method over regular sequence alignment is
that environmental tendencies may be more informative than simple amino acid

2The gap penalties are chosen to discourage gaps in positions within α-helices and β-sheets.
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similarity, and that structural information is actually used. Additionally, this
is a fast method with reasonably good performance. The major disadvantage
of this method is that it assumes independence between all positions in the
structure.

3. Our third method for sequence-structure alignments uses contact potentials.
Most “threading” methods today fall into this category.

Typically, these methods model interactions in a protein structure as a sum
over pairwise interactions.

One formalization of the problem is:

Given: a structure P with positions p1, p2, . . . , pn, and a sequence s1, . . . , sm.
Find: t1, t2, . . . , tn (where 1 ≤ t1 < t2 < · · · < tn ≤ m and ti indicates the index
of the amino acid from s that occupies pi) such that

n∑

i=1

n∑

j=1
score (i, j, sti , stj )

is maximized.

This problem is NP-complete for pairwise interactions. (If the contact graph
for a structure is planar, there are approximation algorithms for this problem.
However, in practice, they are not used because most graphs would not be planar
and heuristics are thought to give better solutions.) One approach commonly
used to find threadings is to disallow gaps into core segments (such helices
and sheets), and to put lower and upper bounds on distances between core
segments. Some algorithms also use exhaustive enumeration and branch and
bound techniques to find the best threading. Alternatively, some approaches
give up the guarantee of finding the best threading, and use fast heuristics
instead.

The score functions come from database-derived pairwise potentials. The gen-
eral idea is to define a cutoff parameter for “contact” (e.g., up to 6 Angstroms),
and to use the PDB to count up the number of times amino acids i and j are
in contact:

scoreij = ln
(
Pr(i, j| contact )

normalization

)
.

There are several methods to do this normalization. For example, in [2], nor-
malization is by expected frequencies.

Additionally, there are many variations in defining the potentials. For exam-
ple, in addition to pairwise potentials, some researchers consider single residue
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potentials as well (e.g., to take into account hydrophobicity or secondary struc-
ture), or distance-dependent intervals (e.g., counting up pairwise contacts sep-
arately for intervals within 1 Angstrom, between 1 and 2 Angstroms, etc.).

An interesting question for the threading approach is that as the number of known
folds increases, will threading methods improve? That is, will better potential func-
tions give better results?

In the next part of the lecture, we will look more closely at the knowledge-based
potentials.
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